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Motivation 
Degradation Science1  
 Of Complex Materials Systems  
 Under Multi-factor Exposures 
 
Develop Data-driven Analysis and Modeling 
• Exploratory Data Analysis 
• Predictive Modeling 
• Diagnostic Modeling for Degradation Mechanisms and Pathways 
 

Using Un-biased Analysis, based in Statistical Significance 
• That Complements Hypothesis-driven Physical & Chemical Modeling 
 

PET Films Case Study 
• Longitudinal Weathering Study 
• Under 4 Accelerated Exposure Conditions 

1. Roger H. French, et al., Degradation science: Mesoscopic evolution and temporal analytics of photovoltaic 
energy materials" Current Opinion in Solid State and Material Science, doi:10.1016/j.cossms.2014.12.008 

http://sdle.case.edu/
http://engineering.case.edu/centers/sdle/sites/engineering.case.edu.centers.sdle/files/1502-french_et_al._-_degradation_science_mesoscopic_evolution_and_temp_0.pdf
http://engineering.case.edu/centers/sdle/sites/engineering.case.edu.centers.sdle/files/1502-french_et_al._-_degradation_science_mesoscopic_evolution_and_temp_0.pdf
http://dx.doi.org/10.1016/j.cossms.2014.12.008


Roger H. French, et al., Degradation science: Mesoscopic evolution and temporal analytics of 
photovoltaic energy materials" Current Opinion in Solid State and Material 
Science, doi:10.1016/j.cossms.2014.12.008 

http://engineering.case.edu/centers/sdle/sites/engineering.case.edu.centers.sdle/files/1502-french_et_al._-_degradation_science_mesoscopic_evolution_and_temp_0.pdf
http://engineering.case.edu/centers/sdle/sites/engineering.case.edu.centers.sdle/files/1502-french_et_al._-_degradation_science_mesoscopic_evolution_and_temp_0.pdf
http://engineering.case.edu/centers/sdle/sites/engineering.case.edu.centers.sdle/files/1502-french_et_al._-_degradation_science_mesoscopic_evolution_and_temp_0.pdf
http://dx.doi.org/10.1016/j.cossms.2014.12.008
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Longitudinal Weathering Study of PET Grades 

The three PET grades used: 
• Unstabilized (Dupont-Teijin Melinex 454, 3 mil) 
• UV stabilized (Dupont-Teijin Tetoron HB3, 2 mil) 
• Hydrolytically stabilized (Mitsubishi 8LH1, 5 mil) 

 

A lab-based, completely randomized, longitudinal study design 
• Followed over time with repeated measurements.  

• Step size is one week (168 hours) for a total of 7 weeks (1176 hours) 
• Retained Sample Library: Retain one sample at each time step  

 
    More Generally:                             

For One grade 
In One Exposure 

http://sdle.case.edu/
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Heat and humidity exposures 
Environmental test chambers 
Temperature and humidity control 
 

1) DampHeat 
Constant exposure at 85oC and 85%RH  
per IEC 61215  

 
2) FreezeThaw                                         

20 hrs of  70 oC at 85% RH plus 
0.5 hrs of -40 oC at 0 % RH 

 
 
 
 
  
 
 

Exposure Conditions 
UVA light exposures 

Fluorescent weathering tester 
Outfitted with UVA 340 lamps and water spray 
 

3) ASTM G154 Cycle 4 (CyclicQUV) 
8 hrs of 1.55 W/m2 @ 340 nm light at 70 oC plus 4 hrs of 
condensing humidity in dark at 50 oC 

 
4) ASTM G154 Cycle 4 without the 

condensing humidity (HotQUV) 
Constant UVA light at 1.55 W/m2 @ 340 nm at 70oC 

 
 

http://sdle.case.edu/
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Performance Response: Yellowness Index (YI) 
Humidity only, did not result in significant yellowing.  
 
In UV stabilized grade, change point in YI after first exposure step.  
 

Yellowing Arises 
 

With Photoexposure 
 
 
 
 
 

Note Temporal 
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Performance Response: Haze (%) 
Humidity only did not result in significant hazing. 
No hazing observed with light only 

• Even with high level of yellowing. 
Marked Hazing in CyclicQUV exposure in presence of light & moisture.  

• Increased hazing in unstabilized grade than in UV stabilized grade.  
 

 

Hazing Requires 
Moisture 

 
Increased by 
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Mechanistic: PET UV-Vis Spectral Features 

Abs 
(nm) 

Feature Mechanisms 

312 

 
 
 
325 
 
 
340  
 
 
 
 
 
 
 
340 
 
 
375-425 
 
 
 

Fund. abs. edge 

 
 
 
carboxylic acid 
end groups 
 
hydroxylated 
species 
 
 
 
 
 
 
UV Stabilizer2  
 
 
quinones1 

π → π* transition of the terephthalate 
unit and ester carbonyl on the PET 
backbone 
 
photo-oxidation 
 
 
hydroperoxide formation → photolysis of 
hydroperoxides → hydroxyl radicals →  
substitution reactions →  
mono- or dihydroxy terephthalate unit →  
hydroxylated species → increase in 
absorbance  
 
