NIST Smart Grid Program

NIST Smart Grid Interoperability Framework 4.0 Webinar

> Chris Greer Avi Gopstein Cuong Nguyen

Engineering Laboratory NIST Smart Grid & Cyber-Physical Systems Office

June 6, 2018

Review: Energy Independence and Security Act

NIST has *"primary responsibility"* to coordinate development of a framework that includes protocols and model standards for information management to achieve interoperability of smart grid devices and systems..."

Agenda

- Background on NIST Smart Grid Interoperability Framework
- Smart grid conceptual model
- Communications pathways scenarios
- CPS ontology for the grid
- Key Framework Messages
 - Operations
 - Economics
 - Cybersecurity
 - Testing & Certification
- Ways to be involved

Review: Interoperability Frameworks to date

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.SP.1108r3

NIST Special Publication 1108r3

NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 3.0

2014

Smart Grid and Cyber-Physical Systems Program Office and Energy and Environment Division, Engineering Laboratory

in collaboration with Quantum Measurement Division, Semiconductor and Dimensional Metrology Division, and Electromagnetics Division, Physical Measurement Laboratory and Advanced Network Technologies Division, Information Technology Laboratory

http://dx.doi.org/10.6028/NIST.SP.1108r3

National Institute of Standards and Technology U.S. Department of Commerce

NIST Special Publication 1108R2

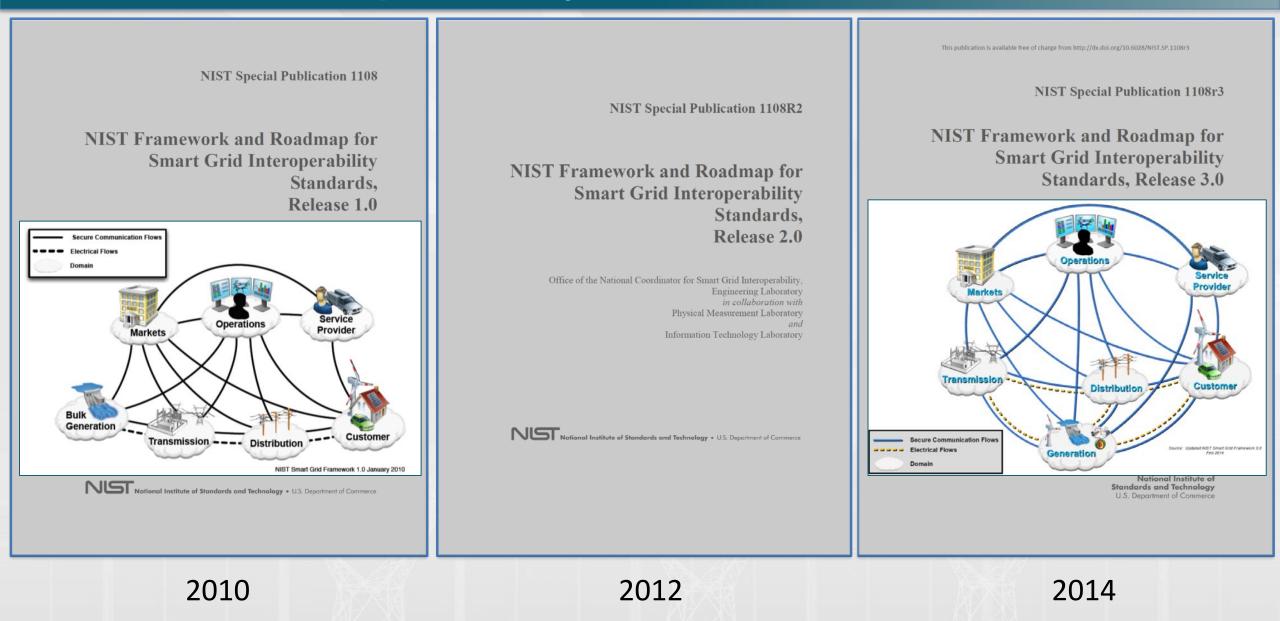
NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0

> Office of the National Coordinator for Smart Grid Interoperability, Engineering Laboratory *in collaboration with* Physical Measurement Laboratory *and* Information Technology Laboratory

Nistional Institute of Standards and Technology • U.S. Department of Commerce

NIST Special Publication 1108

NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 1.0


Office of the National Coordinator for Smart Grid Interoperability

2010

2012

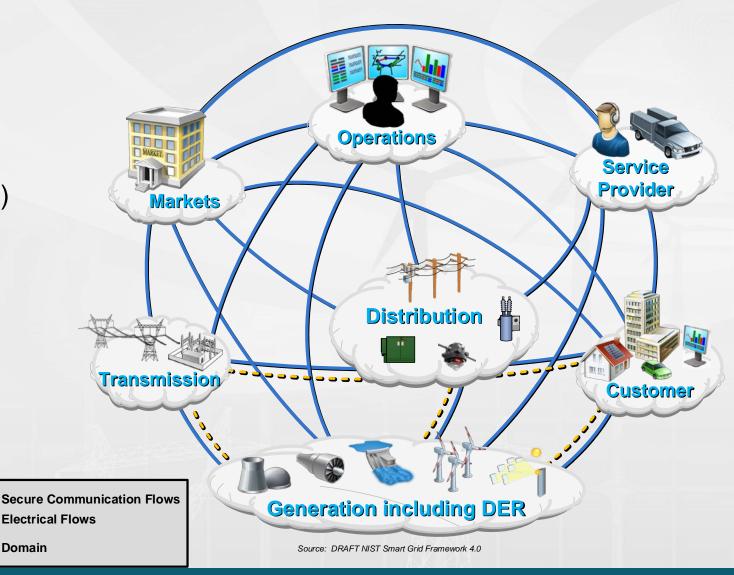
Review: Interoperability Frameworks to date

Motivations / Themes

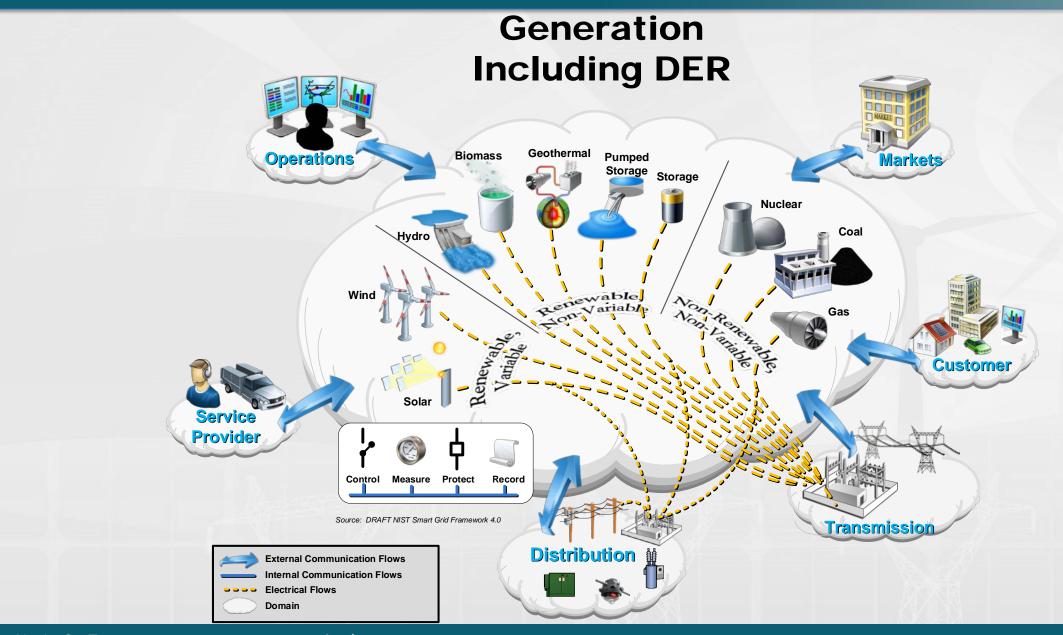
Motivations

- Technology is advancing rapidly
- Evolving capabilities bring:
 - New opportunities
 - New concerns / challenges
 - Structural change
- Modular and scalable technologies enable:
 - Disaggregation of system physics
 - Hyper-local optimization
 - A new set of cascading concerns
- Distribution models diversifying
- Interoperability more critical than ever
- Interoperability more challenging than ever

