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57 ABSTRACT
Measuring a single linear function q(61, 62, . . ., 6d) of
unknown parameters {61, 62, . . ., 68d} with a quantum

sensor network while using the minimum amount of
entanglement includes: providing a plurality of d quantum
sensors, wherein each quantum sensor j is configured for
measuring 0j; preparing the plurality of quantum sensors in
a probe quantum state with a minimum amount of entangle-
ment, such that the amount of entanglement is the smallest
amount of entanglement that gives the same optimal mea-
surement of the linear function q(01, 62, . . ., 6d) as if the
amount of entanglement was not restricted; exposing the
plurality of quantum sensors to the set of unknown param-
eters; measuring the plurality of quantum sensors; and
calculating the single linear function q(61, 62, . . ., 6d) from
the measurements of the plurality of quantum sensors with
robust phase estimation.
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QUANTUM SENSOR NETWORK AND
MEASURING A SINGLE LINEAR FUNCTION
OF UNKNOWN PARAMETERS WITH A
QUANTUM SENSOR NETWORK WHILE
USING THE MINIMUM AMOUNT OF
ENTANGLEMENT

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation-in-part and
claims benefit of U.S. patent application Ser. No. 18/136,257
(filed Apr. 18, 2023), which claims priority to U.S. Provi-
sional Patent Application Serial No. 63/363, 171 (filed Apr.
18, 2022), the disclosures of which are incorporated herein
by reference in their entirety. The application claims priority
to U.S. Provisional Patent Application Ser. No. 63/377,290
(filed Sep. 27, 2022) and U.S. Provisional Patent Application
Ser. N0.63/397,546 (filed Aug. 12, 2022), the disclosures of
which are incorporated herein by reference in their entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

[0002] This invention was made with United States Gov-
ernment support from the National Institute of Standards and
Technology (NIST), an agency of the United States Depart-
ment of Commerce and under Agreement No.
WOI11NF1520067 awarded by the Army Research Lab,
Agreement No. WI11NF1410599 awarded by the Army
Research Office, and Agreement No. W911NF16-1-0082
awarded by the Intelligence Advanced Research Projects
Activity (IARPA). The Government has certain rights in the
invention.

BRIEF DESCRIPTION

[0003] Disclosed is a process for measuring a single linear
function (61, 62, . .., 6d) of unknown parameters {61, 62,
..., 0d} with a quantum sensor network while using the
minimum amount of entanglement, the process comprising:
providing a plurality of d quantum sensors, wherein each
quantum sensor j is configured for measuring 6j; preparing
the plurality of quantum sensors in a probe quantum state
> with a minimum amount of entanglement, such that the
amount of entanglement is the smallest amount of entangle-
ment that gives the same optimal measurement of the linear
function q(01, 62, . . ., 6d) as if the amount of entanglement
was not restricted; exposing the plurality of quantum sensors
to the set of unknown parameters; measuring the plurality of
quantum sensors; and calculating the single linear function
q(01, 62, . . ., 6d) from the measurements of the plurality
of quantum sensors with robust phase estimation.

[0004] Disclosed is a quantum sensor network compris-
ing: a plurality of d quantum sensors, each quantum sensor
j is configured for measuring 08j out of a set of unknown
parameters {61, 62, . . ., 6d}, such that the plurality of
quantum sensors is configured to be in a probe quantum state
> with a minimum amount of entanglement, such that the
amount of entanglement is the smallest amount of entangle-
ment that gives the same optimal measurement of the linear
function q(01, 62, . . ., 6d) as if the amount of entanglement
was not restricted; a network topology that connects the
plurality of quantum sensors; and a controller that is con-
figured to: prepare the plurality of quantum sensors in the
probe quantum state |W>; expose the plurality of quantum
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sensors to the unknown parameters {61, 62, . . ., 6d};
measure the plurality of quantum sensors; and use the
measurements of the plurality of quantum sensors to calcu-

late the function q(61, 62, . . ., 6d) of the set of unknown
parameters.
[0005] Disclosed is a process for making a quantum sensor

network that measures a single linear function q(61, 062, . .
., 8d), the process comprising: providing a plurality of d
quantum sensors; arranging the plurality of quantum sensors
in a network topology, such that each quantum sensor j is
configured for measuring 6j out of a set of unknown
parameters {61, 62, . . ., 6d}; connecting the plurality of
quantum sensors to a controller; preparing, by the controller,
the plurality of quantum sensors in a probe quantum state
W> with a minimum amount of entanglement, such that the
amount of entanglement is the smallest amount of entangle-
ment that gives the same optimal measurement of the linear
function q(01, 62, . . ., 6d) as if the amount of entanglement
was not restricted.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The following description cannot be considered
limiting in any way. Various objectives, features, and advan-
tages of the disclosed subject matter can be more fully
appreciated with reference to the following detailed descrip-
tion of the disclosed subject matter when considered in
connection with the following drawings, in which like
reference numerals identify like elements.

[0007] FIG. 1 shows, according to some embodiments, a
process for measuring a single linear function q(61, 62, . ..
, 8d) of unknown parameters {61, 62, . . ., 6d} with a
quantum sensor network while using the minimum amount
of entanglement.

[0008] FIG. 2 shows, according to some embodiments, a
process for measuring a single linear function q(61, 62, . ..
, 8d) of unknown parameters {61, 62, . . ., 6d} with a
quantum sensor network while using the minimum amount
of entanglement.

[0009] FIG. 3 shows, according to some embodiments, a
process for measuring a single linear function q(61, 62, . ..
, 8d) of unknown parameters {61, 62, . . ., 6d} with a
quantum sensor network while using the minimum amount
of entanglement.

[0010] FIG. 4 shows, according to some embodiments, a
quantum sensor network 200 that includes a plurality of
quantum sensors for measuring a single linear function q(01,
82, ..., 6d) of unknown parameters {61, 62, . . ., 6d} with
a quantum sensor network while using the minimum amount
of entanglement, wherein the quantum sensors are distrib-
uted among a magnetosphere of a planet.

[0011] FIG. 5 shows, according to some embodiments, a
graph of CNOT cost versus number of quantum sensors d for
minimum entanglement protocols using d optimally ordered
states chosen either randomly or via a greedy algorithm,
wherein 20 randomly chosen instances provided a valid
protocol via a greedy algorithm. When it returns a valid
protocol, the greedy algorithm recovers optimal linear scal-
ing with d for the CNOT cost, whereas randomly chosen
states have quadratic scaling, even with optimal state order-
ing.

DETAILED DESCRIPTION

[0012] A detailed description of one or more embodiments
is presented herein by way of exemplification and not
limitation.
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[0013] Ithasbeen discovered that processes herein include
quantum entanglement in a network of quantum sensors to
optimally measure a smooth function of fields at the quan-
tum sensors while using the minimum amount of entangle-
ment. It is contemplated that in applications for geodesy,
geophysics, biology, medicine, and the like, wherein sensors
can be separated by a selected distance to measure tempera-
ture, a field (e.g., magnetic field, electric field, or a combi-
nation thereof), pressure, and the like, the processes apply
when the fields at the sensors are different such as a sensor
that measures electric field and another sensor that measures
temperature. The processes can include an array of quantum
sensors such as qubit sensors, interferometers, or field-
quadrature displacement sensors, measuring functions of
parameters some of which are measured by qubits, while
others are measured by interferometers, while others are
measured by field-quadrature displacement sensors, and the
like.

[0014] For a Heisenberg scaler described in U.S. Pat. No.
11,562,049, the disclosure of which is incorporated herein
by reference in its entirety, fields at individual sensors or
phases of individual interferometers or field-quadrature dis-
placements are first measured without entanglement
between sensors, interferometers, or field-quadrature dis-
placement sensors to a precision sufficient for linearization
of the desired smooth (analytic) function that one wants to
measure. Thereafter, as herein described, the resulting lin-
earized function is measured by distributing selected
entangled states across a network of qubit sensors, interfer-
ometers, field-quadrature displacement sensors and applying
quantum gates on the sensors.

[0015] Quantum sensor networks have the potential to
revolutionize the way we measure the world around us. By
using the power of quantum mechanics, quantum sensor
networks can achieve unprecedented levels of precision and
sensitivity. It has been discovered that a quantum sensor
network and a protocol for measuring a function with a
quantum sensor network while using the minimum amount
of entanglement provide optimal measurement of a smooth
function while using the minimal amount of entanglement.
This is a significant improvement over conventional tech-
nology that either measures only one parameter at a time or,
as in U.S. Pat. No. 11,562,049, makes use of maximally
entangled states without attempting to minimize the amount
of entanglement used. The quantum sensor network and the
protocol for measuring a function can be used for a range of
applications such as medical imaging, environmental moni-
toring, and national security.

[0016] In an embodiment, a quantum sensor network is
arranged such that a quantum sensor at a given position
senses a field that depends on a known position and a set of
unknown parameters. These unknown parameters can be,
e.g., positions of charges producing an electric field. Accord-
ing to an embodiment, an entanglement-based protocol
measures an analytic function of the unknown parameters
while using the minimum amount of entanglement. The
analytic function can be, e.g., a value of the field at a point
without a sensor or the integral of the field over some region.
The entanglement-based protocol can measure properties of
spatially varying fields such as magnetic fields, electric
fields, gravitational fields, and temperature and can be used
in applications in chemistry, medicine, biology, materials
science, physics, geodesy, geophysics, and the like. Advan-
tageously, the entanglement-based protocol performs better
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than conventional protocols by providing smaller uncer-
tainty given a fixed time or providing a desired uncertainty
in a shorter time. The protocols described in U.S. patent
application Ser. No. 17/978,420, the disclosure of which is
incorporated by reference herein in their entirety, can be
used to reduce the measurement problem described in this
paragraph to a simpler problem where the unknown param-
eters are coupled directly to the sensors. We will therefore
focus on this simpler problem below.

[0017] Various types of optimally measuring field proper-
ties using sensor networks are described in U.S. patent
application Ser. Nos. 17/978,420, 16/677,922, and 15/650,
216, the disclosures of which are incorporated by reference
herein in their entirety. Entanglement-enhanced measure-
ment of multiple functions with a quantum sensor network
is described in U.S. patent application Ser. No. 18/136,257,
which is incorporated by reference herein in its entirety. The
protocol described herein for measuring a single linear
function q(01, 82, .. ., 8d) of unknown parameters {01, 62,
..., 0d} with a quantum sensor network while using the
minimum amount of entanglement provides the same results
as in these patent applications but using the minimum
amount of entanglement.

[0018] Measuring alinear function of d unknown real field
parameters 0, coupled to d sensors involves the Hamiltonian
here:

& . &)
H(s) = Z 5007 + Hels).
i=1

[0019] One wants to measure the function q(8)=00, where
0 is the d-dimensional vector containing the d field param-
eters 0,, and o is the d-dimensional vector containing real
coefficients specifying the linear function we are interested
in. U.S. patent application Ser. No. 15/650,216 describes
how to optimally measure q starting from the maximally
entangled state of the d sensors. With respect to amount of
entanglement, herein are described embodiments for mea-
suring a function with a quantum sensor network while
using the minimum amount of entanglement. Such embodi-
ments provide the same optimal measurement result and use
the minimum amount of entanglement.

[0020] In an embodiment, measuring a single linear func-
tion 01, 62, . . ., 6d) of unknown parameters {01, 62, . .
., 6d} with a quantum sensor network while using the
minimum amount of entanglement, also referred to herein as
the protocol, embeds single linear function q(01, 62, .. ., 6d)
into the relative phase of probe quantum state [¥> as

v} = %(I0>+ei"’/“"“°°I1>)I0--<0>-

After embedding single linear function q(61, 62, . . ., 6d)
into the relative phase of probe quantum state P>, single
linear function q(61, 62, . . ., 6d) can be measured using
robust phase estimation.

