Modeling Entropy Sources

John Kelsey, NIST and KU Leuven

Overview

- An entropy source submission must include:
 - An explanation of where the entropy comes from
 - An entropy estimate
 - Justification for the entropy estimate
 - Statement about whether source claims iid
- Black-box tests run to estimate entopy from outputs
 - Entropy estimate never larger than submitter estimate
 - Useful as a sanity check
 - Not enough to be convincing

• Entropy estimates and justifications range from extremely sketchy to extremely convincing.

Less convincing:

- 1. "There's gotta be a bit in there somewhere"
- 2. "I ran some statistical tests on it and the outputs passed"
- 3. "The 90B tests assessed it at 0.7 bits / output"
- 4. "This model is based on an extensive literature on the subject"
- 5. "We took these measurements and ran these experiments to verify our model"

More convincing

Preliminaries

- Requierements from 90B
- Questions to ask
- What's an entropy estimate?
- Working backwards
- Physical vs non-physical sources

Requirements on the Noise Source

From Section 3.2.2

- The operation of the noise source shall be documented; this documentation shall include a description of how the noise source works, where the unpredictability comes from, and rationale for why the noise source provides acceptable entropy output.
- Documentation shall provide an explicit statement of the expected entropy provided by the noise source outputs and provide a technical argument for why the noise source can support that entropy rate.

Questions about the noise source

• How does the noise source work? (What's unpredictable about it?)

"The operation of the noise source shall be documented..."

- Where does the unpredictability come from?
 - "...where the unpredictability comes from"

How much entropy / output is produced?

"Documentation shall provide an explicit statement of the expected entropy provided..."

• How do you know? (Justify the entropy estimate.)

"...provide a technical argument for why the noise source can support that entropy rate."

How does the noise source work?

"The operation of the noise source shall be documented..."

- Detailed description
- Diagrams
- Internal measurements of parameters
- Analysis of its behavior

Why is it nondeterministic?

"...where the unpredictability comes from"

- What about the noise source is not deterministic?
- Where does that nondeterministic behavior come from?
- What prevents an attacker from predicting the behavior of the source?

How much entropy / output is produced?

"Documentation shall provide an explicit statement of the expected entropy provided..."

 Requires knowing something about probability distribution on outputs

outputs	P[max]	H[min]	
 Need to estimate or upper bound P[max] H[min] = -lg(P[max]) Higher P[max] → lower H[min] 		0.50	1.00
		0.55	0.86
		0.60	0.74
		0.70	0.51
		0.80	0.32
		0.90	0.15
		0.95	0.07

Justify the entropy estimate

"...provide a technical argument for why the noise source can support that entropy rate."

- Probability model of some kind for outputs
- Model for nondeterministic process that produces outputs
- Justification and evidence for models

Statistical tests alone are NOT strong evidence of entropy estimate!

What is an entropy estimate?

• Ultimately, an entropy estimate is an estimate of P[max]. H[min] = -lg(P[max])

P[max] =

Maximum for all possible outputs x Pr[output = x | all attacker knowledge] **←** 90B

Usually upper-bound P[max] to deal with:

P*[max] >= P[max]

Intuition: P[max] in 90B

Assume:

- Attacker has a very good understanding of your source
- He's examined millions of samples from this particular device
- He's seen all previous samples since startup
- Attacker wants to predict next output
- How do we bound his probability of success?

P[max] = Max (all x) (Pr[x = output | all attacker information])

Intuition: Working backwards

- What we need: upper bound on P[max]
 - Gives lower bound on H[min]
- To compute bound, we need probability model on outputs
 - Doesn't need to specify everything, but needs to let us bound P[max]
 - Must agree with observed properties of outputs
 - Must make sense in light of operation of noise source
- To construct probability model, we may need to model noise source
 - What's the unpredictable part?
 - Probability distribution / model for unpredictability
 - How that affects outputs

Physical vs non-physical sources

- What we need: A probability model for the output.
 - So we can bound P[max]
- How we can get that: physical sources
 - Build a model of the source's behavior
 - Estimate the parameters of that model
 - Use that model to produce the probability model
- How we get that: nonphysical or "found" sources
 - Try to model source's behavior
 - Justify some claim about probability model
 - Nonphysical sources are typically way too complex to model well.

What do we want from justification?

- Suppose you're going to trust this source with something important
- What kind of justification would you find convincing?
- What kind would you find worrying?