 
UV stabilizer bleaching 
 
 
photolysis → chain scissions → 
hydroperoxides → hydroxylated species 
→ fluorescence →  increased yellowing 
 
photo-oxidation → chain scissions → 
hydroperoxides → hydroxylated species 
→ oxidation → reduced fluorescence → 
increased yellowing 

Unstabilized - HotQUV 

UV stabilized - HotQUV 

[1] Yang, Poly. Degr.Stab., 95(1):53–58,2010,  Tabankia, Poly. Degr,Stab., 14(4):351–365, 1986, Fechine, J. App. Poly. Sci.,104(1):51–57, 2007 
[2]From UV Spectra of the UV stabilizer (Cyasorb 3638) 

Choose 2 UV Mechanisms 
• 312 nm: Fundamental Absorption Edge 
• 340 nm: UV Stabilizer Bleaching For Stabilized PET  

http://sdle.case.edu/
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Mechanistic: PET FTIR Spectral Features 
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[1] Sammon, Poly. Degr.Stab., 67(1):149–158, 2000.  Andanson Macr. Symposia, 265:195–204, 2008. Zhu Polymer, 46(20):8883–8891, 2005   

http://sdle.case.edu/
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http://sdle.case.edu/


Statistical Modeling Approaches 
 

1. Multi-Level Predictive Modeling 
 

And  
 

2. Semi-Supervised Generalized Structural Equation (semi-gSEM) 
Diagnostic Modeling 
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Multi-Level Predictive Modeling 

Multi-Level Modeling for a longitudinal weathering study 
• Repeated measurements on multiple samples  
• Of various grades  
• Under different exposures 

 
 
 
 
 
 
 
 
 
 
 
Model Definition and Selection 
• Overfitting & Predictive R2 
• Model Validation using Leave-one-out Cross-validation 
 

http://sdle.case.edu/
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Overfitting & Predictive R2 

Overfitting When 
•Complexity of your model increases 

Too many predictors to obtain the best fit  
• You Train model without testing on new data 

 
Optimism Needs to be Small for  
• Smaller “true” prediction error 
• Greater prediction power 

 
Always Check Assumptions on Error Terms 
• Homoscedasticity, Linearity, Normality 

 
 

Model Validation Is Essential 
 

Using Leave-one-out Cross-validation 
Apply your model to both  
• training data and testing data 

 
Predictive R2 gives model fit to testing data 
• Spanning the cross-validation datasets  

 

http://sdle.case.edu/


Multi-Level Predictive Modeling 
 

Yellowing & Hazing 
Under  

HotQUV and CyclicQUV Exposures 
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Yellowing Model: under HotQUV & CyclicQUV Exposures 
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Power of 0.5 is in 95% conf.int. Fixed Effects Modeling approach 

• Small variation in-between samples 
• Similar trend for all samples 
• Yellowing  uniform formation of chromophores  
• Smaller measurement uncertainty 

Variable Power Transformation (yyλ) 

• Toward linearity or normality 
• Log-likelihood vs. power (λ) 

http://sdle.case.edu/
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Yellowing Model: under HotQUV & CyclicQUV Exposures 

Diagnostics: Residuals vs. Fitted and Normal Quantile-Quantile 
• Model satisfies the regression assumption reasonably well. 

Two Exposures and Three Materials in One Model  

http://sdle.case.edu/
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Yellowing Model: under HotQUV & CyclicQUV Exposures 

Model Superimposed on the data 
 
Adjusted R2 = 0.98 
• To training dataset 

 
Predicted R2 = 0.95 
• To testing dataset 
• In cross-validation 

 

http://sdle.case.edu/
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Hazing Model: Hazing under CyclicQUV Exposure 

Mixed Effects Modeling approach: Fixed Effects + Random Effects 
 
 
 
 
 
 
 
 
 
 
 
 

• Account for between sample variability 
• Individual trends for each sample 
• Hazing  localized growth of features 
• Larger measurement uncertainty 

 

Modeling based on each individual sample’s trend 
No power transformation 

http://sdle.case.edu/
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Hazing Model: Hazing under CyclicQUV Exposure 

Model Superimposed on the data 
Fitted R2 = 0.95 
Predictive R2 = 0.82 
 
Mixed effects = Fixed + Random 
• Marginal  variance explained by the 
fixed effects 

• Conditional  variance explained by 
both fixed effects and random effects 

 
Marginal R2 = 0.88 
Conditional R2 = 0.94 
 
Including random effects 

increased the variance 
explained by the fixed effects 

 

http://sdle.case.edu/


Statistical Modeling Approaches 
 

2. Semi-Supervised, Generalized Structural Equation (semi-gSEM) 
Diagnostic Modeling 
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Diagnostic Modeling: Degradation Pathways Using semi-gSEM  

Stress | mechanism | response framework (S|M|R) 
• Stressors (applied)  
• Mechanistic (intermediate, observed-measured or latent) variables 
• Performance level responses 