Framework 4.0 Themes

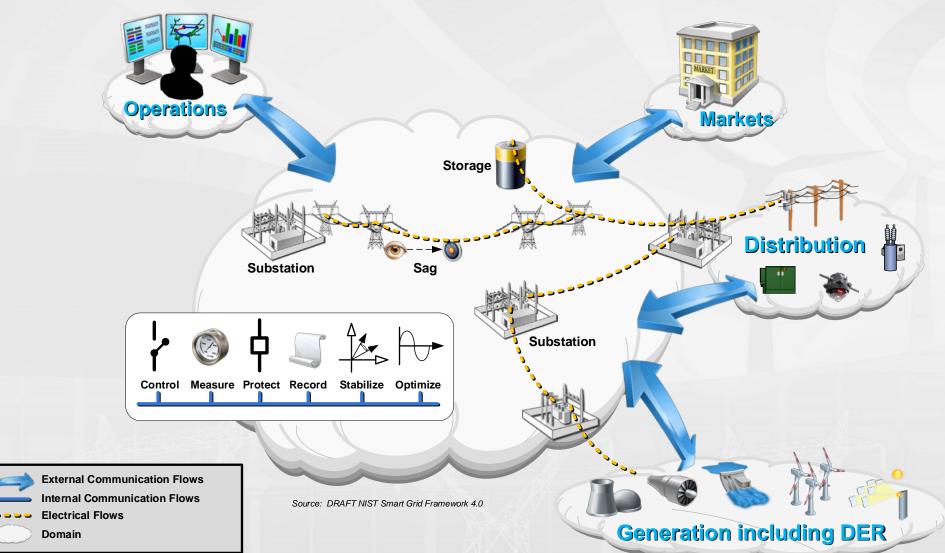

- Structural changes are occurring in the grid
- System complexity is increasing
 - Interoperability is a critical element of modern grid function
- No single architecture is correct
 - Common trends
 - Unique conditions
- Grid architectures affect:
 - Operations
 - Economics
 - Cybersecurity
- As actors take on new roles within the system and new economic forces emerge, interoperability gains new dimensions
 - Testing & Certification

Conceptual Model

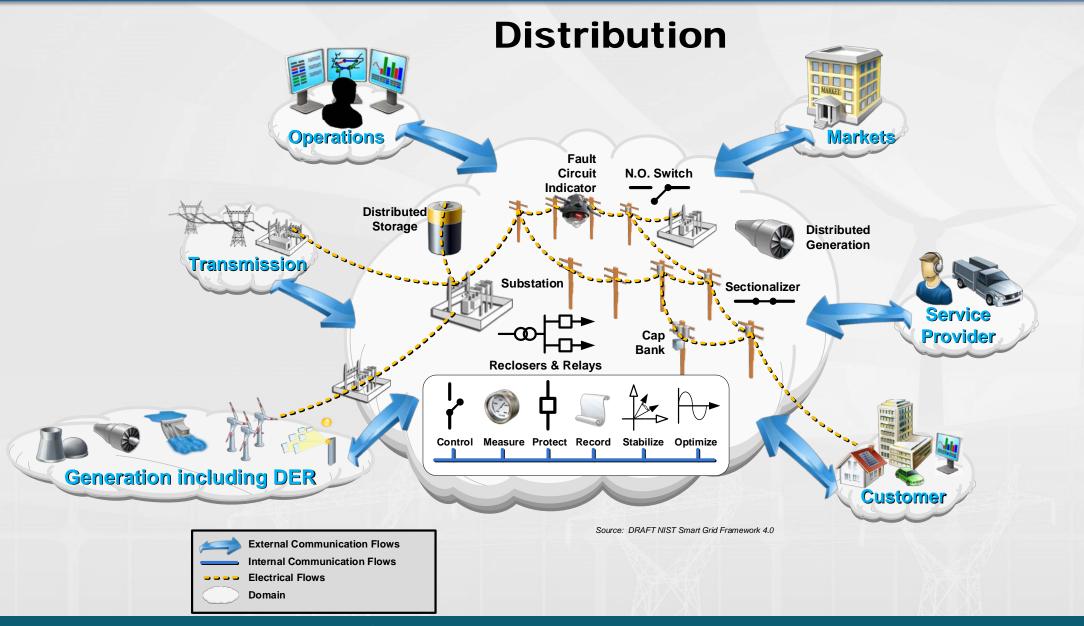

Generation including DER

- Technology diversity
- Physical proximity to transmission, distribution + customer domains
- Intelligent distribution system
 - Increasing importance (location + size)
 - Improved controllability + intelligence
 - Connected to service provider domain (e.g., congestion mitigation)
- Empowered consumers
 - Operations & intelligence enters customer domain
 - Customer diversity incorporated

