Challenges Associated with making:

Reliable Believable CONTINUOUS

Flow Measurements in Large Utility Stacks

Ultrasonic Flow Monitor

A Teledyne Technologies Company

Overview

- What is an Ultrasonic Flow Monitor?
 - It is a device that measures velocity based on the timeof-flight of signals t₁,t₂
 - By determining t₁,t₂, the monitor calculates velocity, volumetric flow and temperature

Stack Geometry

- L = Pathlength Transducer to Transducer
 H = Offset
 Area = Cross Sectional Area
- θ= Angle; <45°

RELIABILITY CONCERNS

Utility smokestacks are harsh environments:

-Hot /Dry scrubbed or unscrubbed stacks -Cool/Wet scrubbed stacks -Corrosive gases present (SO2) -THEY ARE BIG.....diameter & height

Limitations of Ultrasonic Flow

- Typical Installation:
 - − θ ≥45° angle but depends on:
 - pitch angle
 - # diameters down
 - # flues feeding the stack
 - Gas temperature
 - Gas velocity
 - Need Vertical Offset
 (H) to be No Less Than
 4-5 Ft.
 - Max. Temp 850°F
 - Min. Diameter 3 Ft.
 - Max Diameter 45 Ft.

A Teledyne Technologies Company

Typical Transducer Installation

Transducer Types

- Short Range
 - 50Khz Electrostatic
- Long Range
 - 20Khz Piezo Electric
- Extended Long Range
 - 14Khz Piezo Electric
- Select based on stack dia., max temp, and max velocity
- Lower Frequency
 Provides MORE Power

Ultrasonic Flow Monitor

Believable Concerns

Inherent accuracy of time-of-flight technology

Wall effects, Pitch, Swirl, Multiple Units feeding a common stack

RELATIVE Accuracy.....

Overview

- How Does the Ultrasonic flow monitor Work to Calculate Velocity ?
 - Tone bursts (Sound) are transmitted from the upstream transducer to the downstream transducer and then visa versa
 - Tone bursts are transmitted approximately every 30 milliseconds in this alternating fashion (33/sec)
 - The number of tone bursts sent in each direction is programmable (response time <5.0 seconds)
 - The large # of tone bursts enhances accuracy, i.e., a larger statistical sample

Ultrasonic Flow Installation

Typical Installation

Time of Flight Principle

 What are the governing equations that model the time-of-flight of the tone bursts?

 $V1 = Cs + Fv \cos\theta$ (added velocity)

Velocity (Against Gas Flow)

Velocity (With Gas Flow)

 $V2 = Cs - Fv \cos \theta$ (subtracted velocity)

- Where
 - Cs is the speed of sound
 - Fv is Nominal flow velocity up stack
 - Ø is the angle of installation

Velocity (Fv) Calculations

- Cs falls out of the subtracted equations
- Substitute Pathlength/Time for V₁ & V₂ $F_{V} = \frac{L/t_1 - L/t_2}{2(\cos \theta)}$ • Rearrange $F_{V} = \frac{L}{2(\cos \theta)} \left[\frac{t_2 - t_1}{t_1 t_2} \right]$

Believable Concerns

Statistical average over time (adjustable response time) leads to accurate flow measurement. Typically 1-5 minutes

Multiple transducers used for mitigation of flow anomalies in stacks (X-Pattern Config.)

Continuous Concerns

Non-Intrusive nature leads to long mean time before failure.

Mitigate the effects of condensing moisture in wet scrubbed stacks. "Weep Holes"

Blower Maintenance to maintain system performance

Field Experience with Ultrasonic

Port Alignment within 1-2 degrees

Consider a "Link-Rod" assembly for large annulus spaces.

Error on the side of a "larger than needed" flow port. Inserts are available!

Field Experience with Ultrasonic

Temperature and pressure will be needed for SCFM calculation. From the monitor or from external devices/inputs.

Safe and accessible mounting locations with "decent" air available for blower intakes.

Questions?

Thank you!

Don Giel Teledyne Monitor Labs, Inc.

