#### **Precipitation Simulation of Ni-base Superalloys**

Fan Zhang, W. Cao, S. Chen, C. Zhang, and J. Zhu



437 S. Yellowstone Drive, Madison, WI, USA http://www.computherm.com

> Presented at 12th NIST Diffusion Workshop April 28-29, 2014 Gaithersburg, MD, USA

# **Outline of Presentation**

#### I. Background

- **Extension of the CALPHAD approach**
- Precipitation Kinetics
- **II.** Application to Ni-base Superalloys
- Si-Al-Cr system
- Commercial alloys: Rene88, IN100, U720, Alloy718

#### **III. Summary**



# **Beyond Phase Diagrams**





# **Precipitation Simulation**



Smooth integration of precipitation simulation with thermodynamic calculation engine

#### **Concurrent Nucleation, Growth and Coarsening**



Precipitation evolution of the Cu-1.02 at.% Co alloy ageing at 600°C

Precipitation evolution of the Ni-14 at.% Al alloy ageing at 550°C

**Concurrent nucleation, growth & coarsening** 

# **CALPAHD Tool: Pandat Software**



#### **Precipitation Models**

- The JMAK model (Johnson-Mehl-Avrami-Kolmogorov) for the estimation of the overall transformation rate
- The Fast-Acting model based on Langer and Schwartz theory for the simulation of the evolution of particle number density and mean size
- The more advanced KWN (Kampmann & Wagner Numerical) model for the predication of the full evolution of the particle size distribution (PSD) in addition to average quantities



#### **Precipitation models: the KWN model**

The KWN (Kampmann-Wagner Numerical) Model:

- Concurrent nucleation, growth and coarsening
- Ø Evolution of average quantities:
   volume fraction, number density,
   particle size
- Ø Evolution of PSD: Particle Size Distribution
- Ø Many size classes



\* R. Kampmann and R. Wagner, *Decomposition of Alloys: the early stages*, pp. 91-103 (1984)

# **Sub-Models: nucleation**

Classical nucleation theory:  

$$J = N_{v} Z \beta^{*} e^{-\frac{\Delta G^{*}}{kT}} e^{-\frac{\tau}{t}}$$

- *Nv* : Number of nucleation sites per unit volume
- *Z* : Zeldovich factor accounting for decay of supercritical particles
- $\beta$  \* : Rate of solute atoms joining the critical nucleus
- $\tau$  : Incubation time

 $\Delta G^*$ : Activation energy for nucleation

$$\Delta G^* = \frac{f\sigma^3}{\Delta G_m^2 / V_m^2}$$

$$f = \frac{16\pi}{3}$$
 for homogeneous nucleation of spherical nuclei

 $V_m$ 

 $\sigma$ 

- is the molar volume of the precipitate phase
- $\Delta G_m$  is the molar chemical driving force for nucleation
  - is the interfacial energy of the matrix/particle interface

[1] Svoboda, J., et al., Materials Science and Engineering A, 2004. **385**(1-2): p. 166-174.

# **Sub-Models: growth**

Growth rate of binary alloys

$$v = \frac{dR}{dt} = \frac{D}{R} \frac{C_i - C_R^{\alpha}}{C^{\beta} - C_R^{\alpha}}$$

- $C_i$ : instantaneous concentration in the matrix
- $C^{\beta}$ : concentration in the precipitate at the interface

 $C_R^{\alpha}$  is the concentration in the matrix at the interface, which is calculated from the equilibrium concentration  $C^{\alpha}$  using the Gibbs-Thomson equation:

$$C_{R}^{\alpha} = C^{\alpha} \exp(\frac{2\sigma V_{m}}{R_{g}T}\frac{1}{R})$$



**Growth model for multi-component alloys:** 

- S The Simplified Model: Growth model proposed by Morral and Purdy<sup>1</sup> – very low super-saturation
- S The SFFK<sup>2</sup> Model for complex systems the principle of maximum entropy production
- Analytical treatment of diffusion in multi-component alloys by Chen<sup>3</sup>

<sup>1</sup> Morral, J.E. and Purdy, G.R., Scripta Metallurgica et Materialia, 1994. **30**(7): p. 905-908
 <sup>2</sup> Svoboda, J., et al., Materials Science and Engineering A, 2004. **385**(1-2): p. 166-174.
 <sup>3</sup> Chen, Q., *et al.*, Acta Materialia, 2008. **56**: p. 1890-1896.