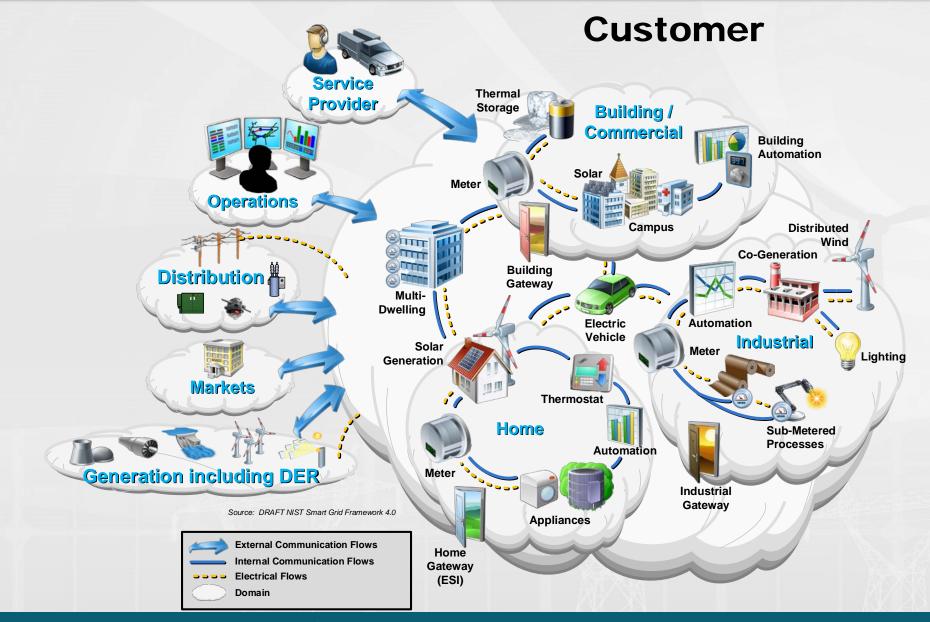
Smart Grid Conceptual Model

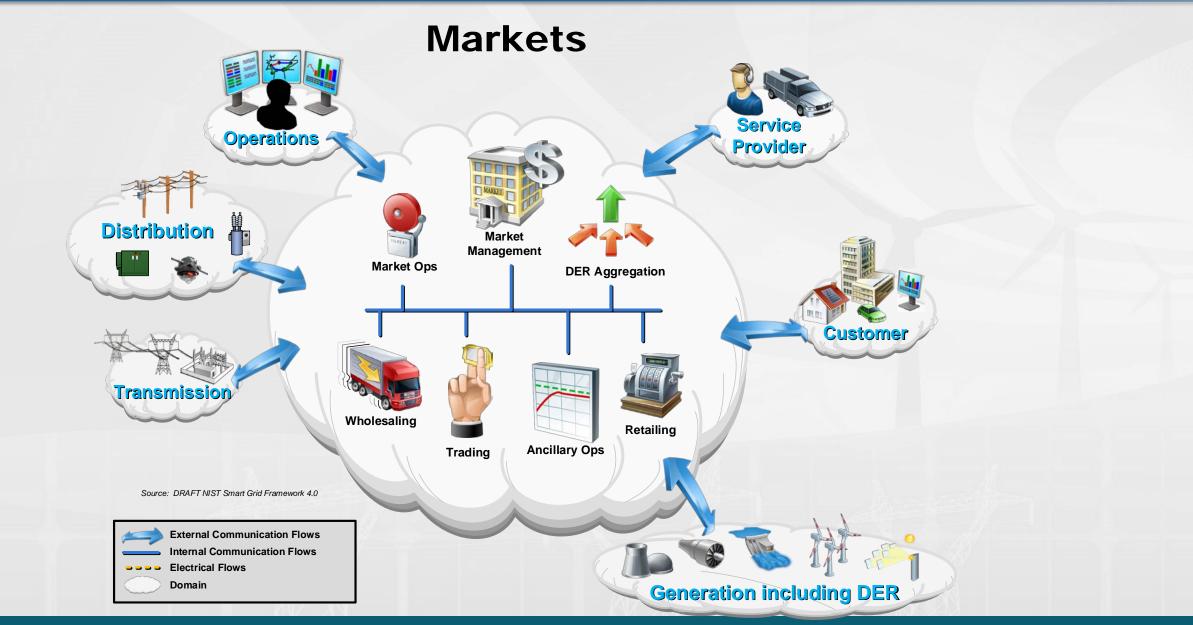


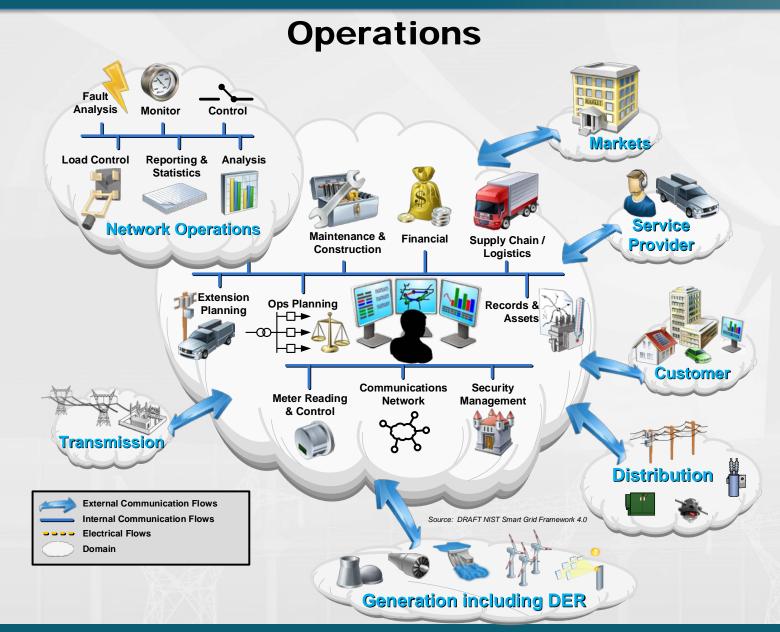
Generation Domain



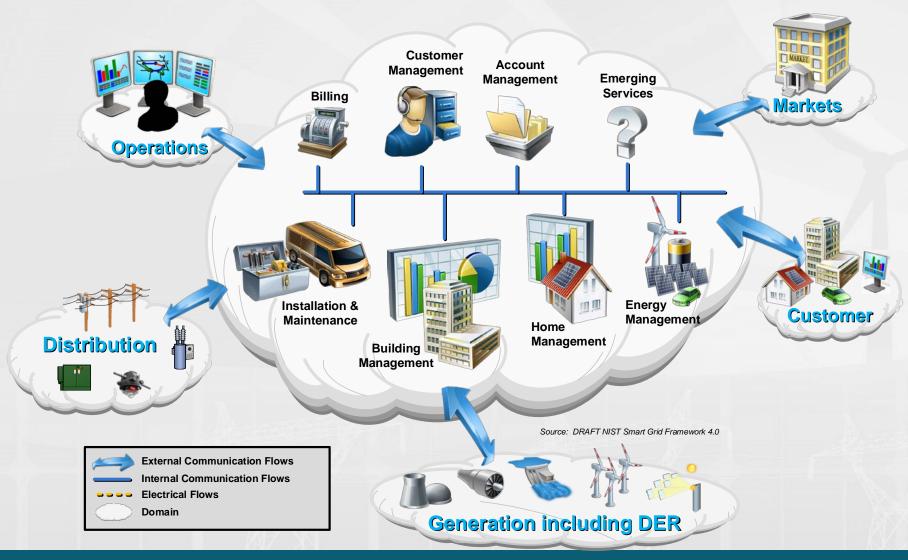
Transmission Domain



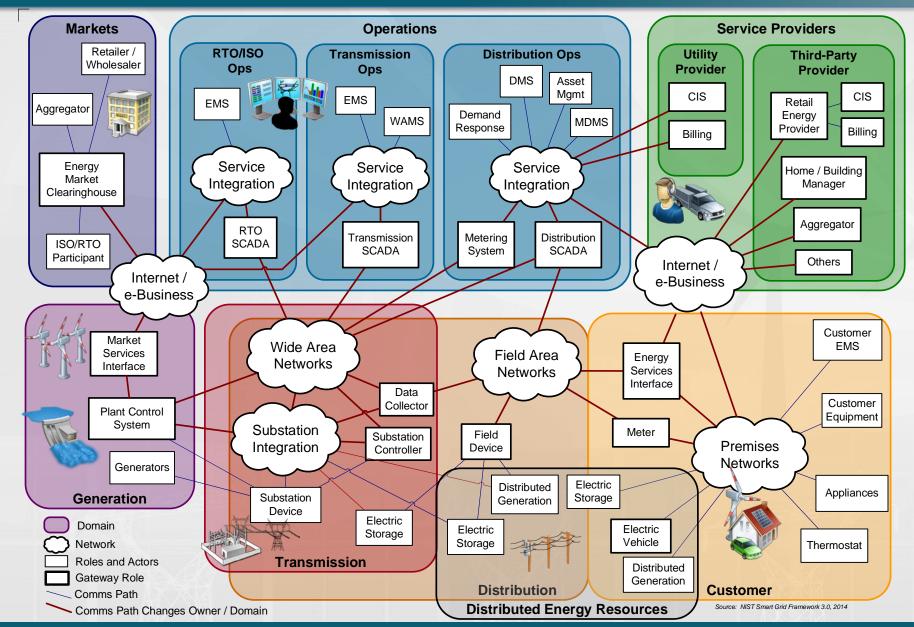

Distribution Domain


Customer Domain

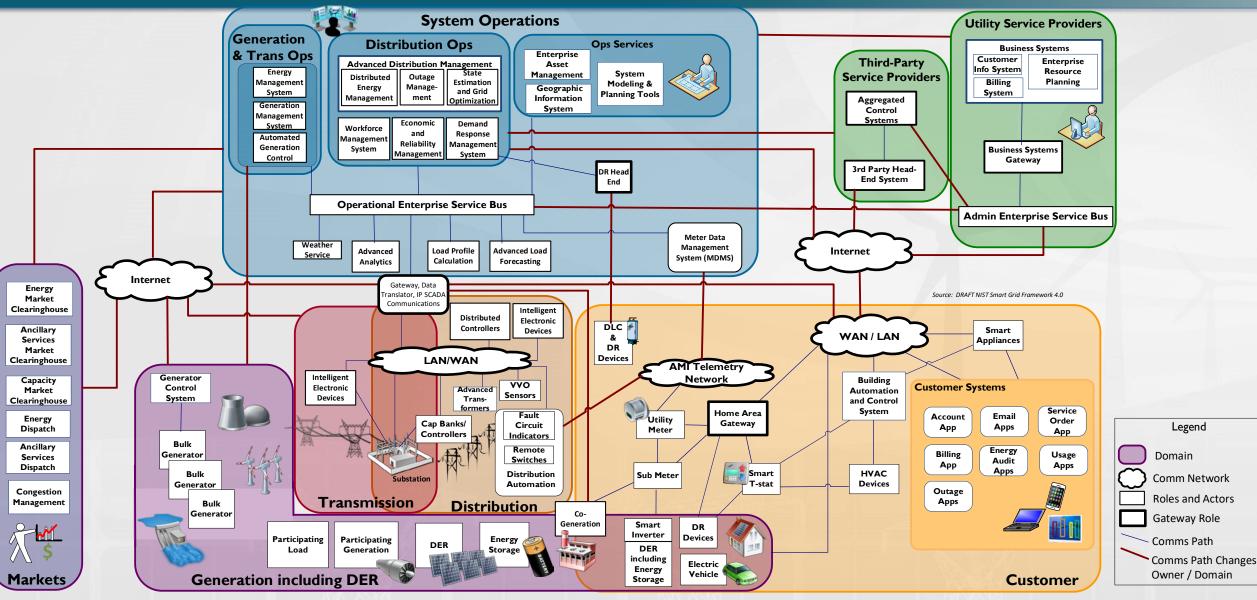
Markets Domain

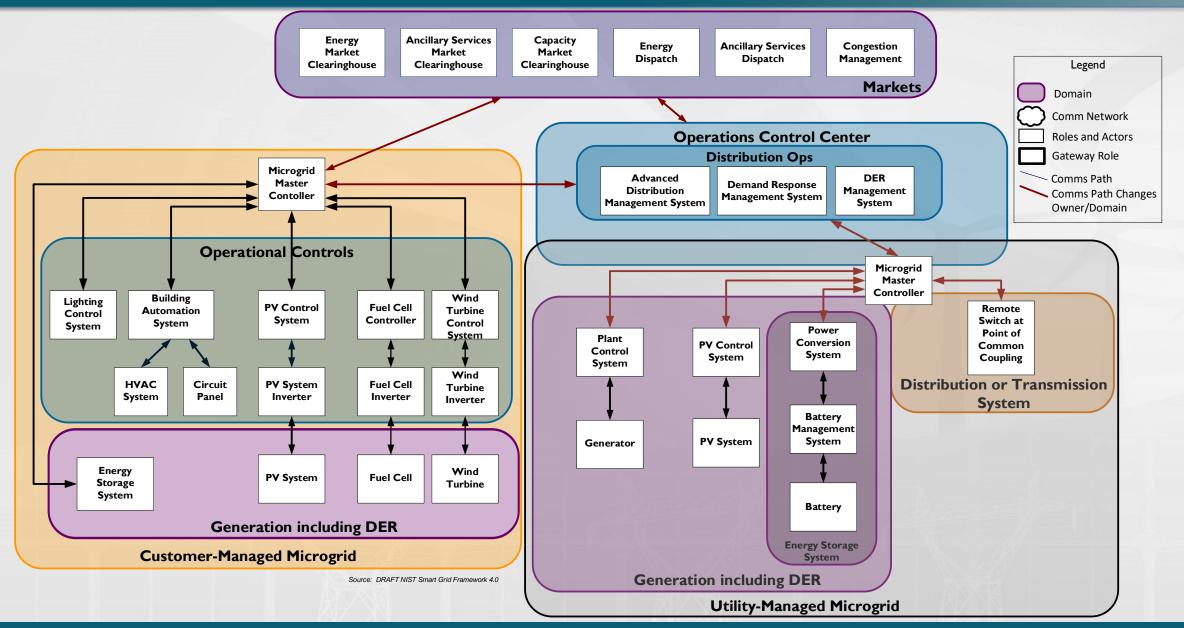


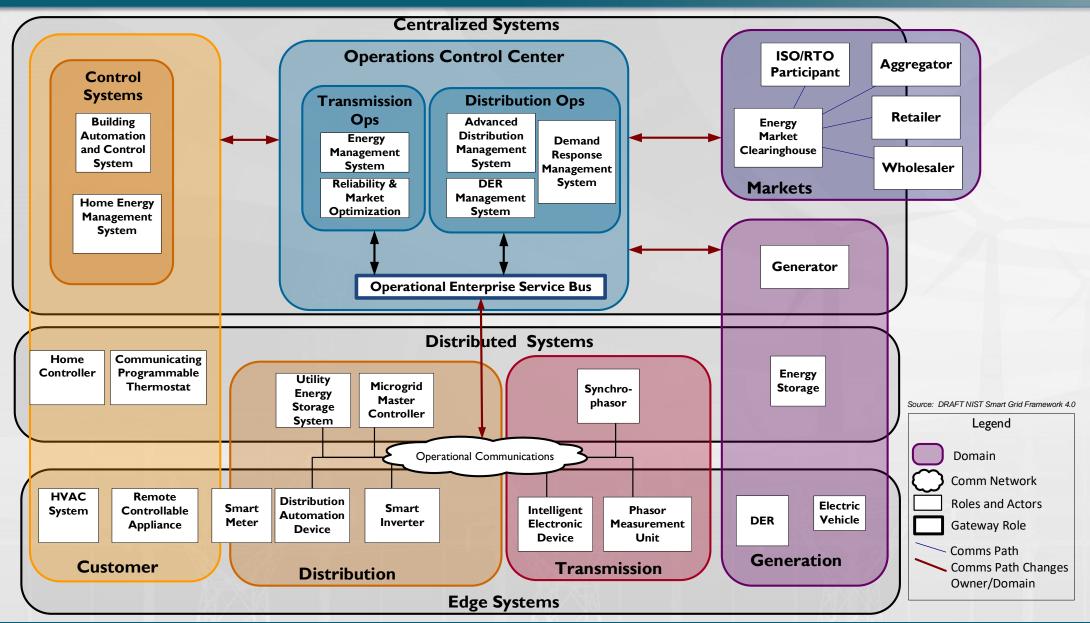
Operations Domain



Service Provider Domain

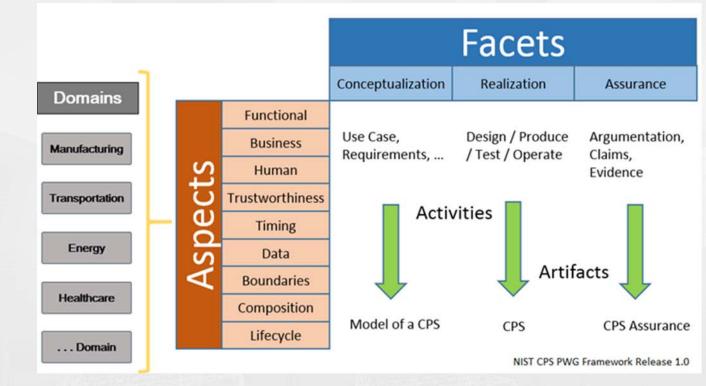

Service Provider


Legacy Communications Pathway Scenario


High-DER Communications Pathway Scenario

Microgrid Communications Pathway Scenario

Hybrid Utility Communications Pathway Scenario



The CPS Framework—A Tool for the Smart Grid

Jargon surrounds the electrical grid:

- Intelligence moving to the edge
- Data tsunami
- Grid architecture
- Cloud / fog computing
- Smart grid
- Microgrid vs backup power

The cyber-physical systems (CPS) framework provides a vocabulary of energy sector semantics, or ontology, through evaluation of CPS framework aspects and concerns

CPS Aspects and Concerns

Functional

- Actuation
- Communication
- Controllability
- Functionality
- Manageability
- Measurability
- Monitorability
- Performance
- Sensing

Business

- Enterprise
- Cost
- Environment
- Policy
- Quality
- Regulatory
- Time to Market
- Utility

Human

•

- Human Factors
- Usability
- Trustworthiness
 - Privacy
 - Reliability
 - Resilience
 - Safety
 - Security

Timing

•

- Synchronization
- Time Awareness

- Data
 - Data Semantics
 - Relationship between Data
- Boundaries
 - Behavioral
 - Networkability
 - Responsibility
- Composition
 - Adaptability
 - Complexity
 - Constructivity
 - Discoverability
- Lifecycle
 - Deployability
 - Disposability
 - Engineerability
 - Operability

CPS Aspects and Concerns

Functional

- Actuation
- Communication
- Controllability
- Functionality
- Manageability
- Measurability
- Monitorability
- Performance
- Sensing

Business

- Enterprise
- Cost
- Environment
- Policy
- Quality
- Regulatory
- Time to Market
- Utility

Human

•

- Human Factors
- Usability
- Trustworthiness
 - Privacy
 - Reliability
 - Resilience
 - Safety
 - Security

Timing

- Synchronization
- Time Awareness

INTELLIGENCE

Note: Illustrative only

- Data
 - Data Semantics
 Relationship between Data

/ Boundaries

- Behavioral
- Networkability
 - Responsibility

Composition Adaptability Complexity Constructivity Discoverability

- Lifecycle
 - Deployability
 - Disposability
 - Engineerability
 - Operability

Description of CPS Concerns for the Smart Grid