Designing The Source

- Designing source and model together
- Designing with testing in mind
- Thinking about failures

Designing the source

- Design the source with this process in mind from beginning!
- Many problems can be headed off in the design
 - Access to raw bits for validation and health testing
 - Designing the source to simplify the modeling
 - Building in mechanisms to detect or prevent failures internally
- Complexity is NOT your friend
 - Super complex designs are hard to test, validate, and verify

Easy to model

- Design the source with the model in mind
- Model should be simple enough to be tractable
 - Nice if you can find related stuff in the literature
- Ensure parameters can be measured/estimated
 - Sometimes parameters can be designed in or set in the field!
 - Other times they can be measured externally or looked up
- Ensure model can be checked
 - Access to raw outputs of individual components helps

Easy to test

The noise source should be designed to be easy to test

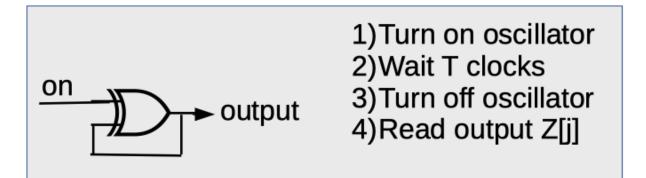
- Defined mechanism for getting the raw bits out for validation testing
 - Can be disabled when it's shipped
- Sometimes need access to other raw internal values to test model
- May need to be able to disable or turn off some parts for testing
- Justification for why this gives same raw bits used internally
- Defined access to raw bits for health testing
 - Health tests must have access to raw bits

Thinking about failures

How can the source fail?

- Total failures = things go catastrophically wrong
- Model failures = parameters of model are wrong
 - So entropy estimate isn't right

During design, think about how it can fail:


- Can you change design to prevent the failure?
- Can you detect failure?
 - New health test?
 - Internal measurements during operation?

Getting to an entropy estimate

- 1. Description of noise source operation
- 2. Explanation of where unpredictability comes from
- 3. Model of noise source's behavior
- 4. Model of probability distribution of output

How will you get entropy estimate?How will you justify entropy estimate?How would you know if you were wrong?

A Quickly Sketched Example

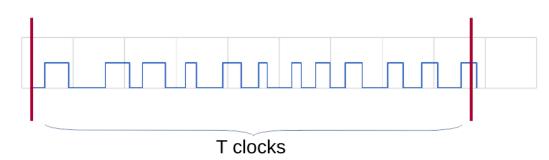
- Let's sketch out a noise source so we can talk about modeling
- Disclaimers:
 - This is a quickly sketched example
 - I'm not an EE
 - I'm not trying to design your noise source
 - This is just an illustration

What kind of justification would you find convincing?

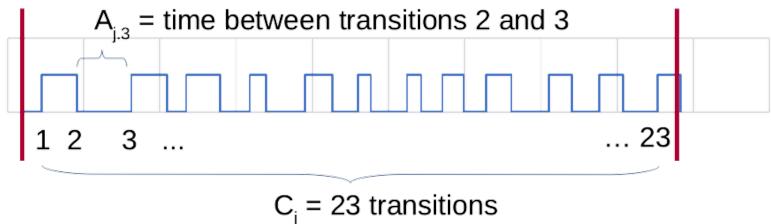


- When on = 1, this is an unstable oscillator
- When on = 0, this retains its value

Unstable oscillator:


- Keeps transitioning between $0 \rightarrow 1 \rightarrow 0 \rightarrow 1$ as long as it's on.
- Time taken to transition varies randomly by a little bit

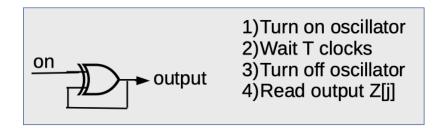
Stable clock signal Unstable signal from RO [VERY EXAGGERATED!] 24 What about here?

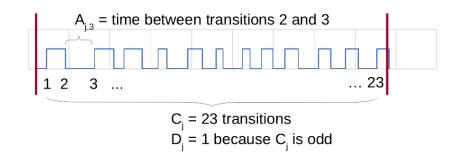


Generating a bit takes T+3 clocks

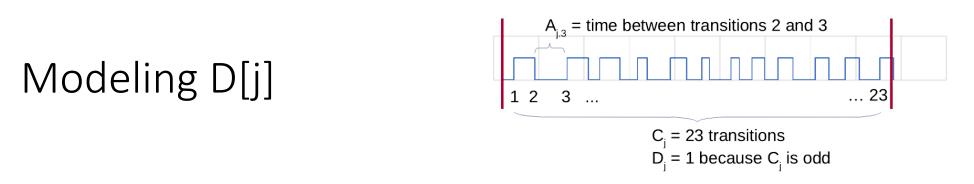
- T is a tunable parameter—designer sets it to get desired properties
- Outputs: Z[1],Z[2],...
- If oscillator changes state EVEN number of times:
 - Z[j] = Z[j-1]
- ODD number of times: Z[j] = Z[j-1] XOR 1

Parameters for Modeling




 $D_i = 1$ because C_i is odd

- Z[j] = output j

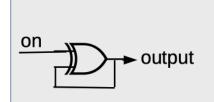

- A[j,k] = time taken for kth transition during jth output

What are the raw bits?

