

VVSG Cybersecurity Working Group

Update to the TGDC February 13, 2017

Joshua M Franklin

Overview

- Present Cybersecurity Principles & Guidelines
- Other Takeaways from the Working Group
- Discuss the Status of Previous Work Items
 - Need for Scope Determinations
 - VVSG 1.1 Gap Analysis

Working Group Composition

- 100+ individuals on the mailing list, ~25 on the calls
- Primarily academics, scientists, engineers
 - Including previous TGDC appointees
- ~ 5 election officials actively participated
- ~ 5 technical manufacturer staff
- Election integrity advocates
- NIST and EAC staff

Cybersecurity Principles

Auditability

Ballot Secrecy

Access Control

Physical Security

Data Protection

Software Integrity

Detection & Monitoring

Auditability

The voting system is auditable and enables evidence-based elections.

- An undetected error or fault in the voting system's software is not capable of causing an undetectable change in election results.
- The voting system produces records that provide the ability to check whether the election outcome is correct, and to the extent possible, identify the root cause of any irregularities.
- Voting system records are resilient in the presence of intentional forms of tampering and accidental errors.
- The voting system supports efficient audits.

Ballot Secrecy

The voting system protects the secrecy of voters' ballot selections.

- Ballot secrecy is maintained throughout the voting process.
- Records produced by the voting system do not reveal how a voter voted.

Access Control

The voting system authenticates administrators, users, devices and services before granting access to sensitive functions.

- The voting system identifies users, roles and/or processes to which access is granted and the specific functions and data to which each entity holds authorized access.
- The voting system supports authentication mechanisms and allows administrators to configure them.
- Default access control policies enforce the principles of least privilege.

Physical Security

The voting system prevents or detects attempts to tamper with voting system hardware.

- Any unauthorized physical access to the voting system, ballot box, ballots, or other hardware, leaves physical evidence.
- Voting systems only expose physical ports and access points that are essential to voting operations, testing, or auditing.

Data Protection

The voting system protects sensitive data from unauthorized access, modification, or deletion.

- Voting systems prevent unauthorized access to or manipulation of configuration data, cast vote records, transmitted data, or audit records.
- The source and integrity of electronic tabulation reports are verifiable.
- All cryptographic algorithms are public, well-vetted, and standardized.
- Voting systems protect the integrity, authenticity and confidentiality of sensitive data transmitted over all networks.

Software Integrity

Voting systems prevent the unauthorized installation or modification of firmware, software, and critical configuration files.

- Only software that is digitally signed by the appropriate authorities is installed on the voting system.
- The authenticity and integrity of software updates are verified by the voting system prior to installation and authorized by an administrator.

Detection & Monitoring

The voting system provides mechanisms to detect and remediate anomalous or malicious behavior.

- Voting system equipment records important activities through event logging mechanisms, which are stored in a format suitable for automated processing.
- The voting system generates, stores, and reports to the user or election official, all error messages as they occur.
- Voting systems employ mechanisms to protect against malware.
- If the voting system contains networking capabilities, it employs appropriate modern defenses against networkbased attacks.

Other Takeaways

- Possible principles not included:
 - Vulnerability Management
 - Software Freshness
 - Software Transparency
 - Timeliness of Software Updates
 - Risk Management
- Significant discussion on the degree of auditability, and how best to achieve it

Status of Previous Work Items

- Focus on areas clearly in scope as a starting point.
 - Complete
- General security recommendations for ballot delivery and marking (not return), BoD, results reporting, and auditing.
 - Ongoing
- Begin conversations between cyber/HF/testing regarding auditable systems and accessibility.
 - Not started
- Discussions on risks and benefits on electronic return.
 - Not started
- Scope and Gap Analysis status listed on the next slides

Scope Determination

- The following items affect the scope of the VVSG:
 - Remote blank ballot delivery and ballot marking
 - The use of wireless (inside & outside the polling place)
 - Electronic pollbooks (activation and/or synchronization)
 - Voter registration systems
 - Ballot printing at polling places
- Need determinations <u>before requirements can be</u> <u>written</u>.

VVSG 1.1 Gap Analysis

- This has not been a main area of focus for the group.
 - Likely the next task in the queue.
- Members of the VVSG Cybersecurity WG provided input.
- NIST and EAC staff met with 5 voting system manufacturers and voting system test labs.
- NIST is performing a full analysis of the relevant sections.

A <u>special thanks</u> to the VVSG Cybersecurity Working Group members for their contributions of time and expertise.