Aspect	Concern	Description	Grid Context for CPS Concern	Grid CPS Concern Description	Architecture Significance
Functional	Controllability	Ability of a CPS to control	Controllability requires the	Ability to control grid	Coordination of sensing and processing functions to produce
		a property of a physical thing. There are many challenges to implementing control systems with CPS including the non- determinism of cyber systems, the uncertainty of location, time and observations or actions, their reliability and security, and complexity. Concerns related to the ability to modify a CPS or its function, if necessary.	 condonation of sensing, processing and acting Multiple inputs are needed to make control decisions Most grid control systems and hardware were not designed to accommodate large numbers of DERs. More dynamic monitoring and control to respond to the dynamic network 	properties (sense, process and change); e.g., intentionally <u>change a</u> phenomenon / property	 accurate control signals. Architectures needs to support control applications that input and evaluate multiple optimization factors including carbon usage and market prices Architecture needs to support use of group commands (e.g. DNP3 settings groups) and third-party aggregator control of DERs Architecture support of faster input of sensor data from traditional SCADA devices and newer devices including phasor measurement units (PMUs)
Functional	Functionality	Concerns related to the function that a CPS provides	 The constant evolution of the power system creates new grid functions. Grid control functionality has expanded to include management of generation assets which require different functionality e.g. diverse generation assets require additional control functionality including distributed assets. 	• Ability to provide grid functions e.g. control functions, sensing functions, service-related functions.	 Innovative grid technology needed to facilitate Power Markets, DERs, Microgrids, Electric Vehicles, etc. Architecture needs to support management of DERs constraints that differ from older types of generation.
Functional	Manageability	Concerns related to the management of CPS function.	• Need the ability to manage change across multiple devices at different grid levels.	• Ability to manage change internally and externally to the grid at the cyber-physical boundary e.g. digital <u>equipment and</u> actuators affected by EMC	• Communication topology views and key externally visible properties for multi-tier distribution communications needed <u>for</u> <u>system</u> control, substations, field operations, and Transmission/Distribution integration ⁷⁴