[0021] For embedding single linear function q(61, 62, . .
., 6d) into the relative phase of probe quantum state ‘P>,
define fundamental probe state Iy(T; @)} as
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Wz o) = L(IT)+@'"”|—T>) @

0y, 7,%-1 (10)

d
|T>—]§{|1>, =1

¢ | parameterizes individual states in the family, and
T,=1. One embeds 7T into a dxN (N=3"') matrix T with
matrix elements T, =, ¢ for some ordering of the T.
[0022] In an embodiment, with reference to FIG. 1, FIG.
2, and FIG. 3, a process for measuring a single linear
function q(01, 82, . . ., 8d) of unknown parameters {01, 62,
, 6d} with a quantum sensor network while using the
minimum amount of entanglement includes: providing a
plurality of d quantum sensors, wherein each quantum
sensor j is configured for measuring 6j, preparing the plu-
rality of quantum sensors in a probe quantum state > with
a minimum amount of entanglement, such that the amount
of entanglement is the smallest amount of entanglement that
gives the same optimal measurement of the linear function
q(0) as if the amount of entanglement was not restricted;
exposing the plurality of quantum sensors to the set of
unknown parameters; measuring the plurality of quantum
sensors; and calculating the single linear function q01, 62, .
, 8d) from the measurements of the plurality of quantum
sensors with robust phase estimation. The process of claim
1, wherein calculating the single linear function q(61, 62, .
., 8d) comprises embedding the single linear function q(61,
62, ..., 0d) into relative phase of probe quantum state I'¥>.
In an embodiment, the plurality of quantum sensors is
arranged in a network. In an embodiment, the plurality of
quantum sensors is qubits, interferometers, or field-quadra-
ture displacement sensors. In an embodiment, the set of
unknown parameters is a set of field amplitudes, a set of
temperatures, a set of pressures, a set of strains, a set of
forces, a set of magnetic fields, a set of electric fields, or a
set of gravitational fields.
[0023] In an embodiment, the process for measuring a
single linear function q(61, 62, , 8d) of unknown
parameters {01, 02, .. ., 6d} with a quantum sensor network
while using the minimum amount of entanglement includes:
normalizing a, for ae R “, such that |jafjco=1 (step 201);
determining a nonnegative solution p to Tp=0l (step 202);
restricting p to its N nonzero elements (step 203); restricting
T to its columns that correspond to N nonzero elements of
p (step 204); initializing a quantum state on d qubits to
10>®< (step 205); preparing first state Iy(t*"; 0)) (step
206); coherently switching to second state ly(t®¢,)) from
first state hy(t™”; 0)) (step 207); repeatedly using CNOT
and ¢~ gates for all states in T and remaining in a family
parameterized by @ for time p,t, forming final state hy(t™
™; qt))_(step 208); and optionally converting, using CNOT
and G* gates, final state Iy(t® ®; qt)) to 1/
N2(10>+€' 11>)10>Q7 (step 209). In an embodiment, after
restricting p (step 203) and restricting T (step 204), reorder-
ing elements of p and columns of T (step 210), wherein its
N 1 corresponding to the columns of T are families of states
used in the protocol In an embodiment, preparing first state
hy(tD; 0)) occurs in response to using CNOT and 6* gates.
In an embodiment, the process can include remaining in a
family of first state y(t'”; 0)) for first time p,t (step 211),
wherein first time p,t is an amount of time required by the
current step of the robust phase estimation protocol. The
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process of claim 6, further comprising preparing state 1\y(tT
W 6,)) from first state hy(t’; 0)) after first time p,t,

whereln 0,=Z;pitT; (1)9 (step 212). In an embodiment, coher-
ently sw1tch1ng fo second state y(t®; ¢,)) occurs in
response to using CNOT and G* gates. In an embodiment,
the process includes remaining in a family of second state
ly(t™; ¢,)) for second time p,t (step 213). The process of
claim 9, further comprising preparing state lWy(t*®; 0,+0,)
» from second state IW(t™®; 0,)) after second time p,t,
wherein ¢2=Ejp2ttj(2)9j (step 214). In an embodiment, deter-
mining the nonnegative solution p (step 202) includes mak-
ing the determination from experimental desiderata or an
optimization algorithm. In an embodiment, the process
includes final state Iy(t™"; qt)) is measured according to
robust phase estimation that extracts single linear function
q(01, 62, . . ., 6d) with optimal scaling up to a constant
factor. In an embodiment, the process includes skipping step
209 and instead measuring the phase from final state hy(t®;
qt)) us1ng single-qubit measurements; and computing a
parity in an absence of converting, using CNOT and G*
gates, final state Iy(t™; qt)} to LAZ(10>+e11>)0>Q7.

[0024] In an embodiment, embedding single linear func-
tion q(01, 62, .. ., 8d) includes: normalizing «, for oie | a
such that |loflee=1 (step 201); determining a nonnegative
solution p to Tp=a (step 202); restricting p to its N nonzero
elements (step 203); restricting T to its columns that corre-
spond to N nonzero elements of p (step 204); optionally
reordering elements of p and columns of T (step 210, after
step 203 and step 204), wherein N T corresponding to the
columns of T are families of states used in the protocol (in
view of step 203 and step 204); initializing a quantum state
on d qubits to 10>®7 (step 205); preparing first state hy(t"’;
0)) (step 206), wherein preparing first state hy(t; 0)
) occurs in response to using CNOT and 6* gates; remain-
ing in a family of first state ly(t""’; 0)) for first time p,t
(step 211), wherein t is the time required by the current step
of the robust phase estimation protocol; preparing state
hy(t™; 0,)) from first state y(t'P; 0)) after first time p,t,
wherein ¢,=Xp,t1"8; (step 212); coherently switching to
second state Iw(T({) ¢,)) from first state hy(t"; 0)) (step
207), wherein coherently sw1tch1ng to second state (T
99 ,)) occurs in response to using CNOT and c* gates;
remaining in a family of second state Iy(t®; 99 )) for
second time p,t (step 213); preparing state IW(t'?; 0 ,+0,)
) from second state IW(t™®; 0,)) after second time p,t,
wherein 0,=X,p,t7>8, (step 214); repeatedly using CNOT
and G* gates for all states in the restricted T and remaining
in a family parameterized by T for time p,t, forming final
state Iy(t®™; qt)) (step 208); and converting, using CNOT
and 6* gates, final state hy(t™; qt)) to 1/
N2(10>+e411>)10>R4. (step 209).

[0025] In an embodiment, determining the nonnegative
solution p (step 202) includes making the determination
from experimental desiderata or optimization algorithm.
With respect to experimental desiderata and optimization
mentioned in step 202, Theorem 1 described below provides
conditions on & under which the optimal measurement can
be determined with k-partite entanglement, wherein k can be
smaller than d. Once the minimum possible k is computed
via Theorem 1, one keeps in matrix T only states that have
at most k-partite entanglement. One then solves Tp=a for p.

[0026] Final state hy(t™; qt)) can be measured according
to the current stage of the robust phase estimation protocol,
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which extracts single linear function q(01, 62, .. ., 6d) with
optimal scaling up to a constant factor.

[0027] In an embodiment, the process can include skip-
ping step 209 and instead measuring the phase from final
state [(t®; qt)) using single-qubit measurements and
computing an appropriate parity as described in U.S. patent
application Ser. No. 15/650,216, which is incorporated by
reference herein in its entirety.

[0028] In addition to the size of the most-entangled state,
one can minimize the average entanglement. The average
entanglement can be given by weighting the size of each
entangled state by the proportion of time that the state is
used in the protocol. A proof that there exists a class of
protocols that minimize this average entanglement is pro-
vided herein. These protocols are non-echoed, wherein the
contribution to the relative phase proportional to ei is
accumulated with the correct sign corresponding to sgn(c,)
such that one need not echo away sensitivity. To obtain such
a solution, one can further restrict T to include only columns
such that sgn(T,)=sgn(c,) for all ij and then solve the
corresponding system of linear equations.

[0029] It is contemplated that resources besides entangle-
ment can be included in a cost function &(p), which selects
certain solutions to the system of linear equations T®p—a.
In an embodiment, if certain pairs of quantum sensors are
easier to entangle than other quantum sensors, e.g., because
of their relative spatial location in quantum sensor network
200, such is encoded into &(p).

[0030] Other optimizations take into consideration order-
ing of states used in the protocol. In an embodiment, because
the protocol involves coherently applying CNOT gates to
move between different families of entangled states, and
these gates may be error-prone or costly resources, another
protocol minimizes use of these gates, which is described
below along with tradeoffs between minimizing entangle-
ment and CNOT gates. In an embodiment, a greedy algo-
rithm yields a favorable @(d) CNOT cost.

[0031] Without wishing to be bound by theory, it is
believed that the quantum Cramér-Rao bound (QCRB) is a
fundamental limit on the accuracy of unbiased parameter
estimation in quantum systems. QCRB states that the vari-
ance of any unbiased estimator of a parameter is bounded
below by the inverse of the quantum Fisher information
(QFI). The QFI is a measure of how much information a
quantum state contains about a parameter. QFI is the vari-
ance of the symmetric logarithmic derivative (SLD) of the
state with respect to the parameter. SLD is an operator that
measures how the state changes as the parameter is varied.
QCRB can be used to set a lower bound on the uncertainty
in any unbiased estimator of a parameter. QCRB has impli-
cations for quantum metrology, which is the field of study
that deals with the use of quantum systems to make mea-
surements. QCRB shows that quantum systems can be used
to achieve higher precision measurements than classical
systems because quantum states can contain more informa-
tion about a parameter than classical states. It should be
appreciated that QCRB has been used to develop new
quantum sensing protocols, including protocols for measur-
ing the phase of a light beam with unprecedented precision.
QCRB is a powerful tool for understanding the limits of
quantum parameter estimation ad for developing new quan-
tum sensing protocols.

[0032] In an embodiment, quantum sensor network 200
includes: a plurality of quantum sensors, each quantum
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sensor j is configured for measuring 6] out of a set of
unknown parameters {61, 62, . . . , 6d}, such that the
plurality of quantum sensors is configured to be in a probe
quantum state |¥> with a minimum amount of entangle-
ment, such that the amount of entanglement is the smallest
amount of entanglement that gives the same optimal mea-
surement of the linear function q(01, 62, . . ., 6d) as if the
amount of entanglement was not restricted; a network topol-
ogy that connects the plurality of quantum sensors; and a
controller that is configured to: prepare the plurality of
quantum sensors in the probe quantum state '¥>; expose the
plurality of quantum sensors to the set of unknown param-
eters; measure the plurality of quantum sensors; and use the
measurements of the plurality of quantum sensors to calcu-
late the single linear function q(61, 62, . . ., 6d) of the set
of unknown parameters. In an embodiment, the plurality of
quantum sensors is arranged in a linear array. In an embodi-
ment, the plurality of quantum sensors is arranged in a
two-dimensional array. In an embodiment, the plurality of
quantum sensors is arranged in a three-dimensional array. In
an embodiment, the plurality of quantum sensors is qubits,
interferometers, or field-quadrature displacement sensors. In
an embodiment, the set of unknown parameters is a set of
field amplitudes, a set of temperatures, a set of pressures, a
set of strains, a set of forces, a set of magnetic fields, a set
of electric fields, or a set of gravitational fields.

[0033] Quantum sensor network 200 can include a plural-
ity of quantum sensors 215 that can include a two-level
quantum system such as provided by qubits, a three-level
quantum system such as provided by qutrits, a four-level
quantum system, . . . , an m-level quantum system and the
like, wherein m is an integer. It is contemplated that energy
differences are measured between two levels so certain
embodiments are described in the context of qubits. Exem-
plary quantum sensors 215 include a nuclear spin, an elec-
tronic spin, any two chosen levels of a neutral atom, an ion,
a molecule, a solid-state defect, a superconducting qubit,
and the like. In an embodiment, quantum sensors 215
include a neutral atom, an ion, a molecule, a solid-state
defect (such as color center in diamond), a superconducting
circuit, and the like, or a combination thereof. The energy
differences between the two levels of each qubit quantum
sensor can depend linearly on an observable of interest such
as an electric field, a magnetic field, a gravitational field,
temperature, strain, and the like. These observables of
interest can be produced by an analyte that can include a
planet, an organism (e.g., a human), an organ (e.g., a brain
or a heart), a tissue (e.g., cardiac tissue), a laser, a molecule
(e.g., including macromolecule such as a protein or a nucleic
acid), an atom, and the like. FIG. 4 shows an embodiment
wherein quantum sensor network 200 includes quantum
sensors 215 in communication with controller 216, wherein
quantum sensors 215 are disposed in a magnetosphere of a
planet so that quantum sensor network 200 determines a
spatial distribution of magnetic field strength and direction
in some reference frame.