- 90B requires testing the *raw data* from the noise source
- This shows how this notion can be a little confusing
- For this source, entropy comes from whether C[j] is even or odd
- D[j] = C[j] mod 2
- Z[j] = Z[j-1] XOR D[j] Entropy in output comes from D[j]
- It probably makes more sense to think of D[j] as the raw data

• The only thing that affects output bits is whether oscillator changes outputs an EVEN or ODD number of times

EVEN: D[j] = 0 ODD: D[j] = 1


• We can observe

• We have to use a model to figure out

Pr[D[j] = prediction(all attacker info)]

Question: Is there some clever way for attacker to predict these bits?

First cut

1)Turn on oscillator
 2)Wait T clocks
 3)Turn off oscillator
 4)Read output Z[j]

- Experiment: We can try different values of T
- Increment until we find value T[c] for which D[j] appear unbiased random
- Eventually set T = T[c]*2 as a safety margin
- Model: D[j] are approximately uniform and unbiased
- Entropy estimate based on this
- Iid or non-iid tests will lower the estimate b/c of confidence interval

Good news/bad news

Good news

- This is clearly better than just relying on black-box estimators
- Experimentally setting T to provide some overdesign

Bad news

- We did a great job with Pr[D[j]=1]
- We don't know much about Pr[D[j]= prediction(D[j])]
- We haven't thought much about ultimate source of unpredictability

Modeling the counts

- A_{j,3} = time between transitions 2 and 3 1 2 3 23 $C_j = 23$ transitions $D_j = 1$ because C_j is odd
- C[j] = # of transitions in span j
- We can measure this experimentally

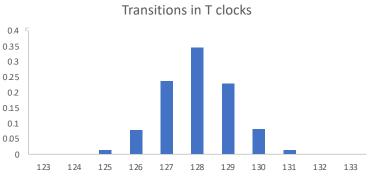
Model: C[j] = V[j] + M

Assumptions:

- M doesn't change much in a small time
 - Might change over longer spans of time—seconds or minutes.
- V[j] has same distribution in every output

Model: C[j] = M + V[j] or C[j] ~= N(M,sigma)

Measure C[j]


- Suppose when T is large, V[j] approximates a normal distribution
- Equivalently, C[j] ~ N(M,sigma) for some sigma

Test that C[j] plausibly follows same dist in all outputs

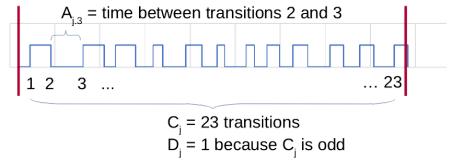
Test that transitions evenly divided in all clocks within an output

- So that doubling T really adds variability
- Now, we can get

P[D[j] = 0] = P[C[j] mod 2 = 0]

Good news/bad news

Good news


- We've delved a bit into internals of source
- We can support our entropy estimate this way
- We've checked many important assumptions
- Much higher confidence in estimate now

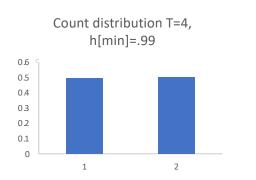
Bad news

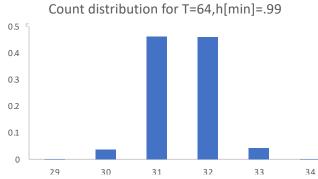
• Haven't gotten down to actual source of noise

Modeling individual transition times

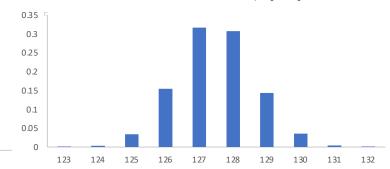
A[j,k] is time taken for kth transition
 (0->1 or 1->0) in output j

Model:

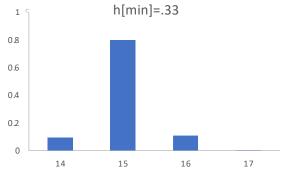

• A[j,k] ~ N(mu, sigma)


Measure parameters

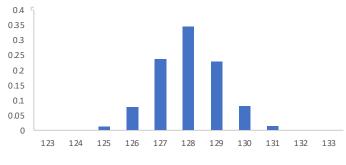
• Suppose we measure that mu~=40ns, sigma~=4 ns, one clock = 20 ns


Use this model to predict Pr[D[j] = 0] and thus H[min]

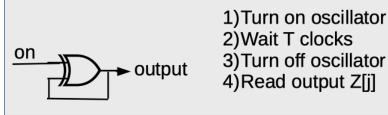
Some simulation results



Count distribution for T=256, h[min]=.99



Count dist. for T=15 (h[min]=0.1)



Count distribution for T=257, h[min]=0.98

Where is the noise?