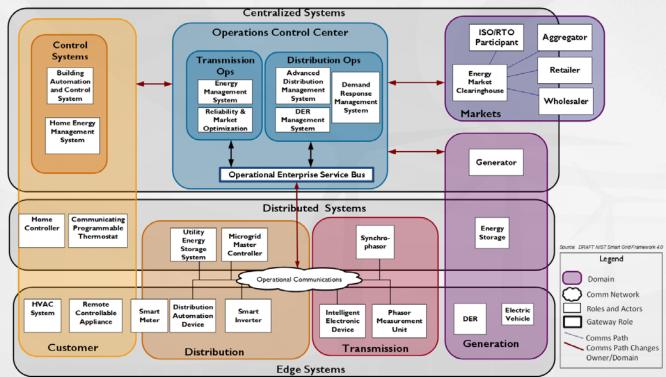
Framework Themes through pathway scenarios

• Scenarios affect what we think about grid

- Cybersecurity
- Operations
- Economics
- We can use the examples to explore
 - Common trends
 - Changing responsibilities
 - Unique considerations
- Scenarios help us understand value streams
 - Who is the customer in a High-DER architecture?
 - The role of interoperability in unlocking this value
- Testing & Certification growing importance
 - Claimed conformance vs actual performance
 - Actuation and controllability in every device
 - Diversified ownership, unified operation
- CPS ontology allows description and specification

ENGAGEMENT OPPORTUNITIES

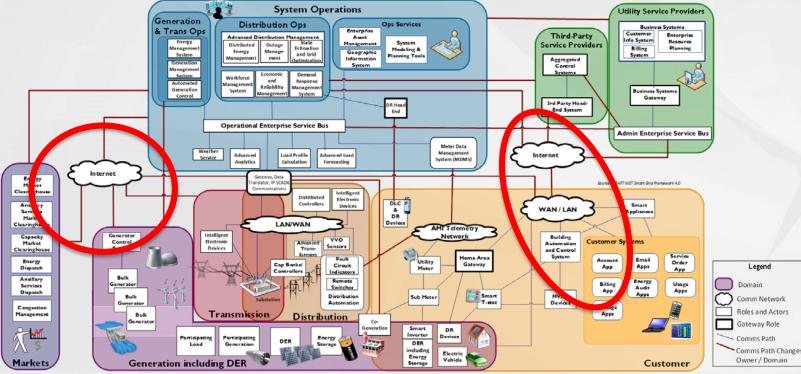
Registration info on later slides


July 9, 2018: Testing & Certification Workshop Washington, DC

July 24, 2018: Communications Pathways & Ontology Workshop Gaithersburg, MD

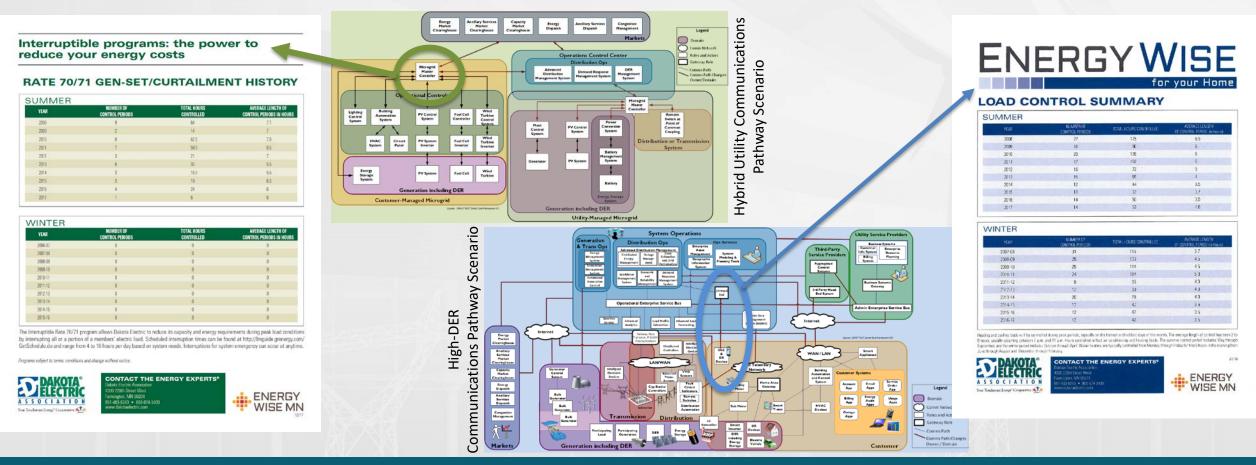
August – October, 2018: Regional operations & economics workshops

Operations Key Message: Migrating to domain edge


- Sensing, actuation and control is moving towards the grid edge
 - Common trend across all scenarios
 - Occurring in each domain
 - Transmission edge: PMUs and IEDs
 - Distribution edge: distribution automation devices & smart inverters
 - Customer edge: remote controllable appliances
 - Operational efficiencies can be gained through local management

Hybrid Utility Communications Pathways Scenario

Operations Key Message: Shared infrastructure


As DERs increase, shared infrastructure becomes more important

- Shared infrastructure increases need for predictability
 - Physical predictability (e.g., IEEE 1547)
 - Communications predictability (e.g., IEC 61850)
- Shared infrastructure has benefits, possible risks

Operations Key Message: No single implementation

- Grid architectures are not mutually exclusive
- The examples allow us to explore technical aspects of interoperability
- No single architecture is "correct"

Operations Key Message: Diversified ownership

Diversifying asset ownership

• Common to all architecture examples

Demands increased interoperability

Requires Trustworthiness

- Extends beyond cybersecurity
 - Trustworthiness.Reliability
 - Trustworthiness.Resilience
 - Trustworthiness.Safety
- Architecture defines trustworthiness requirements
 - Device level trustworthiness
 - Microgrid level trustworthiness
 - Service provider level trustworthiness

Grid operation is highly interdependent with market structure, which in turn is limited by the nature of grid operations. Operations and market evolve coincidently and interdependently.

Economics Key Message: Interoperability and Specificity

Interoperability can help to overcome the barriers of device specificity and support the marketing efforts and revenue outlook of new and existing grid services.

Organizational Strategy

- 1. Organizations invest in resources and capabilities that strengthen their core competencies.
- 2. Investments may commit an organization to certain competitive strategies and business models.
- 3. Firms may discover subsequent, synergistic opportunities.

Smart Grid Context

- 1. Asset specificity often results from efforts to meet technical requirements and contribute to a value chain.
- 2. Specificity may then act as a barrier to broader or further utilization of devices and systems.
- 3. Interoperability offers a strategy set through which to reduce "specificity barriers".

Value chains and value networks

The value of DER and conventional assets to the electric grid will improve as interoperability enables these resources and capabilities to make additional contributions across the sector's value network

Economics Key Message: Customer Empowerment

Interoperability is crucial to customer empowerment.

- 1. Enabling customers to be better informed regarding their own electricityuse decisions.
 - a. Improved utilization of current assets
 - b. Better decision making with respect to technological adoption
 - c. Accurate signals are critical to economic efficiency
- 2. Enabling a plug-and-play environment.
 - a. Expectation that devices purchased will work with rest of the system
 - b. Devices can be selected for customer optimality
 - c. Reduced entry barriers and transaction costs of integrating customer equipment
- 3. Informational improvements may contribute to greater customer agency

Economics Key Message: Complexity and Cost Structures

Interoperability can counter rising transaction and production costs associated with the increasing complexity of interaction among diverse organizations of varying regulatory status.

- 1. Value chain complexity is rising with asset specificity
- 2. The regulatory status of firms varies across the value chain
- 3. Coordinating value-adding activities is costly

Transaction costs are rising in salience

"Current writing has helped bring out the point that market failure is not absolute; it is better to consider a broader category, that of transaction costs, which in general impede and in particular cases completely block the formation of markets. It is usually though not always emphasized that **transaction costs are costs of running the economic system**".