 
Functional Forms among Variables 
• Simple linear: y ~ b0 + b1 x 
• Simple quadratic: y ~ b0 + b1x2 

• Quadratic: y ~ b0 + b1x + b2x2 

• Logarithmic: y~ b0 + b1 log(x) 
• Exponential: y~ b0 + b1 exp(x) 

 
Combination of Metrics for Statistically Significant Relationships 
• R2, Adjusted-R2  

Goodness & quality of fit of the observed relationships between variables  

 
Principles in semi-gSEM 
• Principle1: Univariate relationships (Markov. spirit, prior events don’t affect current variables) 
• Principle2: Multivariate relationships (additive model that accounts for variable interactions) 

 

http://sdle.case.edu/
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Variables & Statistical Significance in semi-gSEM Analysis 
Variables Mechanisms In semi-gSEM analysis 

Time As a proxy to exposures Main stresssor 

abs/cm at 312 nm  Degradation of the polymer backbone Mechanistic variable 

abs/cm at 340 nm UV stabilizer bleaching Mechanistic variable 

IR band at 975 cm-1 Change in morphology 
(Crystallization)  

Mechanistic variable 

IR band at 1711 cm-1 Chain scissions Mechanistic variable 

Yellowness index (YI) Photolytic and hydrolytic degradation Performance level response 

Haze (%) Hydrolytic degradation Performance level response 

Two adjusted R2 cutoffs 
        to rank order relationships 
 
D-a-s-h-e-d < 0.5 adj. R2 

 
0.75 adj. R2 < Solid < 0.5 adj. R2 

 
Thick > 0.75 adj. R2 
 

http://sdle.case.edu/


semi-gSEM Degradation Pathway Models 
 

UV stabilized PET 
 

1) yellowing under HotQUV  
2) yellowing under CyclicQUV  

3) hazing under CyclicQUV 
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Yellowing sgSEM: UV stabilized PET under HotQUV Exposures 

 
 
Crystallization and 

Chain Scission  
• Produce Yellowing 
 
 
 
 
 
 
 
 

 
 

Confirmatory Evidence 
•From DCS and IV 
 

http://sdle.case.edu/
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Yellowing sgSEM: UV stabilized PET under CyclicQUV Exposure 

Important Role of 
• Fund. Abs. Edge  
• UV Stabilizer Bleaching 
 

Crystallization and  
Chain Scission  

• Produce Yellowing 
• But at Reduced Rate 
 

http://sdle.case.edu/
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Hazing sgSEM: UV Stabilized PET under CyclicQUV Exposure 

Crystallization Induced 
Hazing 

•Complex interactions due to 
cyclic conditions is evident 
 

UV Stabilizer Consumed 
 

 

http://sdle.case.edu/


Confirmatory Results:  
Direct Measures of Mechanistic Variables 

 
Catalyst trace analysis 

Change in crystallinity via DSC 
Intrinsic viscosity and molecular weight 

Carboxyl end group (CEG) analysis 
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Change in Crystallinity via DSC (UV Stabilized) 

Degradation Causes  
• Decrease in melting point (Tm) 
• Decrease in intrinsic viscosity and Mw 
• Increase in chain scission 
• Increase in CEG content  
 
Crystallinity increased from 36% 
• to 42% During UV Exposure 
• to 45% During UV+Humidity Exposure 
 

Control 

UV only UV + Humidity 

http://sdle.case.edu/
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Mw & CEG analysis: Incr. Chain Scission, CEGs, Decr. Mw 

Intrinsic viscosity (IV) to determine molecular weight (Mw) 
• The degree of degradation 

i.e., increased chain scission, formation of end groups, and reduced molecular weight 
• IV measurement via glass capillary viscometer (ASTM 4603-03) 
 

• Decrease in IV and Molecular Weight (Mn) 
• Increase in total end groups  

and chain scission per molecule 

 
 
 
Carboxylic acid end group (CEG) analysis  
• CEGs play a major role in PET’s hydrolytic stability 

i.e., autocatalytic effect of CEGs in hydrolysis reactions 
• Direct measure of CEG conc. (ASTM D7409-15) 
 

• Increase in CEG concentration  
under both UV and UV+Humidity 

 
                                       

http://sdle.case.edu/
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Conclusions 

Longitudinal Weathering Study of PET in 4 Exposures: Epidemiology 
• Yellowing most strongly induced by UV light 

Moisture enhanced yellowing was evident 
• Hazing was predominantly from hydrolysis 
 

Develop Data-driven Analysis and Modeling 
• Using Un-biased Analysis, based in Statistical Significance 
 

Multi-Level Modeling Predicted Experimental Responses Very Closely 
• Predictive R2 aides Model Selection and Cross-validation 
 

In the semi-gSEM pathway Models, Mechanistic Contributions 
• Chain scission common mechanism under HotQUV & CyclicQUV exposures.  
• Change-points along the Temporal Degradation Pathway 

UV Stabilizer Bleaching 
Hazing Onset under Humidity, After Chromophore Development 

 
Multi-variate and Multi-stressor semi-gSEM Development is in Progress.  
 
 

http://sdle.case.edu/
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