 Based on some measurements, calculations, or just literature, we might further estimate fraction of variability due to real noise

A[j,k] ~ N(mu, sigma_{noise}) + F[j,k]

Where we assume F[j,k] is predictable to attacker In this case, we can get a more conservative estimate of entropy

Model: clock = 20 ns, mu = 40 ns, sigma_{noise} = 2 ns Entropy estimates for T=2,4,8,16,32,64 are all very similar (around 0.98)

Modeling Recap for on/off oscillator source

Going from least to most assurance

- Experiment with T needed to make D[j] random, make T bigger
 - [Model: Each clock you get a weaker D, XOR together by making T bigger!]
- Measure and model transition counts, verify more of model
- Measure and model individual transition times
- Incorporate estimate of fraction of variability based on real noise

All these let us get an estimate for entropy/output

Black box estimation \rightarrow Modeling outputs \rightarrow modeling best possible predictions

Where else is the model used in 90B?

- Conditioning
- Health tests and failure conditions

Modeling and conditioning

- If a source uses a non-vetted conditioning function, then submission must justify why there won't be a bad interaction between source and conditioning function
- Model is how you do that.
- Example: Von Neumann unbiasing.
 - Draw pair (X,Y) from source
 - If X = Y, discard both and don't output anything
 - Else, output Y
- If source is iid and biased, result is unbiased
- If successive samples correlated, may make bias worse

Health tests and failure conditions

• Model should inform your health tests!

How can source fail?

- Total failure = model completely stops describing source
 - Something broke, oscillators locked to clock, etc.
- Model failure = assumed parameters of model are wrong
 - Causing entropy estimate to be inaccurate
- Health tests should be selected/designed based on what model says about source
 - How it can fail, what it will look like when estimated parameters are off

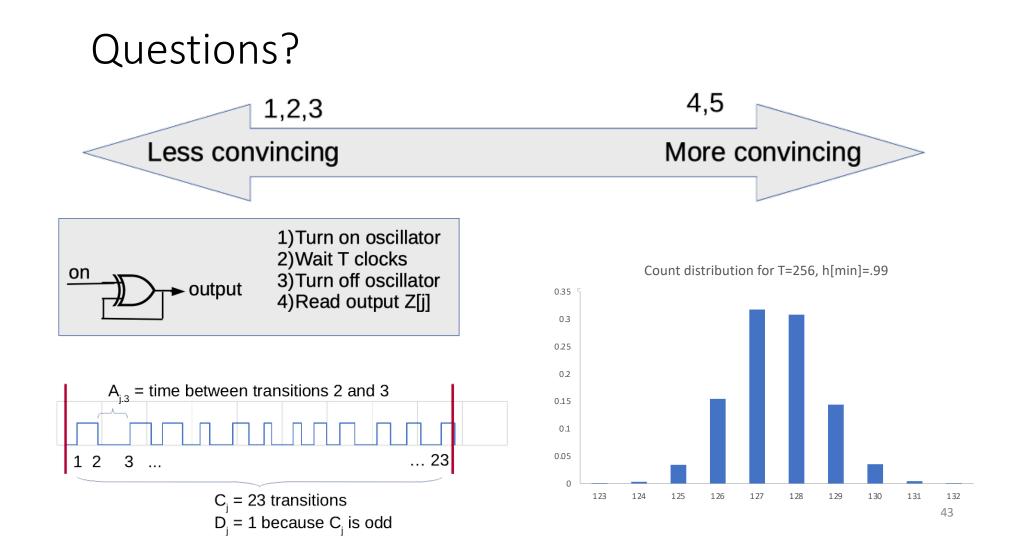
Modeling wrapup

- Noise sources MUST have some kind of model to justify entropy estimate
 - You need to bound prob that attacker can guess an output
 - Max_{all x} Pr[output = x | all attacker information]
- Black box tests are NOT enough
 - Necessary but not sufficient
- Future version of 90B will tighten requirements further
 - Look at AIS31 stochastic models for where we're trying to head
- Physical and non-physical models different
 - Non-physical sources are harder to get a good model
 - ...mainly because they weren't designed to be a noise source

Questions about the noise source

• How does the noise source work? (What's unpredictable about it?)

"The operation of the noise source shall be documented..."


- Where does the unpredictability come from?
 - "...where the unpredictability comes from"

How much entropy / output is produced?

"Documentation shall provide an explicit statement of the expected entropy provided..."

• How do you know? (Justify the entropy estimate.)

"...provide a technical argument for why the noise source can support that entropy rate."