[0034] In an embodiment, quantum sensor 215 is an
interferometer including a path that goes through the
medium of interest and picks up a phase and a reference path
that doesn’t pick up a phase. The medium of interest can
include a tissue, a cell, or any other medium that transmits
light. In the case of field-quadrature displacement sensors,
quantum sensors 215 can include a bosonic mode that
undergoes a field-quadrature displacement and a homodyne
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detector used to measure this field quadrature. The bosonic
mode can describe mechanical motion where the parameters
coupled to mode can be proportional to a force. The bosonic
mode can describe photons where the parameters coupled to
the mode can be proportional to a magnetic field via Fara-
day-rotation after passing through the medium. The bosonic
mode can describe low-energy excitations of a large number
of two-level atoms where the parameters coupled to the
mode can be proportional to an applied electric or magnetic
field.

[0035] In an embodiment, a process for making quantum
sensor network 200 that measures single linear function
q(01, 02, .. ., 8d) includes: providing a plurality of quantum
sensors 215; arranging the plurality of quantum sensors 215
in a network topology, such that each quantum sensor j is
configured for measuring 6j out of a set of unknown
parameters 6={61, 82, . . ., 8d}; connecting the plurality of
quantum sensors to a controller; and preparing, by the
controller, the plurality of quantum sensors in a probe
quantum state |W> with a minimum amount of entangle-
ment, such that the amount of entanglement is the smallest
amount of entanglement that gives the same optimal mea-
surement of the linear function q(6) as if the amount of
entanglement was not restricted. In an embodiment, the
plurality of quantum sensors is arranged in a linear array. In
an embodiment, the plurality of quantum sensors is arranged
in a two-dimensional array. In an embodiment, the plurality
of quantum sensors is arranged in a three-dimensional array.
In an embodiment, the plurality of quantum sensors is
qubits, interferometers, or field-quadrature displacement
sensors. In an embodiment, the network topology is a star
topology, a ring topology, or a mesh topology. In an embodi-
ment, the controller is a classical computer.

[0036] It is contemplated that quantum sensor network
200 and measuring a single linear function q(61, 62, . .., 6d)
of unknown parameters {61, 62, . . . , 6d} with a quantum
sensor network while using the minimum amount of
entanglement can include the properties, functionality, hard-
ware, and process steps described herein and embodied in
any of the following non-exhaustive list:

[0037] aprocess (e.g., a computer-implemented method
including various steps; or a method carried out by a
computer including various steps);

[0038] an apparatus, device, or system (e.g., a data
processing apparatus, device, or system including
means for carrying out such various steps of the pro-
cess; a data processing apparatus, device, or system
including means or carrying out various steps; a data
processing apparatus, device, or system including a
processor adapted to or configured to perform such
various steps of the process);

[0039] a computer program product (e.g., a computer
program product including instructions which, when
the program is executed by a computer, cause the
computer to carry out such various steps of the process;
a computer program product including instructions
which, when the program is executed by a computer,
cause the computer to carry out various steps);

[0040] computer-readable storage medium or data car-
rier (e.g., a computer-readable storage medium includ-
ing instructions which, when executed by a computer,
cause the computer to carry out such various steps of
the process; a computer-readable storage medium
including instructions which, when executed by a com-
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puter, cause the computer to carry out various steps; a
computer-readable data carrier having stored thereon
the computer program product; a data carrier signal
carrying the computer program product);

[0041] a computer program product including compris-
ing instructions which, when the program is executed
by a first computer, cause the first computer to encode
data by performing certain steps and to transmit the
encoded data to a second computer; or

[0042] a computer program product including instruc-
tions which, when the program is executed by a second
computer, cause the second computer to receive
encoded data from a first computer and decode the
received data by performing certain steps.

[0043] Entanglement is a hallmark of quantum theory and
plays an essential role in certain quantum technologies. In
single-parameter metrology one seeks to determine an
unknown phase 6 that is independently and identically
coupled to d sensors via a linear Hamiltonian H. Given a
probe state p, evolution under H encodes 6 into p where it
can then be measured. If the sensors are classically corre-
lated the ultimate attainable uncertainty is the standard
quantum limit A6~1//d, which can be surpassed only if the
states are prepared in an entangled state. If O(d)-partite
entanglement is used, the Heisenberg limit A6~1/d can be
achieved. Entanglement for optimal measurement has been
explored in sequential measurement schemes, wherein one
applies the encoding unitary multiple times in the presence
of' decoherence when the coupling Hamiltonian is non-linear
or in reference to resource theories for metrology.

[0044] Consider the amount of entanglement required to
saturate the quantum Cramér-Rao bound, which provides a
lower bound of the variance of measuring an unknown
quantity, in the prototypical multiparameter setting of a
quantum sensor network, where d independent, unknown
parameters 6 (boldface denotes vectors) are each coupled to
a unique quantum sensor. Specifically, consider optimally
measuring a single linear function q(8), which is an element
of optimal protocols for more general quantum sensor
network problems. It should be appreciated that the case of
measuring one or multiple analytic functions and the case
where the parameters 6 are not independent reduce asymp-
totically to the linear problem considered here. Embodi-
ments herein include measuring a single linear function of
independent parameters.

[0045] Given the similarity of measuring a single linear
function to the single-parameter case and the fact that such
functions of local parameters are global properties of the
system, provided all the local parameters non-trivially
appear in g, one might intuit that d-partite entanglement is
necessary. This intuition is reinforced by the fact that all
existing optimal protocols for this problem do, in fact, make
use of d-partite entanglement. However, such intuition is
faulty and only holds in the case where q is approximately
an average of the unknown parameters. In particular, a
family of protocols can be used that saturate necessary and
sufficient algebraic conditions to achieve optimal perfor-
mance in this setting. Below is described via proof necessary
and sufficient conditions on q for the existence of optimal
protocols using at most (k<d)-partite entanglement. The
more uniformly distributed q is amongst the unknown
parameters, the more entanglement is required. Other
resources of interest are considered, such as the number of
entangling gates needed to perform these protocols and their
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optimization via the protocol. Note that certain probabilistic
protocols fail to achieve the Heisenberg limit except for a
narrow class of functions.

Problem Setup.

[0046] With regard to measuring a linear function of
unknown parameters in a quantum sensor network, consider
a network of d qubit quantum sensors coupled to d inde-
pendent, unknown parameters O R ¢ via a Hamiltonian of
the form

. 41 . (69)
) = ) 5607 + Ao,
i=1

where 8;“ = are the Pauli operators acting on qubit i and I (s)
for se[0,t] is any choice of time-dependent, 8-independent
control Hamiltonian, potentially including coupling to an
arbitrary number of ancilla. That is, A (s) accounts for any
possible parameter-independent contributions to the Hamil-
tonian, including those acting on any extended Hilbert space
with a (finite) dimension larger than that of the network of
d qubit sensors directly coupled to the unknown parameters.
Encode the parameters 0 into a quantum state p via the
unitary evolution generated by a Hamiltonian of this form
for a time t. Given some choices of initial probe state,
control A (s), final measurement, and classical post-process-
ing, we seek to construct an estimator for a linear combi-
nation q(8)=0-8 of the unknown parameters, where o€ | ¢
is a set of known coefficients, and we assume without loss
of generality that |ofjeo=lct;l. U.S. Pat. No. 10,007,885 is
incorporated by reference herein in its entirety and describes
a fundamental limit for the mean square error M of an
estimator for q is

lladlZ, @

M—[z’

wherein t is the total evolution time.

[0047] Eg.(2)is derived via the single-parameter quantum
Cramér-Rao bound. This is surprising because, while one
seeks to measure only a single quantity q(0), d parameters
control the evolution under Eq. (1), so it does not a priori
satisfy conditions for use of the single-parameter quantum
Cramér-Rao bound. However, one can justify its validity for
our system such that one considers an infinite set of imagi-
nary scenarios, wherein each corresponds to a choice of
artificially fixing d—1 degrees of freedom and leaving only
q(0) free to vary. Under any such choice, our final quantum
state depends on a single parameter g, and we can apply the
single-parameter quantum Cramér-Rao bound. While this
involves giving oneself information that one does not have,
additional information can only reduce M , and, therefore,
any such choice provides a lower bound on j; when one
does not have such information. To obtain the tightest
possible bound there must be some choice of artificially
fixing d—1 degrees of freedom that gives no (useful) infor-
mation about q(0). Algebraic conditions are derived that
characterize such choices.

[0048] One applies the single-parameter quantum Cramér-
Rao bound
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wherein F is the quantum Fisher information, gq=aH/aq
(the partial derivative fixes the other d—1 degrees of free-
dom), and the seminorm [|g,||, is the difference of the largest
and smallest eigenvalues of g . A choice of fixing extra
degrees of freedom, yielding the tightest bound via Eq. (3),
gives ng”f:l/ﬂ(xﬂooz, yielding Eq. (2).

Conditions for Saturable Bounds.

[0049] The above description justifies applying the single-
parameter bound in the multiparameter scenario. The quan-
tum Fisher information matrix F (0) provides an informa-
tion-theoretic solution for constructing optimal protocols.
When calculating F (0), restrict the construction to pure
probe states, as the convexity of the quantum Fisher infor-
mation matrix implies mixed states fail to produce optimal
protocols. For pure probe states and unitary evolution for
time t under the Hamiltonian in Eq. (1), it has matrix
elements

F); =4 [%({7%(:), H,0}) - (H.0) (73{}(,)>], @

where {°, *} denotes the anti-commutator and

~ N N 5
i = - f i (12,0, ©
0

with gi=aH/aei=€s;, and U the time-ordered exponential of
A. The expectation values in Eq. (4) are taken with respect
to the initial probe state.

[0050] Choosing d—1 degrees of freedom for using the
single-parameter bound corresponds to a basis transforma-
tion 8—q, wherein take q,=q to be a quantity of interest, and
the other arbitrary q;., are extra degrees of freedom. This
basis transformation has a corresponding Jacobian J such
that F (q)=]7 F (0)J. To obtain the bound in Eq. (2) and have
no information about q(0) from the extra degrees of freedom
g;>1- F (q) has the following properties:

2 6)
Fpu= pex

F@u=F@n=0izl) @

Without loss of generality, lo,1=||ojec. Via the inverse basis
transformation q—8, Eqs. (6)-(7) are satisfied if and only if

FOy, =FO), = Z—fzz, ®

T

where assume that o, 1>10,1Vj>1. Theorem 1 is unchanged
by this assumption. The explicit derivation of Eq. (8), along
with the generalization of results beyond this assumption, is
described below.
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[0051] The problem of function estimation is mathemati-
cally equivalent to nuisance parameters in classical and
quantum estimation theory. However, embodiments of the
protocols and especially their entanglement features are
new.

A Family of Optimal Protocols.

[0052] In a family of protocols that achieve Eq. (8), a

articular protocol includes preparing a pure initial state
pPo=I"F(0)><W¥(0)!, evolving po under the unitary generated
by H(s) for time t, performing some positive operator-valued
measurement, and computing an estimator for q from the
measurement outcomes. Given p0 and H_(s), F(6) can be
computed via Eq. (4).

[0053] Protocols use v(s) to coherently switch between
probe states with different sensitivities to the unknown
parameters 0 and accumulate an overall sensitivity to the
unknown function of interest q. In particular, consider a set
7 of N=3%"! one-parameter families of cat-like states:

Wz 00 = L(IT) +e¥| -1 @

where each family of states is labeled by a vector Te {0,411}
such that

0y, 7;% -1 (10)

d
[ty = g{ﬂ), =1

and @e R parameterizes individual states in the family. Here
T,=1, as any optimal protocol is sensitive to this parameter.
Each probe state in Eqs. (9) and (10) is a superposition of
exactly two states, referred to as branches. These states use
no ancilla.