(Arrow 1969)

Interoperability strategies can directly address cost escalation due to complexity

Economics Key Message: Testing and Certification

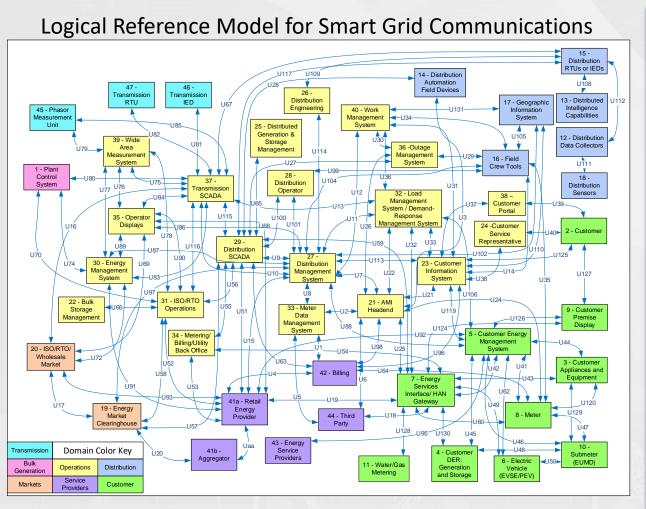
Effective and efficient testing and certification regimes are needed to ensure that devices, systems, and components perform as expected and are fit for purpose.

- 1. Achieving interoperability will require initial and ongoing testing of devices, systems, and systems of systems.
- 2. Interoperability investments constitute cooperative strategies for improving the efficiency of the electric grid.
- 3. Some interoperability benefits are likely to be split between stakeholder groups.
- 4. Testing and Certification regimes can help to identify and discipline problem areas/actors as well as inform subsequent strategy formation and product development.

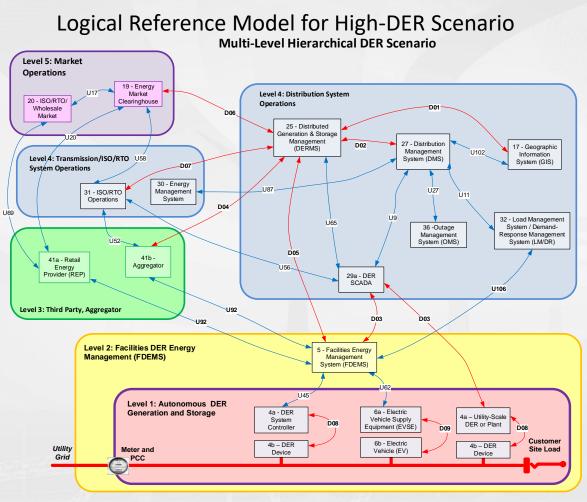
Cybersecurity Key Message: Requirements & responsibility

• Cybersecurity risk profile for the smart grid

Structural considerations


- Business/mission
 requirements similar
 across architectures
- Responsibilities may change, however
- Considerations for cybersecurity activities

	Category	Maintain Safety	Maintain Reliability+E13 Subca	Maintain Resilience tegories	Support Grid Modernization	Considerations for Power System Owners/Operators
		ID.AM-1	ID.AM-1	ID.AM-1	ID.AM-1	Knowing hardware assets is critical for maintaining safety, reliability, and resilience, as well as facilitating the transition to the modern grid. Legacy and modernized assets need to be known and understood. As modernized grids become more distributed, power system owners/operators need to be accountable for all distributed assets that they own.
D	Asset Management	ID.AM-2	ID.AM-2	ID.AM-2	ID.AM-2	Knowing software assets is critical for maintaining reliability, and resilience, as well as facilitating the transition to the modern grid. Legacy and modernized assets need to be known and understood. This especially applies to modernized assets because the sophisticated logic that they execute is driven by software.


Table 2 IDENTIFY Smart Grid Profile

For more information on NIST Cybersecurity Framework: <u>https://www.nist.gov/cyberframework</u>

Cybersecurity Key Message: Known issues, new interfaces

Source: NISTIR 7628 Guidelines for Smart Grid Cyber Security, 2010

Source: DRAFT NIST Interoperability Framework v4.0

Testing & Certification: Establishing context

SEPA/SGIP SG CoS List

Icome Architecture	View					
talog of Standards					atalog of Standards ds by Entry Number	
Markets	Operations				20 - 52	
	RTOIISO	Transmission	SGIP Catalog of Standards	Date	SGIP Catalog of Standards	Date
Retail	Energy	Energy	1. ANSI C12.1-2008 listed Sept 5 2012	10/15/2014	43. IfC 62331-8-dated 2014-03-21	08/17/2013
Wholesaler	Nanagement	Management	2 ANSI C12:18-2006 listed Sept 5:2012	10/15/2014	43. IEC 62551-0-0ated 2014-03-21 44. IEC-62541 Parts 1-7 listed Nov 2013	10/15/2014
	System	System	 ANSI C12 18-2006 IISBED SERT 5 2012 ANSI C12 19-2008 listed Sent 5 2012 	10/15/2014	45 IEEE 1317-dated 2011-02-02	08/17/2019
Appregator	1		4. ANSI C12 19-2012-dated 2014-10-07	08/17/2015	46. IEE 1701	10/15/2014
		Wide Area	5. ANSI C12 20-2010 listed Sept 5 2012	10/15/2014	47. IEEE 1815-2010 listed Dec 31 2011	10/16/2014
Frank Madera		Measurement	6. ANSI C12.21-2006 listed Sept 5 2012	10/15/2014	48. IEEE 1901-2010 listed Jan 31 2013	10/16/2014
Discrey Market Creating House		System	7. ANSI C12.22-2008 listed Sept 5 2012	10/15/2014	49. IEEE C37.238	10/16/2014
viding cuice		6	8. ASHRAE 135-2010 BACnet listed Nov 21 2011	10/15/2014	50. IEEE C37.239-2010 listed May 4 2012	10/16/2014
ISORTO	ISORT0	Transmission	9. CEA-709.1-C-2014-02-14rev1	10/15/2014	51. IEEE1901.2-dated 2011-09-021	08/17/2015
Participant	SCADA	SCADA	10. CEA-709.2-A-2014-02-14/ev1	10/15/2018	52. IETF RFC 6272 listed July 7 2011	10/16/2014
			11. CEA-709.3-2014-02-14rev1	10/15/2014	53. ITU-T G.9960	10/16/2014
Distribution System		-	12. CEA-709.4-2014-02-14rev1	10/15/2014	54. ITU-T G.9972	10/16/2014
Operator Participant			13 CEA-852.1-2014-02-14rev1	10/15/2014	55. MultiSpeak® Security V1.0-dated 2013-12-05	10/16/2014
		X	14. CEA-852-8-2014-02-14rev1	10/15/2014	56. MultiSpeak® V3.0-dated 2013-12-05v1	30/16/2014
			15. CEA-CEDIA-CE329- dated 2012-03-01v1	10/15/2014	57. NAESO REQ 19	10/16/2014
			16 EC 15067.3-dated 2012-11-05	08/17/2015	58. NAESB REQ 21	10/16/2014
20			17. EC_60870-6-503 listed Sept 5 2012	10/15/2014	59. NAESB REQ 22	10/16/2014
Communication			18. IEC 60870-6-702-1998 listed Sept 5 2012	10/15/2014	60. NEMA SG-AMI 1	10/16/2014
			19. EC 60870-6-802 20. EC 61850-1	10/15/2014 10/15/2014	61. NISTIR 7628 listed Sept 5 2012 62. NISTIR 7761 listed July 7 2011	10/16/2014
			20. EC_01850-1 21. EC 01850-10	10/15/2014	62. NGTR 7761 Billed July 7 2011 63. NGTR 7761-dated 20130920R1	10/16/2014
			21. EC 6180-10 22. EC 6180-2	10/15/2014	63. NOTR 7761-04660 2013092041 64. NISTR 2862	10/16/2014
			22. RC 61850-2 23. RC 61850-3	10/15/2014	65. NISTIR 7943-dated 20140615	8/17/2015
			24. EC 61850-4	10/15/2014	66. CASIS EMIX listed Dec 31 2011	10/16/2014
Generation	Transmit	and an a	25. If C 61850-5	10/15/2014	67. CASIS WS	10/16/2014
A LINE S DOD	transmit	eeron!	26. RC 61850-6	10/15/2014	68. CASIS-Energy Interop	30/16/2014
			27. EC 61850-7-1	10/15/2014	69. OpenADR-2 Ga-dated 2012-08-17-sh	10/16/2014
	Subs	Aution 0	28. IEC 61850-7-2	10/15/2014	70. OpenADR-2 0b-dated 2012-08-17rev2	10/16/2014
	Cart	roler Col	29. EC 61850-7-5	10/15/2014	71. SAE J1772-2013 listed July 7 2011	10/16/2014
12222000000			30. IEC 61850-7-4	10/15/2014	72. SAE J2836 Use Cases (1-3) listed July 7 2011	10/16/2014
Market Service Interface			31. IEC 61850-7-610	10/15/2014	73. SAE J2647-1 listed Oct 14 2011	10/16/2014
apertacé.			32. EC 61850-7-420	10/15/2014	74. 5EP2 0-dated 2013-12-02 update	10/16/2014
			33. EC 61850-8-1	10/15/2014	75. SG AMI-1	10/16/2014
			34. IEC 61850-90-5	10/15/2014	76. SG/P 2011-0008-1	10/16/2014
			35. IEC 61850-9-2	10/15/2014	77. ANSI/ASHRAE/NEMA Standard # 201p (FSGIM)	03/01/2011
			36. 8C 62351-1 37. 8C 62351-2	10/15/2014	78. ANS/CTA-2045 79. ITU-T-0.9903	08/01/2011
				10/15/2014		03/01/2017
Plant Control bystem Generators Substation El Deske St		38. EC 62351-3 39. EC 62351-4	10/15/2014 10/15/2014	80. NAESB FMQ.26 81. NEMA Standards Publication SG-IPRM 1-2016	03/01/2017	
		tation 1 D	39. EC 62351-4 40. EC 62351-5	10/15/2014	es. mcMA standards Publication SG-IPEM 1-2016	03/01/2011
			40. EC 62351-5 41. EC 62351-6	10/15/2014		