# **Application to Ni-base Alloys**

- > Ni-Al-Cr alloy:
- > Ni-Al-Cr-W alloy
- > Rene88DT alloy
- > IN100 alloy
- ➢ U720LI
- > IN718 alloy

# Precipitation: Ni-14.8Cr-5.2Al

#### **Precipitation simulation**

Ni-14.8Cr-5.2Al at.% alloy isothermal annealing at 600°C





# Precipitation: Ni-14.8Cr-5.2Al



# Precipitation: Ni-5.2Al-14.2Cr



Microstructure evolution in Ni–5.2Al-14.2Cr at.% alloy at 600°C

CompuTherm LLC – www.computherm.com

# **Coarsening: Chemistry Effect**



Experimental Data: Sudbrack, C.K., "Decomposition behavior in model Ni-Al-Cr-X superalloys: temporal evolution and compositional pathways on a nanoscale", in Department of Materials Science & Engineering, 2004, Northwestern University

### **Coarsening of Rene88: Temperature Effect**



Exp. Data: Jian Mao, "Gamma Prime Precipitation Modeling and Strength Responses in Powder Metallurgy Superalloys", in Department of Mechanical Engineering, 2002, West Virginia University

## **Multi-Step Heat Treatment: IN100**

Alloy Chemistry: Ni-4.85Al-18.23Co-12.13Cr-3.22Mo-4.24Ti (wt%).



#### **Experimental Data:**

By K. Maciejewski, H. Ghonem, Materials Science & Engineering A, 560 (10) (2013), 439-449.

|                 | Primary $\gamma$ | Secondary $\gamma$ | Tertiary γ |
|-----------------|------------------|--------------------|------------|
| Size (nm)       | 1700             | 208                | 23         |
| Volume fraction | 20%              | 29%                | 11%        |



# **Thermodynamics of IN100**

| Component | AI   | В    | С     | Со    | Cr    | Мо   | Ti   | ۷    | Zr    | Ni  |
|-----------|------|------|-------|-------|-------|------|------|------|-------|-----|
| wt%       | 4.85 | 0.02 | 0.072 | 18.23 | 12.13 | 3.22 | 4.24 | 0.71 | 0.071 | bal |



#### **Multi-Step Heat Treatment: IN100**



## Effect of Initial Microstructure and Heat Treatment Conditions

- > Initial microstructure: pre-existing primary and secondary  $\gamma$
- Supersolvus vs. Subsolvus solution treatment
- Long vs. short solution treatment time



#### **Precipitation of IN100-Supersolvus Solution**



#### **Precipitation of IN100-Supersolvus Solution**



#### **Precipitation of IN100** -Supersolvus vs. Subsolvus Solution



#### Effect of Cooling Rate on the Size Distribution of U720LI



Available online at www.sciencedirect.com ScienceDirect Acta Materialia 57 (2009) 5739–5747



#### Multimodal size distributions of $\gamma'$ precipitates during continuous cooling of UDIMET 720 Li

R. Radis<sup>a,b,\*</sup>, M. Schaffer<sup>c</sup>, M. Albu<sup>c</sup>, G. Kothleitner<sup>c</sup>, P. Pölt<sup>c</sup>, E. Kozeschnik<sup>a,d,e</sup>

<sup>a</sup> Christian Doppler Laboratory for "Early Stages of Precipitation", Vienna University of Technology, Favoritenstraße 9-11, A-1040 Vienna, Austria <sup>b</sup> Institute for Materials Science and Welding, Graz University of Technology, Kopernikusgasse 24, A-8010 Graz, Austria <sup>c</sup> Research Institute for Electron Microscopy, Graz University of Technology, Steyrergasse 17, A-8010 Graz, Austria <sup>d</sup> Materials Center Leoben Forschung GmbH, Roseggerstraße 12, A-8700 Leoben, Austria <sup>e</sup> Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, A-1040 Vienna, Austria

> Received 27 March 2009; received in revised form 12 June 2009; accepted 3 August 2009 Available online 4 September 2009