[0054] Protocols include starting in a state I'¥(t;0)> and
using the control Hamiltonian to coherently switch between
families of probe states such that the relative phase between
the branches is preserved (that is, H_(s) changes T, but not
). This can be done using finitely many CNOT and G~ gates.
Stay in the family of states y(t"; ®©)) for time p,t, where
p.€10,1] such that ¥ p,=1. Here n indexes some enumera-
tion of the families of states in T. There are three possibilities
for the relative phase that qubit j induces between the two
branches due to the time spent in family n. If T /=0, then no
relative phase is accrued because qubit j is dlsentangled It
7,/=1, the relative phase imprinted by GZ/Z is p,0,t, while
if T, (”)——1 the relative phase is —p,0;t. Thus the j- th qubit
always induces a relative phase of p, ‘C(”)Gt Accounting for
all qubits, being in family n for time p,t 1nduces a relative
phase

= vant‘r(j")ﬁj. an
¥

[0055] Given some time-dependent probe IW(t)> which is
in the family ly(t™; @)) for time p,t, the total phase ¢
accumulated between the branches is
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where implicitly defined p=(p,, . . . ,px)”", and dXN matrix T
with matrix elements T,,=-,,"”. If p is chosen such that
Tpecax this total phase is «<qt. More formally, choosing p
such that

i 13

achieves the saturability condition in Eq. (8), yielding a
provably optimal protocol.

[0056] Any nonnegative solution (in the sense that p,20
Vn) to Eq. (13) specifies a valid set of states and evolution
times satisfying Eq. (8). Because the system in Eq. (13) is
highly under constrained, such protocols do not necessarily
use all 3*~' families of states in T .

[0057] From asolution to Eq. (13), provide a measurement
scheme to extract information about q that includes: apply-
ing a sequence of 6* and CNOT gates to the final state of a
protocol to transform it into 1/AZ(10>+e "' 115)(10 . . . 0>).
Then, perform single qubit phase estimation to measure q.

[0058] Such phase estimation is not as simple as it might
appear. Because one is interested in how the error scales in
the t—oo limit, a naive approach loses track of which 2w
interval the phase is in. One could assume that this infor-
mation is known a priori, but this is unjustified as the
knowledge is of precision ~lo, I/t, i.e., it is already within the
Heisenberg limit. More realistically, starting with any t-in-
dependent prior knowledge of the unknown phase, use the
phase estimation protocols to saturate Eq. (2) up to a modest
constant factor.

Minimum Entanglement Solutions.

[0059] Consider solutions from the family of protocols
that involve the minimum amount of entanglement.
Described is a necessary and sufficient condition on a for
existence of a protocol that uses at most k-partite entangle-
ment. The protocols above use a particular choice of controls
that does not include ancilla qubits, and Theorem 1 applies
to any protocol making use of a Hamiltonian described via
Eq. (1).

[0060] Theorem 1. Let q(6)=0-0. Without loss of gener-
ality, let |ollco=lax, |. Let ke Z * so that

lledly 14)

k-1< =<k
lledl.,

An optimal protocol to estimate q(0), where the parameters
0 are encoded into the probe state via unitary evolution
under the Hamiltonian in Eq. (1) requires at least, but no
more than, k-partite entanglement.

[0061] Theorem 1 justifies d-partite entanglement is not
necessary unless lol, is large enough, i.e., in the case of
measuring an average (o,;=1/d-Vi). Using k-partite
entangled states from the set of cat-like states considered
above, there exists an optimal protocol, subject to the upper
bound of Eq. (14). Subject to the conditions in the theorem
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statement, there exists no optimal protocol using at most
(k—1)-partite entanglement, proving the lower bound of Eq.
(14).

[0062] Part 1. Define T to be the submatrix of T with all
columns n such that X IT, .I>k are eliminated, which
enforces that any protocol derived from T uses only states
that are at most k-partite entangled. Define System A(k) as

70 50 = go1, 15
p® =0. (16)

Let o'=at/ot; and define System B(k) as

(r®Yy >0, an

<, y> <0. (18)

By the Farkas-Minkowski lemma, System A(k) has a solu-
tion if and only if System B(k) does not, so it is sufficient to
show that System B(k) does not have a solution if
Z;.110/1<k—1, where we used that o,'=1. This can be shown
by contradiction.

[0063] Part 2. The probe state must always be maximally
sensitive to the first sensor qubit, so F (6),; only accumu-
lates in magnitude when qubit j is entangled with the first
qubit (Eq. (4) is similar to a connected correlator). Using
this, satisfying the condition in Eq. (8) requires |lo|,/
lod|eo>k—1.

[0064] Theorem 1 provides conditions for the existence of
solutions to Eq. (13) with limited entanglement, but it is not
constructive. To obtain an explicit protocol, solve the system
of linear equations T“p=a.. One might wish to minimize the
size of the most-entangled state and the average entangle-
ment used (given by weighting the size of each entangled
state by the proportion of time that the state is used in the
protocol). Below is shown that there exists a class of
protocols that minimizes this average entanglement. These
protocols are non-echoed in the sense that the contribution
to the relative phase proportional to 6, is always accumulated
with the correct sign corresponding to sgn(q,) such that one
need not echo away any sensitivity. To obtain such a
solution, one can further restrict T to only include columns
such that sgn(T;)=sgn(0,) for all i,j and then solve the
corresponding system of linear equations. Resources besides
entanglement may be of interest and can included in a cost
function €(p), which selects certain solutions to the system
of linear equations T®p=a.. For example, if certain pairs of
sensors are easier to entangle than others, due, for instance,
to their relative spatial location in the network, that could be
encoded into £(p). Some optimizations can include ordering
of the states used in the protocols. For example, because
certain protocols involve coherently applying CNOT gates
to move between different families of entangled states, and
these gates may be error-prone or costly resources, one can
find protocols that minimize the usage of these gates, which
is described below along with potential tradeoffs between
minimizing entanglement and CNOT gates.
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Time-Independent Protocols.

[0065] Another approach to constructing optimal proto-
cols is to use so-called probabilistic protocols. These pro-
tocols eschew optimal control and instead exploit the con-
vexity of the quantum Fisher information to pick states from
the families 7 with frequencies specified by a solution to
Eq. (13) in order to generate a Fisher information matrix
satisfying Eq. (8). These protocols have the advantage of
requiring no control but can suffer worse scaling with d than
the above protocol for generic functions when the available
resources are comparable. Consider a probabilistic protocol
that makes use of N states from distinct families in 7 . Each
of these states is sensitive to a different function g; such that
q=X,p,q;- Each q; is encoded in the relative phase between
the two branches of the corresponding state. Learning each
q; is allotted t; time, where Lt=t. In this scenario, it is
impossible to achieve the saturability condition of Eq. (8) as
for a probabilistic protocol F (0),,<t*/N°. If we only care
about saturability up to a constant then these time-indepen-
dent protocols still achieve optimal scaling with d when
N=0O(1). However, for general functions N scales nontrivi-
ally with d and, consequently, probabilistic protocols fail to
achieve optimal scaling.

[0066] In view of the foregoing, it should be appreciated
that maximally entangled states are not necessary for the
optimal measurement of a linear function with a quantum
sensor network unless the function is sufficiently uniformly
supported on the unknown parameters. This result, com-
bined with the general framework of optimizing protocols
subject to practical constraints, can be used in quantum
sensor networks, wherein creating large-scale entangled
states may be challenging. These results are useful in more
general settings, such as measurement of analytic functions,
as these measurements reduce to certain embodiments
herein.

[0067] With regard to being constrained to k-partite
entanglement with k not sufficient to achieve optimality (for
any protocol) via Theorem 1, a protocol for such a scenario
includes: letting R be a partition of quantum sensors into
independent sets and do not allow entanglement between
sets and allow, at most, k-partite entanglement within each
re R. Let a denote a restricted to r. Pick the optimal R such
that the condition of Theorem 1 is satisfied for all r; that is,
ensure that within each independent set is obtained the
optimal variance for the linear function restricted to that set.
The result is a variance

1 . (19)
M= 3 .

reR

The optimal R is a partition of the sensors into contiguous
sets (assuming for simplicity that lo/2lol for i<j) such that
for all reR, X, loyl/max,_ o<k, satisfying Theorem 1.
Conjecture that this protocol is optimal, and it is so if
partitioning the problem into independent sets is optimal.
However, one could imagine protocols that use different
partitions for some fraction of the time. Intuitively, this
should not improve the performance.

[0068] Finally, no optimal time-independent protocols for
arbitrary linear functions exist in the literature.
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Summary of Phase Embedding Protocol.

[0069] Protocols include embedding the function q=0.-0
into the relative phase of a probe quantum state ['¥'>:

Ilﬁ>—>L ([0y + Tl 1)y [0 ... 0. o

NG)

The phase embedding algorithm is a subprotocol of the full
protocol for function estimation, which involves embedding
g into many copies of a quantum state to perform the robust
phase estimation.

[0070] Probe states from Egs. (9)-(10) are repeated here:

lr(r; @) = —= (17 + ¥ | =) 52
\/_ :
0y, 11 (83)
‘%’{ux ==l

¢e |k parameterizes individual states in the family, and
t,=1. The form of these states is rigorously justified by
Lemma S1 in Sec. S2. We embed the T into a dxN (N=3*")
matrix T with matrix elements T, =+, for some ordering
of the T.

[0071] The protocol proceeds as follows: given oe R ¢,
normalize it such that ||afleo=1; using any relevant experi-
mental desiderata and optimization algorithm, find a non-
negative solution p to Tp=o.; restrict p to its N nonzero
elements, and restrict T to the corresponding columns, and
if desired, reorder the elements of p and the columns of T,
wherein the N © Corresponding to the columns of T are the
families of states used in the protocol initialize a quantum
state on d qubits to 10>®%; using CNOT and c* gates,
prepare hy(t"; 0)), the first state of the protocol, and
remain in this family for time p,t, leading to state ly(t™"’; ¢,)
), wherein ¢, =X,p,T; (1)9 and here t is the time required by
the current step of the robust phase estimation protocol;
using CNOT and c* gates, Coherently switch to ly(t?; ,)
y from hy(t"; ¢,)} , and remain in this family for time p,t,

leading to state I\V(‘C(z); 0,+0,)) , with ({)zEjpzttj(z)Oj; repeat
this process for all states in the restricted T, staying in the
family parameterized by T for time p,t, leading to a final
state 1y(t™; qt)) ; and optionally using CNOT and c* gates,
convert this final state to 1A2(10>+e411>)0>R4.

[0072] This final state can then be measured according to
the current stage of the robust phase estimation protocol,
which eventually allows one to extract q with optimal
scaling up to a constant factor.

Lemma Regarding Optimal Probe States.

[0073] Here is proved a lemma restricting the structure of
the probe state for an optimal protocol.

[0074] Lemma S1. Any optimal protocol, independent of

the choice of control, requires that < 7?[1 (ty>=0, where 7?[1 t)
is the time-evolved generator of the first parameter and the
expectation value is taken with respect to the initial probe
state. Further the probe state must be of the form
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for all times se [0,t], where 0, |©y>, |@,> are arbitrary states
on the d—1 remaining sensor qubits plus, perhaps, the
arbitrary number of ancilla can be s-dependent.

[0075] Proof. Consider the expression for the matrix ele-
ments of the quantum Fisher information matrix at time t

(Eq. (4)):

F@) _4[ {#o. %, (z)}>—<¢{,(z)><¢{j(z)>], 59

[0076] where the expectation values are taken with respect
to the initial probe state 'P(0)>. Using the integral form of

H; (1) (Eq. (5) of the main text),

[ f ds f s’ (y(O|UT ()3, 6

UUT )3, U o))]

F (@), =4Var "Hl (t)

t 2 S7)
- [ fo ds (pO|U* 32, U(s>|w(0>>]
C o (S8)
=4j(; dsj(; ds” Covigop [, (5), (5],
wherein
& (@ :=UTg UE), (89

and §,=ocfl/o<B, is the initial generator with respect to the
first parameter. Once again, the covariance is with respect to
the initial probe state [W¥(0)>. The upper bound is

0 afas ((as [V v G10)
FOub= fo s fo < Va0 10] V¥ oy 116

t 2
:4[](; ds 'Varh//(O»[gl(S)]:I
. 2 S12
<[ [[anan) G12
0

=g,12 (513)

=7, (814),

(S11)

wherein the first inequality bounds the covariance as the
square root of the product of the variances; the second
inequality bounds the standard deviation of an operator by
half the seminorm, and the final equality uses the fact that
gl—ol has seminorm 1.