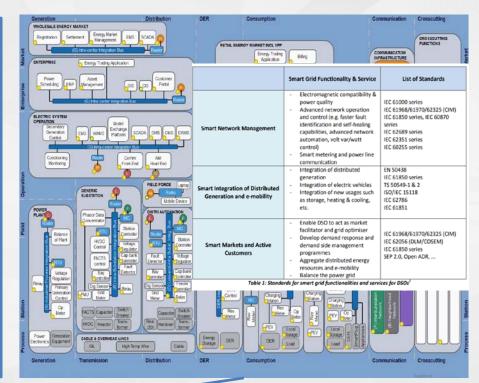
Identified SG Standard List of NIST Framework R3.0

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.SP.1108r3 NIST Special Publication 1108r3 **NIST Framework and Roadmap for Smart Grid Interoperability** Standards, Release 3.0 NIST SG Framework V3.0-2014 SG Lis MultiSpeak NAESB REQ18, WEQ19-2010 NAESB REQ-21 Energy Services Provider Interface (ESPI) NAESB REQ-22 NEMA Smart Grid Standards Publication SG-AMI 1-2009 OPC-UA ANSI C12.1-2008 ANSI C12 18-200 ANSI C12 19,200 ANSI C12.20-2010 ANSI C12.21-2006 ANSI/ASHRAE 135-2012 ANSI/CEA.709 and CEA.852.1 LON Pros BC: 60870-6-503 TASE2-2010 BC: 60870-6-802: TASE2-2010 BC: 60870-6-802: TASE2-206ject model BC: 61880-1 BC: 61880-3 ANSI C12 20-201 Open Automated Demand 2.0 Open Geospatial Consortium(OGC) Geography Markup Language (GML) OASIS Energy Interoperation (EI) OASIS EMIX (Energy Market Information eXchange) Smart Energy Profile 2.0 (Device communication and information model) RPC 627.2 IP-based SG network DASIS WS-Calendar (Communication) NISTIR 7761v1, NIST Guidelines for Assessing Wireless Standards for SG applications nution of Coexistence for Broadband PLC Standard IEC61850-3 NISTIR 7862 - Guideline for the Impler IEC61850-4 OpenHAN SAE J1772: SAE Electric Vehicle and Plug in Hybrid Elect IEC61850-5 SAIL 1772: SAIL BEACK: Vehick and Plag in-lydned Electric Vehicle Conductive Charge OA (2017); Chief Cae for Communication Dereusen Plags in Vehicles and the Unity Oak (2017); Unite Cae for Communication Of Cae (2017); Chief IEC61850-4 IEC61850-7-IEC61850-7-IEC61850-7-3 IEC61850-7-4 IEC61850-7-4 IEC61850-7-410 IEC61850-7-420 IEC61850-8-1 IEC61850-9-2 IEC61850-90-5 IEC61850-90-5 DHS Cyber Security Procurement Language for Control Systems IEC 61851: Electric vehicle conductive charging system - Part 1: General requireme IEC 62351-1 IEC 62351-2 BE C 623-3 TCP/H EC 623-4 Security for MAS EC 623-4 Security for MAS EC 623-4 Security for MAS EC 623-5 Security for EC 6180 EC 6233-7 end s-cond information account (BLAC) experiments EC 6231-4 specific rule based access count (BLAC) experiments EC 6231-4 specific rule based access count (BLAC) experiments EC 6231-4 specific rule based access count (BLAC) EC 6235-7 and 6-200 for access count (BLAC) EC 6235-7 and IEC 62351-3 TCP/IP IEC 61968/61970 su IEEE 1815 (DNP3)-2012 IEEE C37.118.1-2011 IEEE C37.118.2-2011 IEEE C37.238 - 2011 PTP IEEE C37.239-2010 COMFED IEEE 1547 Suite IEEE 1588 PTP IEEE 1901-2010 (ISP) and ITU-T G.99

National Institute of Standards and Technology

U.S. Department of Commerce

https://www.nist.gov/news-events/news/2014/10/nistreleases-final-version-smart-grid-framework-update-30

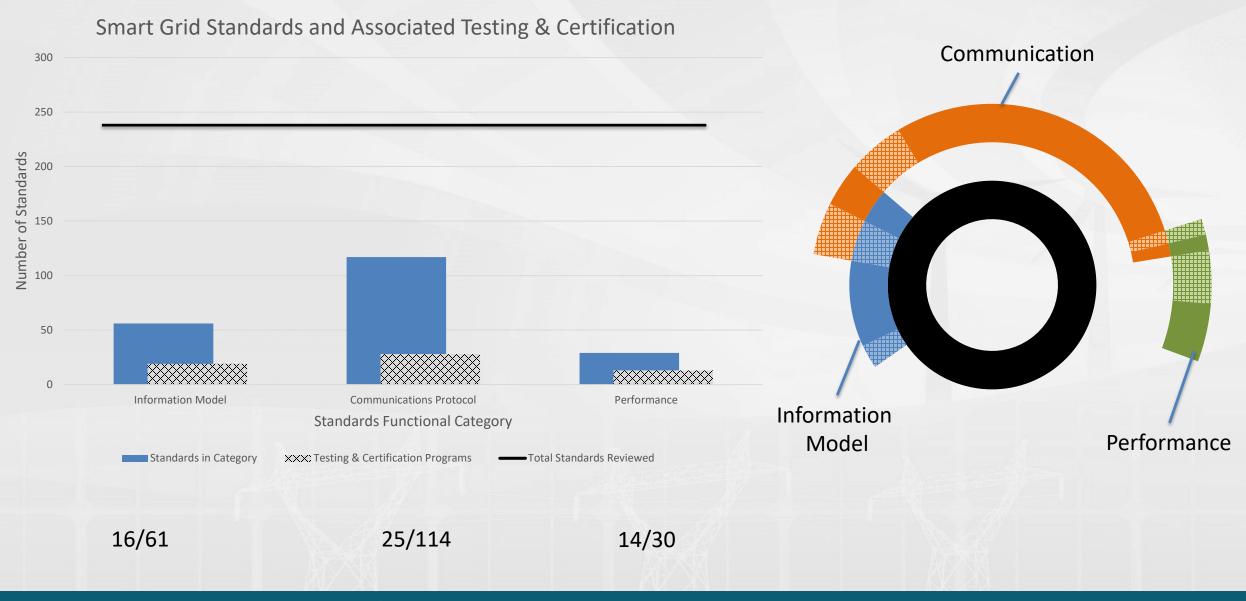

Source: http://www.gridstandardsmap.com/

New Standards:

- New Standards
- New versions of old standards

Smart Grid Standards for Evaluation (244 Standards)