#### Abstract

The technological properties of many nickel-based superalloys originate in the morphology and distribution of Ni<sub>3</sub>(Al, Ti) particles ( $\gamma'$  precipitates). Starting from the solution-annealed condition, the distribution and the morphology of  $\gamma'$  precipitates are investigated experimentally during continuous cooling of the nickel-base superalloy UDIMET 720 Li. Characterization of the precipitates is carried out by scanning electron microscopy and energy-filtered transmission electron microscopy investigations. Depending on cooling rate, monomodal, bimodal and even trimodal size distributions are observed. The experimental observations of the size distributions are confirmed by numerical simulations of the  $\gamma'$  precipitation kinetics. The theoretical background for occurrence of multimodal size distributions are observed.

© 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Keywords: Multimodal; Nickel alloy; Precipitation; Nucleation and growth; Phase transformation kinetics

The sample were soaked at 1180°C and then cooled continuously to 400°C at different speed

#### Table 1

Continuous cooling rates of the present investigation.

| Sample | Cooling rate (K s <sup>-1</sup> ) | Cooling time (s) |  |  |
|--------|-----------------------------------|------------------|--|--|
| 1      | 78                                | 1000             |  |  |
| 2      | 19.5                              | 4000             |  |  |
| 3      | 6.5                               | 12,000           |  |  |
| 4      | 3.25                              | 24,000           |  |  |
| 5      | 1.625                             | 48,000           |  |  |
| 6      | 0.867                             | 90,000           |  |  |
| 7      | 0.433                             | 180,000          |  |  |
| 8      | 0.217                             | 360,000          |  |  |
| 9      | 0.03333                           | 2,340,000        |  |  |
| 10     | 0.01667                           | 4,680,000        |  |  |
| 11     | 0.00984                           | 7,920,000        |  |  |
| 12     | 0.00619                           | 12,600,000       |  |  |
| 13     | 0.00416                           | 18,720,000       |  |  |

Ref: R. Radis et al., "Multimodal size distribution of  $\gamma$  precipitates during continuous cooling of UDIMET 720Li", Acta Mat., 57(2009) 5739-5747



## **Thermodynamics of U720LI**

| Alloy | Cr    | Со    | Ti   | Al   | Mo   | W    | Zr    | С     | В     | Ni  |
|-------|-------|-------|------|------|------|------|-------|-------|-------|-----|
| PM    | 16.26 | 14.73 | 5.05 | 2.50 | 3.01 | 1.27 | 0.036 | 0.023 | 0.018 | Bal |
| C&W   | 16.06 | 14.52 | 5.04 | 2.54 | 3.08 | 1.20 | 0.047 | 0.013 | 0.018 | Bal |



CompuTherm LLC – www.computherm.com

PA

#### U720LI: Cooling Effect on Precipitation Fast Cooling



#### U720LI: Cooling Effect on Precipitation Medium Speed





#### U720LI: Cooling Effect on Precipitation Slow Cooling



*CompuTherm LLC – www.computherm.com* 

24

# **Alloy 718: Typical Microstructure**





# Convert $\gamma$ " size from the disc to sphere

Our current precipitation simulation module can only handle sphere morphology. Therefore we have to convert the size of disc  $\gamma$ " to the diameter of sphere





#### Coarsening: Alloy 718 at 973K, 998K and 1023K



#### **Co-precipitation of** $\gamma$ **' and** $\gamma$ **'' phases**

Experimental data: Han, Y.F. et al., Metal Science, vol. 16, 1982



#### Co-precipitation of $\gamma,\,\gamma',\,\text{and}\,\,\delta$ in Alloy 718



Experimental data: Han, Y.F. et al., *Metal Science*, vol. 16, 1982

#### Co-precipitation of $\gamma,\,\gamma',\,\text{and}\,\,\delta$ in Alloy 718





# Summary

- Precipitation simulation is a useful tool to understand the complicated precipitation process;
- ✤ To develop a reliable precipitation simulation tool, we need:
  - Good models for nucleation, growth and coarsening
  - Reliable thermodynamic database
  - Reliable mobility database
  - Smooth integration of precipitation module with thermodynamic calculation engine