[0077] Via Eq. (8), an optimal protocol has F ,,(8)()=t>.
Therefore, an optimal protocol must saturate the inequalities
in Eq. (S10) and Eq. (S12). Eq. (S12) is saturated when
Var[§,(s)]=lg,(s)|,=l1g;ll; for all s. This holds if and only if
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where IA,,;.> and I\, > are the eigenstates corresponding
to the minimum and maximum eigenvalues of §,(s) for all
s€[0,t] and ¢ is an arbitrary phase. Given this condition,
&,(s) and g,(s") act identically on the state I'W(0)> and
consequently are fully correlated when one considers the
covariance of these operators with respect to the state. The
Cauchy-Schwarz inequality in Eq. (S10) is immediately
saturated as well.

[0078] Under this condition on the probe state, any opera-
tor in the one-parameter family §,(s)=U%(s) g,U(s) acts
identically on I"W(0)>. The unitary does not change the
eigenvalues, and the eigenstates are shared by all §,(s).
Thus, one can substitute any operator in the one-parameter
family §,(s)=U"(s) &,U(s) for another. For such an optimal
probe state,

t S15
(H0) = - f SO, WO = K2,) = 0 G19)
0

because gluc}]z. Consequently, by replacing g,by §,(s)
when acting on the probe state,

W &y () =0 (¥ ). (516)

The statement of the lemma follows.

[0079] Lemma S1 holds for any optimal protocol, includ-
ing those using cat-like states. It also justifies the choice of
probe states and why one sets t,=1 for all T, i.e., to maintain
an equal superposition between 10> and 11> on the first
qubit.

Proof of the Optimality of Cat-State Protocols.

[0080] Optimality of the time-dependent protocols is
proven. In particular, the Fisher information matrix condi-
tion for saturability in Eq. (8) is satisfied by solutions to Eq.
(13) when protocols that use ¢, and CNOT controls to
switch between families of cat-like states in 7 . That is, the
following mapping occurs between saturability conditions:

o o (817)
Ip=—=>F@), = —1
PE O P

where one assumes that 0, 1=laleo>la,l for all j. Text below
generalizes beyond the assumption of a single maximum
magnitude «; at the cost of some notational inconvenience.
[0081] Using Lemma S1, for any optimal protocol, i.e., in
addition to cat-like states,

76, =2{{F0, #,}) S18)

4 g S19
=2 f ds f ds' ($(O] {&,(, UT6"2, U} | w(®) G
0 0
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-continued

e $20

=2f0dsf0 ds' ((O)| {81, UT ()8, U} | (0)) 20

¢ $21

=2fds’ O {g,, UTsH2,UH}Hw©@) G20
0

¢ S22

=2 f ds' (WO {2, 6, UTHg, U [4@) 522
0

$23

= a3 ) 52

(S24).

t

S ¢

ds’ (W] 3565 wis'y ).

The third and fifth equalities are from the argument in the
proof of Lemma S1 that one may replace §,(s) with g, (and
vice versa) when acting on optimal probe states. The pen-
ultimate equality is just a consequence of the commutativity
of the initial generators.

[0082] Apply these general results to specific protocols.
Saturating the initial Fisher information conditions in Eq.
(S17) implies that one must show

t S25
f ds' (W] 6% s = 29
0

Let the gates in our protocols be labeled as G,where Giis
elther a CNOT or 6* gate. The gate G is apphed at a time

*. Then, for se (t,", t,,, "), write the time-dependent state
as

i (826)
) = ;¢ sﬂ (%

where ly(t™; 0)) is the initial state of the protocol, @ is the
relative phase between the two branches of the state that has
accumulated up to time s, and, therefore, I\V(T(k); ©)) is the
state produced after applying the first k gates. Because the
protocols explicitly use only 6, and CNOT gates to move
between families in 7 , Iy(t; (p)) =(10)3,™) +™11) Iy, ©
Y )AZ, and

(827

f ds ()| 705 i) = D77 tha =17
0

time one is in the probe family ly(t®; @)}, which in the
protocols is pt. Thus, to satisfy the Fisher information
conditions, one needs

»_ % _% (528)
prrj = =)=

This proves optimality of our time-dependent protocols that
satisfy Tp=o/at,.
Two Qubit Embodiment.

[0083] As derived above, any nonnegative solution (in the
sense that p,=0 Vn) to the system of equations Tp=o/ct, (Eq.
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(13)) specifies a valid set of states and evolution times
satisfying the saturability condition in Eq. (8). Because the
system of equations is under constrained, such protocols do
not necessarily use all 3%~ families of states in 7 . Here is
explicitly consider two qubits. The available states are
described by

T:(Tu) @ 1(3)) :(1 1 1)_ (529)

1 -10

By Eq. (13), an optimal protocol must satisfy

pntprt+py=1 (330)
@ S31

p-p=— 3D
[24]

[0084] Solving in terms of p, leads to the l-parameter
family of solutions

(2%} 1 (2%} 9
=p-—,pp=1l+—-— ,
P=pnm @ b3 o 74!

and p,e[0,1] for all n. Without loss of generality, assume
o;=1. Then non-negativity is achieved by

1+, (832)
[az, 2 ] ;=0

[ 1+ay
o2

ne

] a; <0

There are many solutions satisfying these constraints. There
is a two-state protocol that does not require using exclu-
sively maximally entangled states: for a,>0 (0,<0), let
p1=0, (0) so that p,=0 (—a,) and ps=1 o, (1+01,).

Robust Phase Estimation.

[0085] Robust phase estimation protocols extract the
quantity of interest q from the state

1/42(jo >+ 1 5o ... 0>), (833)

which is the final state obtained from the family of optimal
protocols.

[0086] When the protocols are referred to as optimal, the
protocols achieve the conditions on the quantum Fisher
information matrix that allow the maximum possible quan-
tum Fisher information with respect to the parameter q to be
obtained. However, to completely specify the procedure by
which one obtains the quantity g, an explicit phase estima-
tion protocol is specified. Such a task involves that for large
times or small o, =[|allee, it is unclear what 2x interval the
relative phase between the branches of Eq. (S33) is in. The
phase estimation protocols demonstrate how to optimize
resources to deal with this issue, while still saturating the
single-shot bound in Eq. (2) up to a small d- and t-indepen-
dent constant. In particular, such protocols reach a mean
square error of
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Allall, (834)

>

2

for some small (explicitly known) constant c. Prior work
proves that this constant factor ¢? in Eq. (2) can be reduced
to, at best, ®°.

[0087] Putting the final state into the form of Eq. (S33)
reduces this problem to the single qubit, multipass version of
the problem.

[0088] Consider dividing the total time t, which is the
relevant resource in the problem, into K stages where is
evolved for a time M3t in the j-th stage (8t is some small
basic unit of time and M;e N ). Assume that there is (d,p)-
independent, prior knowledge of g such that one can set ot
to satisfy

Ot S35
710,27 (835
lledl

In the j-th stage, using one of the protocols for a time M6t,
prepare 2v; independent copies of the state

W)= %(IO> + el 1yy0 | 0), 536

NG

From now on, drop the d—1 qubit sensors in the state 10 . .
. 0>, as they are irrelevant; however, it is worth noting that
it is not necessary to put the state in this form before
performing measurements. Then perform a single-qubit
measurement on the first qubit sensor of each of these state
copies, yielding 2v; measurement outcomes, which one can
use to estimate g. The total time of this K stage protocol is
consequently given by

K $37
t=2) L Myt S37

[0089] Given this setup, choose single-qubit measure-
ments and optimize the choice of v;, M; per stage so that one
can learn q bit by bit, stage by stage, in such a way that
optimal scaling in d, t is still obtained (Eq. (S34)). In
particular, consider making two measurements, each v; times
per stage (thus explaining the factor of two introduced
earlier): (i) a 6* measurement and (ii) a ¢ measurement.
These measurements each give outcomes that are Bernoulli
variables (i.e., with values € {0,1}) with outcome probabili-
ties

1+ cos(M;6t/llell...) (838)
2

PP =1-pP0),

Lot sinM;90t/ llolo)
5 ,

PP =1-p2 0,

RO =

P20 =

where the first two probabilities are for the 8X measurement,
and the latter two are for the * measurement. Using both of
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these measurements allows one to resolve the two-fold
degeneracy in the phase qM;0t/|lall within a given [0,21)
interval that would arise from, e.g., a G, measurement alone.
The observed probabilities of obtaining 0 for the 6, and G,
are independent random variables that converge in probabil-
ity to their associated expectation values for v,—co. These
measurements are non-adaptive, which makes this particular
phase estimation protocol especially appealing.

[0090] At each stage, extract an estimator ¢ of ¢:=Mqét/
l[odjeo as

§=atan2(2 7 — 1,2/ - 1) € [0, 27), (839

where atan? is the 2-argument arctangent with range [0,27).
In the limit v;—>eo, this estimator indeed converges to ¢, but
an advantage of this phase estimation scheme lies in the
correct reprocessing of data stage-by-stage so that v; can be
kept (d,t)-independent. Picking Mj=21_1 for je{1, ... K}
and optimizing over v; one can, at each stage, estimate
g/||odleo with a confidence interval of size 27/(3x2 ") so that
in each stage learn another bit of this quantity. The results of
this optimization are v; that decrease linearly with the step j
so that as the time spent in a stage grows, the statistics we
employ shrink. It happens that one can scale K— (i.e., take
an asymptotic in t limit) while maintaining v, constant. The
net result is a mean square error given by Eq. (S34) with ¢
=24.26w, which is a factor of 24.26 greater than the theo-
retical optimal value, but with the convenient feature that the
protocol uses non-adaptive measurements.

[0091] Other protocols are possible. For instance, in prior
work, a similar two-step method is described for the esti-
mation of global parameters (i.e., where the parameter is not
restricted to a local neighborhood of parameter space). This
protocol provides an explicit method to use some (ultimately
negligible) fraction of the sensing time available to narrow
down the location of the parameter q in parameter space,
followed by an optimal local estimation. The explicit esti-
mation scheme herein does not require adaptive measure-
ments.

Proof of Theorem 1.

[0092] Theorem 1. Let q(6)=0-0. Without loss of gener-
ality, let |jafjce=lax, 1. Let ke Z* so that

lledly (840

k-1< =<k.
lledl.,

An optimal protocol to estimate q(0), where the parameters
0 are encoded into the probe state via unitary evolution
under the Hamiltonian in Eq. (1), involves at least, but no
more than, k-partite entanglement.

[0093] Proof. The proof is divided in two parts. In Part 1,
using k-partite entangled states from the set of cat-like states
considered, the existence of an optimal protocol is shown,
subject to the upper bound of Eq. (S40). Part 2 shows that
there exists no optimal protocol using at most (k—1)-partite
entanglement, proving the lower bound of Eq. (S40).
[0094] Part 1. Define T as the submatrix of T with all
columns n such that X IT, .I>k are eliminated, which
enforces that any protocol derived from T®uses only states
that are at most k-partite entangled. Define System A(k) as
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TEp® = o /a1, (841)
pP=0. (842)

[0095] Let a'=0/oi; and define System B(k) as

(1% y >0 (543)

<a, y><0 (544

By the Farkas-Minkowski lemma, System A(k) has a solu-
tion if and only if System B(k) does not. In particular, this
lemma, which, geometrically, is an application of the hyper-
plane separation theorem is as follows:

[0096] lemma S2 (Farkas-Minkowski). Consider the sys-
tem

Ax=b, (845)

x=0, (846)

mxn

with Ae g ™", xe R ", and be R ™. The above system has a
solution if and only if there is no solution y to

ATy =0, (847)

<b, y><0. (848)

[0097] Therefore, to prove the result it is sufficient to show
that System B(k) does not have a solution if Z,,,la;/1<k—1,
where o';=1. Assume that a solution y exists and arrive at a
contradiction. Without loss of generality, assume that
ly/12ly;,| for all 1<j<d. Eq. (S44) implies ¥, 0y, <-y,.
(T%) has a row n* given by 7"=(1,0, . . . ,0), so by Eq.
(S43) any solution y to System B has y,20. Therefore,
IZ;.,0,'y,1>y,, which, by the triangle inequality, implies

2l > . (549)

[0098] Because la/I<1 for all j, because X, ,l0t;I<k—1, and
because |y, for j>1 are ordered in descending order, the
largest the left-hand-side of Eq. (S49) can be is Ejzzklyjl,
leading to

(S50)

k
Zlyjl >
=2

This directly contradicts Eq. (S43) for the row of T given
by t=(1,—sgn(y,), . . . , —sgn(y.,0,0, . . . ).
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[0099] Part 2. Using Eq. (S24), for any optimal protocol,

7 S51
FOn, =t fo ds'(y(s")| 01 375Jws), G3D

where recall 1W(s)>=U(s)I¥(0)>. Because (\V(s')l%lzlql(s')
) =0 for all s' (see Eq. (S16)), the integrand is non-zero if and
only if IW¥(s")> is such that the first qubit is entangled with
the jth. Define the indicator variable

, 1 |¥(s) > entangles qubit j and 1 (852)
Eis) = {
7 0 else

for all j, including any possible ancilla qubits. Here, define
E,=1 even though the first qubit is not entangled with itself.
Further define

E()=5Es") < (k- 1), (853)

where E(s') is the total number of sensor qubits entangled
with the first qubit at time s', and the upper bound comes
from the assumption on the partite-ness of the probe states.
Then,

? (S54)
FO; = tf ds'E;(s").
0

[0100] Furthermore, for any optimal protocol using at
most (k—1)-partite entanglement, require that

2

J

Lip
@

' S35
= Z|7:(9)]'1| = [Zf dS/E]v(s’) = ( )
J 7 V0
[fo dsZEj@ < tfo ds' (k1) = (k- DE.

