

General Principles for VVSG 2.0

Benjamin Long, NIST TGDC Meeting February 13/14, 2017

Draft Principles for the Rest of the Standard

Correct Implementation

PRINCIPLE 1: CORRECT IMPLEMENTATION: Completely and accurately support election processes.

- **GUIDELINE 1.1:** Across entire election process.
 - Functionality Support entire voting process and voting variations
 - **SW / HW** Support integrity and maintainability of **election processes and data**
 - Telecom Reliably and accurately transfer voting-related information
- GUIDELINE 1.2: Under realistic operating conditions.
 - Functionality Ensure processes remain correct during all operations
 - SW / HW Correct under expected work-loads and environmental conditions
 - Telecom Correct when transmitting results remotely
- GUIDELINE 1.3: Across entire system lifecycle.
 - **Functionality** Ensure processes are correct throughout entire lifecycle
 - SW / HW / Telecom Regardless of changes in lifecycle, SW, HW, or telecom
 - QA/CM Tracking process implementations through lifecycle

High-Quality Construction (1)

PRINCIPLE 2: HIGH-QUALITY CONSTRUCTION: Construct to maximize quality.

- GUIDELINE 2.1: Use trustworthy materials and methods.
 - **Functionality** In general, use trustworthy materials, methods, and standards
 - **SW** Use accepted languages, language tools, coding standards, etc.
 - **HW** Use standards for climate-related, safety, and environmental hardware testing
 - **Telecom** Use standardized protocols, interfaces, and technologies
 - **QA/CM** Use QA/CM methods consistent with recognized quality standards
- GUIDELINE 2.2: Organize elements and logic of the system meaningfully.
 - Functionality Support general system properties (e.g., security, accuracy, ...)
 - SW Support clear meaningful logic, simple modular organization, robust change
 - HW/Telecom Support essential software operations / data integrity
 - **QA/CM** Support logical / physical configuration control

TGDC Meeting, February 13 – 14, 2017

High-Quality Construction (2)

- GUIDELINE 2.3: Handle errors actively and appropriately, recovering from failure gracefully.
 - Functionality Use robust processing in general (active error handling, graceful recovery)
 - SW Check for known errors; SW error handling; avoid SW single points of failure
 - HW/Telecom Perform appropriate error handling; avoid single points of failure

• GUIDELINE 2.4: Perform accurately and reliably in intended environments.

- **Functionality** Support reliable election processing in general.
- **SW** Ensure is free of well-known security vulns.; protected against threats (SW, env.)
- **HW** Ensure reliable performance and pervasive accuracy, integrity, durability, safety
- **Telecom** Satisfy performance criteria for accuracy, durability, reliability, and integrity

High-Quality Construction (3)

- GUIDELINE 2.5: Support auxiliary aims and processes (e.g., auditing, testing, ...).
 - Functionality Support auxiliary functions for operations / transparency (auditing, testing, ...)
 - **SW** Provide software and data support
 - **HW** Provide hardware and data support
 - **Telecom** Provide telecom-specific and data support
 - **QA/CM** Track system configurations across its lifecycle

Ease of Evaluation

PRINCIPLE 3: EASE OF EVALUATION: Support clear evaluation by reviewers.

- GUIDELINE 3.1: Clearly identify all essential elements of system in implemented systems.
 - Functionality Ensure unique election/auxiliary processes/functions are clearly identifiable
 - SW Ensure are clearly identifiable in software
 - HW Ensure are clearly identifiable in hardware
 - **Telecom** Ensure are clearly identifiable in **telecom-components**
 - **QA/CM** Track ability to clearly identify unique processes and functions
- GUIDELINE 3.2: Clearly distinguish correct/incorrect configurations in implemented systems.
 - Functionality Ensure correct processes / functions are clearly distinguishable from incorrect
 - Ensure are clearly distinguishable in software
 - Ensure are clearly distinguishable in hardware
 - **Telecom** Ensure are clearly distinguishable in telecom-components
 - **QA/CM** Track ability to clearly distinguish correct from incorrect processes and functions

SW

• HW

•

Initial Gap Analysis

Observations	Considerations / Questions
 Software Expanded languages + execution environments Basis for review: style, substance 	 Goal: Meaningfully verify logic is correct Appropriate coverage, given scope? Most appropriate verification mechanisms?
 Hardware/Telecom MIL-STDs Increased usage of COTS New form-factors and configurations Increased forms of inter- connection/communication 	 Goal: Meaningfully verify reliable, accurate, realistic election workloads Workload characterization methods? Acceptable ranges of performance for COTS? Best approaches for effectively and meaningfully testing new COTS configurations? Evaluation of new forms of inter-connection?
 QA/CM Same quality standards/conventions Changing environments for development and evaluation 	 Goal: Meaningfully verify manufacturing processes reliable/reproducible Best means for evaluating production process quality transparently and explicitly?
TDP Documentation to support evaluation 	 Goal: Have all information necessary for high-quality evaluations Best means to explicitly support evaluations?
 Testing Need for greater coverage and consistency TGDC Meeting, February 13 – 14, 2017 	 Goal: Meaningfully interpret observable evidence of required features Best means for ensuring accuracy, testability, and consistency of testing? Across tests and testing institutions? Appropriate testing granularity?

Improving U.S. Voting Systems

Discussion?

TGDC Meeting, February 13 – 14, 2017

9