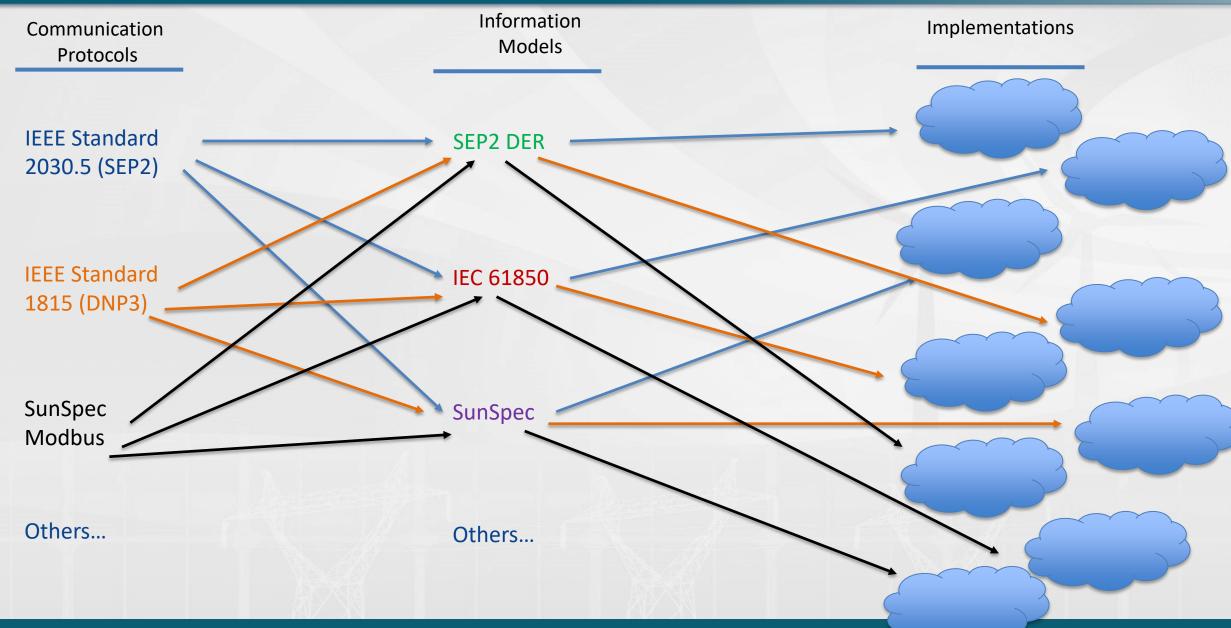
DSO Priority List


Source: https://www.edsoforsmartgrids.eu/wpcontent/uploads/public/DSO-Priorities-Smart-Gird-Standardisation.pdf

34

Testing & Certification: Standards Evaluation Methodology

Jo. Standard Stan									NIST Ide	entfified	d SG Standar	lards_List_April_23_2018_S	ong AMG	ä.xlsx - Excel				Song, Eugene (Fed)			X
ANSI C12.18-2006 ANSI C12.18-2006 NSS C12.18-2006 <t< th=""><th>No.</th><th></th><th>Name</th><th>D</th><th>date Communication</th><th>IPerformance ۲۰۰۵ Test method</th><th>Communication</th><th>Multi Model Mapping</th><th>uideline &</th><th>ecurity</th><th>(Types)</th><th>Description</th><th>Cha</th><th>aracteristics</th><th>subdomain and</th><th></th><th>T&C</th><th></th><th></th><th></th><th></th></t<>	No.		Name	D	date Communication	IPerformance ۲۰۰۵ Test method	Communication	Multi Model Mapping	uideline &	ecurity	(Types)	Description	Cha	aracteristics	subdomain and		T&C				
ANSI C12.18-2006 ANSI C12.18-2006 x		ANSI C12.1-2014	Electric Meters - Code Electricity Metering https://webstore.ansi.or	si.org/RecordDet		x x					ce for new type demand regis describes acc meters and d includes infor	pes of ac watthour meters, demand gisters, pulse devices, and auxiliary acceptable in-service performance le d devices used in revenue metering. nformation on related subjects, such	nd meters, y devices. It levels for g. It also h as	for those concerned with the a	art of electricity metering, such d regulatory bodies.	operations/Metering system • Transmission/substation • DERs / (Field Device, me	m va a Devices ca heter) • (alid. The OMS Poll is a multicast which an be initiated manually or automatically Outage Management System Poll Unica Outage Notification: This use case	h y.		
ANSI C12.19-2008 ANSI C12.19-2008: x American National Standard for Utility Industry End Device Data Tables		ANSI C12.18-2006	American National Star Protocol Specification Type 2 Optical Port. https://www.smartgrid nt/ansi_c1218_2006ee 18_protocol_specificat	Standard for ion for ANSI t. grid.gov/docume Sieee_p1701mc12	2	X		:	, inf moo perf	information 10del, erformance,	ation This standard on <u>communicati</u> Client via an cce, handheld read system or soo This Standard implementatio specified in th in Table form	lard describes the criteria required fc <u>rations</u> between a C12.18 Device an an optical port. The C12.18 Client m reader, a portable computer, a maste some other electronic communicativ dard provides details for a complete tation of an OSI 7-layer model. The j n this document was designed to tra ormat. The Table definitions are in A	for nd a C12.18 may be a ter station tions device. e e protocol ransport data ANSI C12.19	computer, a master station sys communications device. The C12.18 Device is An elect that implements an ANSI Type communication according to the Standard. Point-to-point communications between C12.18 Client (reader (server or apparatus) through a	stem or some other electronic tronic communication apparatus te 2 Optical Port for the protocol specification of this is is defined as communication r or master) and C12.18 Device	operations/Metering system • Transmission/substation • DERs / (Field Device, me	m an	essage generated by the Smart Meter nd how this message gets generated into trouble ticket. Outage Restoration Notification: tithy implements integrated management f Distributed Energy Resources Performing Real Time Price Option: his use case addresses the process of	to	x	
		ANSI C12.19-2008	American National Star Utility Industry End De Tables. https://www.smartgrid	Standard for Device Data grid.gov/docume							transferring of meters. The s tables. The ta called decade set and relate	ig data to and from utility End Devic he standard data structure is defined e tables are grouped together into se ades. Each decade pertains to a parti lated function such as Time-ofuse,	ture for use in ices, typically as sets of sections rticular feature-	n This Standard defines a Table s data to be passed between an E	End Device and any other device.	operations/Metering system Transmission/substation DERs / (Field Device, metering)	m Devices heter) Ti ex	gnals for the Smart Grid Dispatch. Remote Programming Smart Meter: leter Remote Connect & Disconnect: his use case addresses the messages «changed between customer informatio		x	


Testing & Certification: Preliminary Data Analysis

T&C Key Message: Gaps persist in assuring interoperability


- There is a growing number of standards that are the foundation of grid modernization.
- There remains a gap in the availability of testing and certification programs to ensure that standards have been implemented appropriately and consistently to support interoperability of devices and systems.
- Even as industry coalesces around a subset of standards and options, the real universe of standards and applications is diversifying.
- Some standards are showing convergence on a subset of requirements but on parallel pathways.

T&C Key Message: Implementation complexity

T&C Key Message: Interoperability profiles

- A profile is a description of a well-defined subset of the standard that has been agreed upon by a user community, testing authority or standards body.
- The specification and use of profiles allows the interoperability gap to be narrowed by reducing the degrees of freedom of implementation flexibility in the context of interest by the device supplier, implementer and system owner.
- Interoperability profile can
 - Narrows constraints and provides uniformity
 - Supports multi-vendor interoperability
 - Lowers cost of system integration

Stakeholder Engagement: Testing and Certification Workshop

Date:	July 9, 2018
Location:	Washington Hilton, Washington, DC
Co-sponsor:	SEPA

Objectives: To explore underlying drivers for the current state of smart grid interoperability testing and certification, and examine interoperability profiles for smart grid standards as a means to accelerate the development of testing and certification programs.

Key Questions:

- What is limiting the development and use of T&C in the smart grid ecosystem?
- What essential elements are needed to formulate an interoperability T&C program?
- How would you prioritize operational interfaces for T&C development?

Workshop webpage:

https://www.nist.gov/news-events/events/2018/07/testing-and-certification-workshop

Stakeholder Engagement: Scenarios Workshop

Date:July 24-25, 2018Location:NIST, Gaithersburg, MD

Objectives: To review communication pathways scenarios and their relationship to grid operations, cybersecurity, economics, and associated requirements for interoperability testing and certification. We will also review a mapping of NIST's Cyber-Physical Systems (CPS) Framework aspects and concerns to the smart grid, which provide an ontology that can help clarify issues and capabilities that arise—or are needed—in this increasingly complex space.

Key Questions:

- What are the errors and deficiencies in the NIST communications scenarios?
- How can the Smart Grid Conceptual Model be used to convey grid scenarios?
- What improvements are necessary for the CPS concerns ontology for the grid?

Framework webpage:

https://www.nist.gov/news-events/events/2018/07/communication-pathways-scenarios-workshop

Stakeholder Engagement: Regional Workshops

Date:	August-October, 2018
Location:	Northeast, Midwest, West Coast, and Southeast
Co-sponsor:	NARUC

Objectives: To explore regionally specific issues affecting grid operations and economics. The workshops will be held at state Public Utility Commissions, allowing participants to learn about interoperability issues and concerns relevant to the respective commission and its stakeholders.

Key Questions:

 Locally specific questions will be developed in partnership with NARUC and the local Commission to explore relevant aspects of the communications pathways scenarios and associated economic and operational issues.

See Framework webpage for updates:

https://www.nist.gov/engineering-laboratory/smart-grid/smart-grid-framework

NIST Smart Grid Program

THANK YOU

https://www.nist.gov/engineering-laboratory/smart-grid/smart-grid-framework