This is a contradiction, however, as the theorem statement
assumed that

@; | S56
72| = utz > (k= 1) (836)
[24]

lledl.,

2

This concludes the proof that (k—1)-partite entanglement in
any form (i.e., not just from cat-like probe states) is insuf-
ficient to generate an optimal protocol. [J

[0101] The lower bound on the size of the least entangled
state used in an optimal protocol is a lower bound on the
average entanglement required to saturate the Fisher Infor-
mation matrix conditions. Here, average entanglement refers
to weighting the size of the entangled state by the proportion
of time it is used in the protocol. This lower bound is simply
llodl,/lledjec. The lower bound on the size of the most-
entangled state, or the bound on instantaneous entanglement,
comes from ensuring that this lower bound on average
entanglement is achievable (i.e., if the instantaneous
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entanglement is too small at each stage, then the average
entanglement required cannot be reached).

Non-Echoed Protocols.

[0102] A subset of protocols, referred to as non-echoed,
possess some beneficial features.

[0103] Definition S2 (Non-Echoed Protocols). Consider
some o€ R ¢ encoding a linear function of interest. Let T be
the matrix which describes the families of cat-like probe
states described above, and let p specify a valid protocol
such that p>0 and Tp=a/||ales. The protocol defined by p is
non-echoed if Vi such that p, is strictly greater than O,
sgn(T;)e {0,sgn(a)}.

[0104] At any stage of a non-echoed protocol, letting the
portion of the relative phase accumulated between the two
branches of the probe state associated to the parameter 6, be
given by ¢,0,, two conditions must hold: (1) Ic,I<lal; (2)
sgn(c;)=sgn(c,). More intuitively, sensitivity to each param-
eter is accumulated “in the correct direction” at all times,
such that one does not use any sort of spin echo to produce
a sensitivity to the function of interest, hence the name
non-echoed.

[0105] lLemma S3. Non-echoed protocols use minimum
average entanglement.

[0106] Proof. Let Tp=0o/||o|ee. Without loss of generality,
assume that one has restricted p to its non-zero support and
similarly deleted the columns of T that correspond to the
zero support of p such that all remaining columns are
actually used in the protocol for nonzero amount of time.
Then

lledly /el = sgn (@) (Tp) = (sgn @) T)p =w"p, (857

where w=L,IT,| is the sum of the absolute value of the
elements of the jth column of T. That is, w; represents how
entangled the corresponding cat-like family of states is. But,
then, clearly w”p is the average entanglement of the entire
protocol. Furthermore, the second half of the proof of
Theorem 1 shows that the minimum average entanglement
of any optimal protocol is given by |lct|,/||ojee (as argued
after the completion of the proof). [J

[0107] The intuition behind this lemma is that if one
always accumulates phase in the “correct direction,” then the
total amount of entanglement used over the course of the
protocol must be minimized, as any extra entanglement
would lead to becoming overly sensitive to some parameter,
which would involve some sort of echo in the protocol to
correct.

[0108] Lemma S4. For any function encoding «, there
exists a non-echoed protocol with minimum instantaneous
entanglement.

[0109] Proof. Assume without loss of generality that
o, =[lodlee=1. Also assume, for computational simplicity, that
«;-;<1 (i.e., there is only a single maximal-magnitude
element of o) and that o, >0Vi. These latter assumptions can
easily be lifted, as described at the end of the proof.

[0110] Use the Farkas-Minkowski lemma to show that no
vector y exists such that
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(Tf‘))Ty =0 (S58)

<a,y> <0, (859

proving the existence of a non-echoed protocol. Here, T,®
is T restricted to non-echoed vectors (i.e., (T,*),; "€ {0,1})
with weight at most k, where k=|—|\oc|\1—|. Assume a solution y
exists. Noting that (T,“’)” has a row given by (1,0, . . . ,0),
it must be that y,>0. Further, for y to be a valid solution, we
must have

(@ = (860)

a1y + Z @iy + Z%‘)’i=)’1+ Z @iyi + Z a;y; = 0.

ii£l,y;20 ily;<0 fi#1,y;=0 iy <0

Proceed with two cases. Suppose that at most k—1 elements
of y are negative. Consider the row of (T,*)" that has a |
in the first index and exactly on the indices where y,<0
(which exists because we have sufficiently restricted the
number of negative elements of y). Then (T,“*)"y=0 implies
that

. (S61)
i+ Zi\y,goy' =0.

But because o<1, this immediately implies that

. (S62)
oY, an=o

which means that Eq. (S60) cannot be true, yielding a
contradiction.

[0111] Now suppose that there are at least k elements of y
that are negative. Let S be the set of indices corresponding
to the k—1 largest, in magnitude, y,. Then the row of (T,%)"
with a 1 in the first index and precisely on the indices in S
leads to the condition that

ne F=0 =

However, given the constraint that ¢;,,<1,

»n+ Z @y + Zaiy,vzyIJrZy,sz, (564)

ii£1,y;20 #y;<0 s

which is a contradiction.

[0112] With regard to lifting the two assumptions men-
tioned earlier, in the case where there exists multiple maxi-
mal elements, the same argument that generalizes the main
theorem will generalize this argument. If o;<0, a protocol
still exists; simply replace (T, +(k))ij=1 with sgn(ai) (and leave
0Os untouched).

[0113] O

[0114] Together, these lemmas prove that there exist pro-
tocols that can minimize both instantaneous entanglement
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(i.e., the maximum size of a cat-like state used in the
protocol) and the average entanglement over the course of
the entire protocol.

CNOT Costs of Minimal Entanglement Protocols.

[0115] Another resource of potential interest is the number
of entangling (CNOT) gates required to perform the proto-
cols with a focus on the minimum entanglement protocols.
[0116] Assume |oflco=01,=1>I0t,12l0512. . . 2la,l. Further-
more, without loss of generality, adopt the convention that
an optimal protocol specified by a p=0 such that Tp=a
begins by preparing the state described by the first column
of T and evolving for time p;t, and then proceeds to the
appropriate state (i.e., the one with phase p,t) in the family
described by the second column, then evolving for time p,t,
and so on, until eventually moving to the measurement state.
If p,=0, the corresponding state is skipped and not prepared.
By construction, the number of CNOT gates needed to
perform this protocol is the number of gates required to
generate the first state, plus the number needed to convert
from the first state to the second state, and so on. Finally, one
should add the number of gates needed to prepare the
measurement state, which disentangles all qubits, from the
final probe state. The number of gates required to move from
state i to state i+1 corresponds to the number of indices of
T; that are +1 but 0 in T,,, and vice versa. [n what follows,
consider only the gates that are used to convert between
probe states (i.e., do not consider the initial state preparation
or final measurement preparation). This is physically moti-
vated by the fact that these intermediate gates may be more
difficult to perform or may be more susceptible to noise.
Additionally, the main resource in which our protocols
attempt to achieve Heisenberg scaling is the time that our
probe states are coupled to the parameters of interest.
Therefore, assuming one is interested in the value of these
parameters at some given moment (and not, say, continu-
ously), one might be free to prepare and purify the initial
probe state in advance of the actual sensing task, which also
justifies ignoring the initial CNOT cost.

[0117] Assume that N states used in the protocol, i.e. p is
such that it contains at most N nonzero elements. It is clear
that at most O(N ) CNOT gates are needed. However, this
is not necessarily optimal. U.S. Pat. 10,007,885, which is
incorporated by reference herein in its entirety, provides a
protocol that uses d states and only (d—1)=0(d) intermediate
CNOT gates. This disentangling protocol includes using a
maximally entangled (GHZ) state for a time lo,lt, then
disentangling the last qubit and using the (d—1)-entangled

state for time (lo,_,l-lo,l)t before disentangling the next-
to-last qubit and so on until reaching the final state corre-
sponding to T=(1,0, . .., 0)7. This final state is used for time

(loy I=lat=(1-la,Nt. The disentangling protocol does not
minimize the instantaneous entanglement, but it does mini-
mize average entanglement (as it is a non-echoed protocol).
[0118] U.S. Pat. 10,007,885, which is incorporated by
reference herein in its entirety, provides the echoing protocol
that uses zero intermediate CNOT gates. It proceeds by
using d exclusively maximally entangled states. Thereby,
minimizing neither average nor instantaneous entanglement,
but echoing away the extra sensitivity that this extra
entanglement induces.

[0119] To illustrate these protocols, T and p (wherein T
and p is restricted to the states that are used for a non-zero
fraction of time) for the case d=8 and o,>0:
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11111111 /A S65)
11111110 a7 — o3
11111100 a6 — 07
Tdisemangling: 11111000 ,pdisemangling: s — o
11110000 @y — s
11100000 a3 — 4
11000000 -3
and
11 1 1 1 1 1 1 (S66)
11 1 1 1 1 1 -1
11 1 1 1 1 -1 -1
choin 11 1 1 1 -1 -1-1
L PR T T R RN R Y
11 1 -1 -1-1-1-1
11 -1 -1-1-1-1-1
1 -1-1-1-1-1-1-1
1+a
2
@7 — 03
2
Qs — &7
2
@5 —
pechomg: 0143015 A
2
a3 — 0y
2
@y — 03
2
@ -
2

[0120] In the case of the disentangling protocol, the num-
ber of CNOTs involved depends on the ordering of the
states. For example, consider instead ordering the states in
the following way:

(S67)

Tdisemangling —

— o s
coocococo o~
=
coococo o~ —
SO ===
coococo o~ —
cCo o~ == = -
SO0 O~ = = -

[0121] Here, the number of CNOTs involved is now
(d=1)+(d=2)+. . . +1=0(d?). Thus, it is not only the choice
of states that affects the CNOT cost of a protocol but also
their ordering. Naively, finding an optimal set of states and
their optimal ordering is a difficult problem, as if one finds
a protocol using N states, there are N! orders to check.

[0122] While not finding a general solution to this opti-
mization problem, numerics provide a pragmatic analysis of
the cost. To begin, consider the naive approach of finding a
random (non-echoed) minimum entanglement solution
using d states for random problem instances and, then, using
this solution set, brute-force search over all column order-
ings of this solution to find an optimal ordering in terms of
CNOT cost. This was done for de [3,10] sensors with twenty
random instances each. Without loss of generality, the
random problem instances were taken to have all positive
coefficients. Observe a CNOT cost scaling ~d?, indicating
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that a random minimum entanglement solution, even with
optimal ordering, does not have the linear in d scaling we
would like. See FIG. 5.

[0123] Other algorithms for finding a minimum entangle-
ment solution with better CNOT costs may be desirable. To
this end, a greedy algorithm yields a ®&(d) CNOT cost
whenever it does not fail. The algorithm works by building
up the full sensitivity to one parameter before switching
coherently to a new state family (in this way, it is non-
echoed). Consequently, each time one switches to a new
state, one sensor qubit can be disentangled and never reen-
tangled. In particular, one builds sensitivity to the param-
eters according to their weight in g, i.e., one builds sensi-
tivity to parameters going from the smallest corresponding
loy! to the largest. The full algorithm is completed in at most
d steps.

[0124] The greedy algorithm can fail to produce a valid
protocol, as it does not enforce the condition that ||p||,=1.
This condition can be violated for some functions, e.g., those
with many coefficients with approximately equal magnitude.
When it works, this algorithm succeeds in producing CNOT-
efficient minimum entanglement protocols, as shown in FIG.
5.

[0125] Independent of the algorithm used to minimize the
CNOT count of an optimal protocol, there is a tradeoff
between entanglement- and gate-based resources. The dis-
entangling protocol minimizes average entanglement, but
not necessarily instantaneous entanglement, and requires
only O(d) intermediate entangling gates; the echoing pro-
tocol uses maximal entanglement and requires only single-
particle intermediate gates. Protocols that minimize instan-
taneous entanglement do so at the cost of more intermediate
entangling gates. Depending on the primary sources of error
or the physical constraints on any given quantum sensor
network implementation, one of these resources might be
more important to minimize than the other.

[0126] If decoherence is more problematic than the num-
ber of entangling gates that one must perform, then mini-
mum entanglement protocols will be preferred to the con-
ventional protocols. Even in the case that intermediate
entangling gates present more difficulties than decoherence,
the protocol is useful from the perspective of understanding
and appreciating the resource tradeoffs inherent to these
metrological problems, as it is likely that any experimental
implementation will require balancing entangling gate errors
and decoherence.

[0127] Another resource-related constraint of protocols
that relies on time-dependent control (whether in the form of
" gates, CNOT gates, or others) includes protocols that
involve precise timing of the gate applications. Uncertainty
in the timing leads directly to an error in the function being
measured. The timing issue is a limitation of known optimal
protocols for the linear function estimation.

Probabilistic  Protocols Fail

Condition.

to Achieve Saturability

[0128] Time-independent probabilistic protocols fail to
achieve the saturability condition of Eq. (8). That is, when
resources are properly accounted for, it is impossible to
achieve a Fisher information matrix satisfying
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F (O, = Z_ftz (868)

for generic linear functions. Again, restrict consideration to
a single maximal magnitude o. The proof follows almost
identically, with some notational overhead, when general-
izing beyond this condition.

[0129] In particular, to fairly account for resources, fix a
total time t to perform all stages of our protocol. Therefore,
when considering a probabilistic protocol using multiple
families from 7. assign a time t; for each state I'¥(t;0)>
(because this does not switch between probe states using a
control Hamiltonian, one does not consider an arbitrary
phase) used in the protocol such that

v (569

where N is the number of families in 7 that are used a
non-zero fraction of the time in a given protocol. That is, for
a given solution to Tp=0/0,,, N denotes the number of
non-zero p,. No stages of a probabilistic protocol with the
families in 7 can be performed simultaneously. One could
imagine protocols that parallelize the measurement of some
q; that involve disjoint sets of sensors. However, such
protocols are necessarily non-optimal given Lemma S1,
such that any optimal protocol requires entanglement with
the first qubit at all times.

[0130] One can bound the maximum of the Fisher infor-
mation matrix element F (6),; obtainable via such a proba-
bilistic protocol as

a (870)
max F () < r;ia’): ;pntﬁ,

N~
subject to: Z[" =1,

n=1

where ,“’=1 for all n. The inequality arises due to the fact
that the maximization problem on the right hand side of the
inequality does not enforce that Tp=o/o;. This is not a
necessary additional constraint.

[0131] Solving this optimization problem via Lagrange
multipliers is straightforward. The Lagrangian is

(871

N N N
L= pti |- |+ (1= D pu
n=1 n=1 n=1

where 7,, ¥, are Lagrange multipliers. Therefore, the system
of equations includes
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2puty =71 =0, (¥ n) (872)

#-y=0, (¥,

s 5 (873)

for p,=1/N and t,=t/N for all n. Therefore,

2 (574)
FO < 50 O,

which fails to achieve the saturability condition for j=1,
unless N=1, which is only possible for a very small set of
functions. For generic functions N scales nontrivially with d.
Therefore, provided one considers cases where each q; must
be learned sequentially (which is a requirement for any
optimal protocol via Lemma S1), saturability is not obtained
even up to a d-independent constant for generic functions
via time-independent protocols.

Relaxing the Assumption on a Single Maximum Element.

[0132] To generalize beyond the assumption that lot, 1>10]
for all j>1, the algebra varies. Generalizing Eq. (8), let

L:={illa = leql}. (875

[0133] The assumption lo,1>layl for all j>1 is equivalent
to assuming ILI=1. For arbitrary size L, conditions for the
single-parameter bound on q(6) to be saturable (Egs. (6) and
(7)) are:

2 (876)
Flon = per
i

Flghi=F(@a =0 izl (877

Recall that F(q)=J ¢ (6)J, where J is the Jacobian for the
basis transformation from 6 to q, q,=q is the linear function
to measure, and the other q; are some other degrees of
freedom we fix. Show that Egs. (876)-(S77) are satisfied if
and only if

i S78
Z Sgn(m)?(@)ﬁli _ &[2, (878)
i sgn(a;) o
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where A, 20 such that X A,=1. If ILI=1, this reduces to Eq. (8).
Recounting how to obtain the single-parameter bound to
saturate, referring to Eq. (3), a choice of basis that minimizes
&, |[text missing or illegible when filed]?, yields the
tlgqhtest possible bound on M , the mean-square error of q.
Our bas1s for g ¥ is {Oc(l) Oc(z) ..., 0“9}, where oP=q.
Now, J™! has rows given by these vectors. Let {$‘V, B, .
B(d)} be the basis dual to this one. That is, these vectors
form the columns of J and satisfy a®-B9=3,; such that

o= -18)7 = (J19)7 T, 879)

and the Hamiltonian is

[0134]
. L (S80)
A= 3076 4 AL =5;“ (@@ .0)89 .6 + H.(s),
where 6=(67, . . ., 6,97, Then
i __oH B¢ (S81)

where B=B‘". Because the seminorm is time-independent,
such that

2, = 181, (382)

and the tightest bound is

ngnllﬁ’lll, sta-B=1. (883)
with
L= i, = D JasliB] < laal Y 1B = lonlI Bl (884)

The first inequality is tight if either sgn(p,)=sgn(a,) or B,=0
for all i. The second is slightly more complicated to saturate.
Recall L={i||o;|=Ict,1}. Then the second inequality is tight if
and only if

Bi=0fori+l, (S85)

N 556

el

Any solution B specifies the first column of the Jacobian J so
that the conditions in Eq. (§76)-(S77) are

2 (S87)
Flou = FOB= =

1

Jul. 4, 2024

-continued

F @y =F@a = () FOB=0i%1). (888)

As o-BV=8,, Eq. (S88) implies, vector F (8)p is propor-
tional to o, and Eq. (S87) specifies the constant of propor-
tionality. In particular,

2 (589)
7:(9)/3 = —20{.
@y

Invoking Eqgs. (S85)-(S86) and the condition that sgn(f,)
=sgn(a,) for B,#0, B,=Asgn(o,)/Io, |, where >0 for ie L and
A;=0 for i#L such that £ A,=1. The individual components of
Eq. (889) imply

(890)
D T Ogsen@)l = Y F6) sgnedd = —

el el

Z)L_I)L>O

which, using lo,l=sgn(o,)or; and that sgn(co,)sgn(o,)=sgn
(o, )sgn(a) for ie L, yields

sgn(en) sgn@) o 891
Z FO)h = ;‘ FOudi= 17, Z)u =L A=0

i sgn(ar) sgn(e;)

which reduces to Eq. (8) of the main text, when ILI=1, as
desired.

[0135] One can generalize the derivation of Eq. (13) to this
setting of more than one maximum element of o. In par-
ticular, Lemma S1 is extended to Lemma S5.

[0136] Lemma S5. Any optimal protocol, independent of

the choice of control, requires that <7'A[j (t)>=0 for all je L.
and that the probe state be of the form

(®jeL|b1'>)|900> - ei¢(®j€L|bj + 1))l ) 892)

7 :

ly) =

for all times se [0,t], where

. 0, if sgn(@;) =1, (893)
f‘{1, if sgn(@)) = -1

and ¢, 1¢,>, 1¢,> can be arbitrary and s-dependent. The
addition inside the second ket of Eq. (§92) is mod 2.

[0137] Proof. Fact (1): X, ,A(sgn(a,)/sgn(o,)) F (G)ijzt2
for all je L (by Eq. (S91)). Fact (2): | F (0),I<F (8);; for all
i (by the fact that the Fisher information matrix is positive
semidefinite). These facts imply that an optimal protocol

must have F (0);; =t*forall je L. The fact that < 7'[ (ty>=0 for
all je L. and the fact that all sensors in L. must be in a cat-like
state over computational basis states follows immediately
via an identical calculation to the proof of Lemma S1 for
each jeL. From Eq. (824) it follows directly that these
cat-like states over the qubit sensors in L must take the form
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in the theorem statement in order to achieve the correct sign
on the components of F(0). [J

[0138] Using Lemma S5, restrict the set 7 of states such
that Tj(”)zsign((xj)/sgn((xl) for all je L and all t%”. This is the
generalization of the fact that that, when ILI=1, we require
7, =1 for all T,

[0139] In addition, given the required form of the optimal
states, generalize Eq. (S25) to the condition that

a; (S94)
li d/ a2 52 ’ — J ,
> [ ]; s {yr(s")] 07507 urts >>] ot

el

which implies that, for protocols switching between states in
the modified 7,

(895)

n
o
o i

E A E (o — 1} )r(j)] = ot

el =0

where one assumes that one switches to the state labeled by
T® at time t,”. As before, in our protocols t,,,"—t,"=p;t. In
addition, £A,=1. So an optimal protocol requires

L a; (S96)
t E p,‘r(]v[) = jt == Ip=a,
=0

recovering Eq. (13) for general L, with the addition that T,
Tj(”)zsgn((xj)/sgn((xl) for all jeL and all n.

Generalizing the proof of Theorem 1.

[0140] The proof was provided in two parts, wherein it
was shown the existence of an optimal protocol using
k-partite entangled cat-like states, subject to the upper bound
of the theorem statement. The second part showed that,
subject to the lower bound of the theorem statement, there
exists no optimal protocol using only (k—1)-partite entangle-
ment.

[0141] The first part changes upon relaxing the assumption
that lot, 1>loyl for all j>1. Given that Tj(”)zsgn((xj)/sgn((xl)
for all jeL and all ™, the first ILI rows of T® yield
redundant equations in Eq. (19). Therefore, set_T(k) as T®
with all rows je L\{1} eliminated. Similarly, o is o with
elements je L\{1} eliminated. Further, define the new sys-
tem of equations, which are called System A™

T(k)p(k) = @jal, (897)

0 = 0. (398)

[0142] System A has a solution if and only if System A
does. Proceed as in the proof above to show via the
Farkas-Minkowski lemma that System A has a solution if
|lou/||tljeosk==pl0xl /|| atleo<k—ILI+1. The details of the proof
of this part are completely identical with this substitution.
[0143] The second part of the proof can similarly be
adjusted straightforwardly. In particular, to satisfy the con-
dition of Eq. (§91), which is the generalization of Eq. (8), for
je L. we require
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@, senl) ,  tosen(@) (899)
o' T senen ZL sentay O
which implies
> sgn(a;) v (S100)
A= ;—Sgnm})?w)ym.
This in turn implies that for i,je L
f S101
7o), = 20 2. (10D
sgn(a;)

[0144] Therefore, for all ic L we require F (8),=t>. From
here, arguments identical to those above apply to all ie L, not
just i=1. That is, all the probe states must always be fully
entangled on the qubits in L and matrix elements F (6),; for
ieL, jeL can only accumulate magnitude if sensor j is also
entangled with the qubits in L. Assuming the existence of an
optimal protocol using (k—1)-partite entanglement, a con-
tradiction arises in an identical way.

[0145] The processes described herein may be embodied
in, and fully automated via, software code modules executed
by a computing system that includes one or more general
purpose computers or processors. The code modules may be
stored in any type of non-transitory computer-readable
medium or other computer storage device. Some or all the
methods may alternatively be embodied in specialized com-
puter hardware. In addition, the components referred to
herein may be implemented in hardware, software, firm-
ware, or a combination thereof.

[0146] Many other variations than those described herein
will be apparent from this disclosure. For example, depend-
ing on the embodiment, certain acts, events, or functions of
any of the algorithms described herein can be performed in
a different sequence, can be added, merged, or left out
altogether (e.g., not all described acts or events are necessary
for the practice of the algorithms). Moreover, in certain
embodiments, acts or events can be performed concurrently,
e.g., through multi-threaded processing, interrupt process-
ing, or multiple processors or processor cores or on other
parallel architectures, rather than sequentially. In addition,
different tasks or processes can be performed by different
machines and/or computing systems that can function
together.

[0147] Any logical blocks, modules, and algorithm ele-
ments described or used in connection with the embodi-
ments disclosed herein can be implemented as electronic
hardware, computer software, or combinations of both. To
clearly illustrate this interchangeability of hardware and
software, various illustrative components, blocks, modules,
and elements have been described above generally in terms
of their functionality. Whether such functionality is imple-
mented as hardware or software depends upon the particular
application and design constraints imposed on the overall
system. The described functionality can be implemented in
varying ways for each particular application, but such imple-
mentation decisions should not be interpreted as causing a
departure from the scope of the disclosure.
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[0148] The various illustrative logical blocks and modules
described or used in connection with the embodiments
disclosed herein can be implemented or performed by a
machine, such as a processing unit or processor, a digital
signal processor (DSP), an application specific integrated
circuit (ASIC), a field programmable gate array (FPGA) or
other programmable logic device, discrete gate or transistor
logic, discrete hardware components, or any combination
thereof designed to perform the functions described herein.
A processor can be a microprocessor, but in the alternative,
the processor can be a controller, microcontroller, or state
machine, combinations of the same, or the like. A processor
can include electrical circuitry configured to process com-
puter-executable instructions. In another embodiment, a
processor includes an FPGA or other programmable device
that performs logic operations without processing computer-
executable instructions. A processor can also be imple-
mented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of
microprocessors, one or more MiCroprocessors in conjunc-
tion with a DSP core, or any other such configuration.
Although described herein primarily with respect to digital
technology, a processor may also include primarily analog
components. For example, some or all of the signal pro-
cessing algorithms described herein may be implemented in
analog circuitry or mixed analog and digital circuitry. A
computing environment can include any type of computer
system, including, but not limited to, a computer system
based on a microprocessor, a mainframe computer, a digital
signal processor, a portable computing device, a device
controller, or a computational engine within an appliance, to
name a few.

[0149] The elements of a method, process, or algorithm
described in connection with the embodiments disclosed
herein can be embodied directly in hardware, in a software
module stored in one or more memory devices and executed
by one or more processors, or in a combination of the two.
A software module can reside in RAM memory, flash
memory, ROM memory, EPROM memory, EEPROM
memory, registers, hard disk, a removable disk, a CD-ROM,
or any other form of non-transitory computer-readable stor-
age medium, media, or physical computer storage known in
the art. An example storage medium can be coupled to the
processor such that the processor can read information from,
and write information to, the storage medium. In the alter-
native, the storage medium can be integral to the processor.
The storage medium can be volatile or nonvolatile.

[0150] While one or more embodiments have been shown
and described, modifications and substitutions may be made
thereto without departing from the spirit and scope of the
invention. Accordingly, it is to be understood that the present
invention has been described by way of illustrations and not
limitation. Embodiments herein can be used independently
or can be combined.

[0151] All ranges disclosed herein are inclusive of the
endpoints, and the endpoints are independently combinable
with each other. The ranges are continuous and thus contain
every value and subset thereof in the range. Unless other-
wise stated or contextually inapplicable, all percentages,
when expressing a quantity, are weight percentages. The
suffix (s) as used herein is intended to include both the
singular and the plural of the term that it modifies, thereby
including at least one of that term (e.g., the colorant(s)
includes at least one colorants). Option, optional, or option-
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ally means that the subsequently described event or circum-
stance can or cannot occur, and that the description includes
instances where the event occurs and instances where it does
not. As used herein, combination is inclusive of blends,
mixtures, alloys, reaction products, collection of elements,
and the like.

[0152] As used herein, a combination thereof refers to a
combination comprising at least one of the named constitu-
ents, components, compounds, or elements, optionally
together with one or more of the same class of constituents,
components, compounds, or elements.

[0153] All references are incorporated herein by reference.

[0154] The use of the terms “a,” “an,” and “the” and
similar referents in the context of describing the invention
(especially in the context of the following claims) are to be
construed to cover both the singular and the plural, unless
otherwise indicated herein or clearly contradicted by con-
text. It can further be noted that the terms first, second,
primary, secondary, and the like herein do not denote any
order, quantity, or importance, but rather are used to distin-
guish one element from another. It will also be understood
that, although the terms first, second, etc. are, in some
instances, used herein to describe various elements, these
elements should not be limited by these terms. For example,
a first current could be termed a second current, and,
similarly, a second current could be termed a first current,
without departing from the scope of the various described
embodiments. The first current and the second current are
both currents, but they are not the same condition unless
explicitly stated as such.

[0155] The modifier about used in connection with a
quantity is inclusive of the stated value and has the meaning
dictated by the context (e.g., it includes the degree of error
associated with measurement of the particular quantity). The
conjunction or is used to link objects of a list or alternatives
and is not disjunctive; rather the elements can be used
separately or can be combined together under appropriate
circumstances.

What is claimed is:

1. A process for measuring a single linear function q(01,
82, ..., 6d) of unknown parameters {61, 62, . . ., 6d} with
a quantum sensor network while using the minimum amount
of entanglement, the process comprising:
providing a plurality of d quantum sensors, wherein each
quantum sensor j is configured for measuring 0j;

preparing the plurality of quantum sensors in a probe
quantum state |W> with a minimum amount of
entanglement, such that the amount of entanglement is
the smallest amount of entanglement that gives the
same optimal measurement of the linear function q(01,
02, ..., 0d) as if the amount of entanglement was not
restricted;

exposing the plurality of quantum sensors to the set of

unknown parameters;

measuring the plurality of quantum sensors; and

calculating the single linear function q(61, 62, . . ., 6d)
from the measurements of the plurality of quantum
sensors with robust phase estimation.

2. The process of claim 1, wherein calculating the single
linear function q(61, 62, . . ., 8d) comprises embedding the
single linear function q(01, 62, . . ., 6d) into relative phase
of probe quantum state [W>.



US 2024/0220835 Al

3. The process of claim 1, further comprising:

normalizing o, for aER ¢, such that |jaflec=1 (step 201);

determining a nonnegative solution p to Tp=c. (step 202);

restricting p to its N nonzero elements (step 203);

restricting T to its columns that correspond to N nonzero

elements of p (step
204. ;
initializing a quantum state on d qubits to [0>®7 (step
205);

preparing first state lp(t'"; 0)) (step 206);

coherently switching to second state lyp(t‘®: ¢,)) from
first state I(t™; 0)) (step 207);

repeatedly using CNOT and 6™ gates for all states in T and
remaining in a family parameterized by ©” for time
p,t, forming final state |(Y(r®;qt)) (step 208); and

optionally converting, using CNOT and o* gates, final
state [P(T™”; qt) to 1AV2(10>+e411>)I0>Q@9 (step
209).

4. The process of claim 3, further comprising, after
restricting p (step 203) and restricting T (step 204), reorder-
ing elements of p and columns of T (step 210), wherein N
o corresponding to the columns of T are families of states
used in the protocol.

5. The process of claim 3, wherein preparing first state
[p(t™; 0)) occurs in response to using CNOT and o gates.

6. The process of claim 3, further comprising remaining
in a family of first state hp(t™; 0)) for first time p,t (step
211), wherein first time p,t is an amount of time required by
the current step of the robust phase estimation protocol.

7. The process of claim 6, further comprising preparing
state p(t'?; ¢,)) from first state hp(t™; 0)) after first time
pit, wherein ¢1:ijlttj(1)6j (step 212).

8. The process of claim 3, wherein coherently switching
to second state [Yp(t®; ¢,)) occurs in response to using
CNOT and &~ gates.

9. The process of claim 3, further comprising remaining
in a family of second state j(t®; ¢,)) for second time p,t
(step 213).

10. The process of claim 9, further comprising preparing
state [P(t'?; ¢,+¢,)) from second state lp(t*®; ¢,)) after
second time p,t, wherein ¢2:ij2ttj(2)6j (step 214).

11. The process of claim 3, wherein determining the
nonnegative solution p (step 202) comprises making the
determination from experimental desiderata oran optimiza-
tion algorithm.

12. The process of claim 3, wherein final state [y(®; qt)
) is measured according to robust phase estimation that
extracts the single linear function q(01, 62, . . ., 6d) with
optimal scaling up to a constant factor.

13. The process of claim 3, further comprising, skipping
step 209 and instead measuring the phase from final state
Y(t®; qt)) using single-qubit measurements; and comput-
ing a parity in an absence of converting, using CNOT and &*
gates, final state lp(T®; gt)) to 1V2(10>+e'%1>)10>Q7 L,

14. The process of claim 1, wherein the plurality of
quantum sensors is arranged in a network.

15. The process of claim 1, wherein the plurality of
quantum sensors is qubits, interferometers, or field-quadra-
ture displacement sensors.

16. The process of claim 1, wherein the set of unknown
parameters is a set of field amplitudes, a set of temperatures,
a set of pressures, a set of strains, a set of forces, a set of
magnetic fields, a set of electric fields, or a set of gravita-
tional fields.
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17. A quantum sensor network comprising:

a plurality of quantum sensors, each quantum sensor j is
configured for measuring 6j out of a set of unknown
parameters {61, 62, . . ., 8d}, such that the plurality of
quantum sensors is configured to be in a probe quantum
state |W> with a minimum amount of entanglement,
such that the amount of entanglement is the smallest
amount of entanglement that gives the same optimal
measurement of the linear function q(61, 62, . .., 6d)
as if the amount of entanglement was not restricted;

a network topology that connects the plurality of quan-
tum sensors; and
a controller that is configured to:
prepare the plurality of quantum sensors in the probe
quantum state expose the plurality of quantum
sensors to the set of unknown parameters {61, 62,
..., 6d};
measure the plurality of quantum sensors; and
use the measurements of the plurality of quantum
sensors to calculate the function q(61, 62, ..., 6d)
of the set of unknown parameters.

18. The quantum sensor network of claim 17, wherein the
plurality of quantum sensors is arranged in a linear array.

19. The quantum sensor network of claim 17, wherein the
plurality of quantum sensors is arranged in a two-dimen-
sional array.

20. The quantum sensor network of claim 17, wherein the
plurality of quantum sensors is arranged in a three-dimen-
sional array.

21. The quantum sensor network of claim 17, wherein the
plurality of quantum sensors is qubits, interferometers, or
field-quadrature displacement sensors.

22. The quantum sensor network of claim 17, wherein the
set of unknown parameters is a set of field amplitudes, a set
of temperatures, a set of pressures, a set of strains, a set of
forces, a set of magnetic fields, a set of electric fields, or a
set of gravitational fields.

23. A process for making a quantum sensor network that
measures a single linear function q(61, 62, . . ., 6d), the
process comprising:

providing a plurality of d quantum sensors;

arranging the plurality of quantum sensors j is configured
for measuring ej out of a set of unknown parameters
{61, 82, . .., 6d};

connecting the plurality of quantum sensors to a control-
ler;

preparing, by the controller, the plurality of quantum
sensors in a probe quantum state |'W> with a minimum
amount of entanglement, such that the amount of
entanglement is the smallest amount of entanglement
that gives the same optimal measurement of the linear
function q(61, 62, . . ., 6d) as if the amount of
entanglement was not restricted.

24. The process of claim 23, wherein the plurality of

quantum sensors is arranged in a linear array.

25. The process of claim 23, wherein the plurality of
quantum sensors is arranged in a two-dimensional array.

26. The process of claim 23, wherein the plurality of
quantum sensors is arranged in a three-dimensional array.

27. The process of claim 23, wherein the plurality of
quantum sensors is qubits, interferometers, or field-quadra-
ture displacement sensors.
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28. The process of claim 23, wherein the network topol-
ogy is a star topology, a ring topology, or a mesh topology.

29. The process of claim 23, wherein the controller is a
classical computer.



