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FIG. 1: Experimental setup and sequence for observ-

ing time-crystalline order. a, NV centers in a nanobeam
fabricated from black diamond are illuminated by a focused
green laser beam and irradiated by a microwave source.
Within one Floquet cycle, the spins evolve under a dipolar
interaction for duration ⌧1, followed by a global spin rota-
tion acting for duration ⌧2. Experimental sequence: spins
are prepared in the (|ms = 0i + |ms = �1i)/

p
2 state using

a microwave (�⇡/2)-pulse along the ŷ axis. Subsequently,
the spins evolve for ⌧1 under a strong microwave field aligned
along the x̂ axis, immediately followed by a strong microwave
✓-pulse along the ŷ axis. After n repetitions of the Floquet
cycle, the spin polarization is read out by applying another
microwave (⇡/2)-pulse along the ŷ axis. b-d, Representa-
tive time traces of the spin polarization P (nT ) and respective
Fourier spectra for di↵erent values of interaction time ⌧1 and
✓: (b) ⌧1 = 92 ns, ✓ = ⇡, (c) ⌧1 = 92 ns, ✓ = 1.034⇡, and (d)
⌧1 = 989 ns, ✓ = 1.034⇡. Data are averaged over more than
2 · 104 measurements. Dashed lines in c indicate ⌫ = ±✓/2⇡.

on-site field with approximate standard deviation W =
2⇡ ⇥ 4.0 MHz, rij is the distance between spins i and
j (average nearest-neighbor separation r0 ⇠ 8 nm), and
Jij are the orientation dependent coe�cients of the dipo-
lar interaction. We note that the average interaction,
Jij/r

3
0 ⇠ 2⇡⇥ 105 kHz18, is significantly faster than typ-

ical spin coherence times16.
In order to probe the existence of time-crystalline or-

der, we monitor the spin dynamics of an initial state po-
larized along the +x̂ direction. We begin by applying
continuous microwave driving (spin locking) along x̂ with
Rabi frequency ⌦x = 2⇡ ⇥ 54.6 MHz for a duration ⌧1

(Fig. 1a). Next, we rotate the spin ensemble by an angle
✓ around the ŷ axis using a strong microwave pulse with
⌦y = 2⇡ ⇥ 41.7 MHz for duration ⌧2 = ✓/⌦y ⌧ ⌧1. This
two-step sequence defines a Floquet unitary with a total
period T = ⌧1 + ⌧2 and is repeated n times, before the
polarization P (nT ) along the x̂ axis is measured. The
resulting polarization dynamics are analyzed in both the
time and frequency domain. Repeating these measure-
ments with various values of ⌧1 and ✓ allows us to in-
dependently explore the e↵ect of interactions and global
rotations. We note that ⌧1 is chosen as an integer multi-
ple of 2⇡/⌦x in order to avoid a self-correcting dynamical
decoupling15.

Figure 1b-d depicts representative time traces and the
corresponding Fourier spectra, S(⌫) ⌘

P
n
P (nT )ei2⇡n⌫ ,

for various values of ⌧1 and ✓. For relatively short interac-
tion time ⌧1 = 92 ns and nearly perfect ⇡-pulses (✓ ⇡ ⇡),
we observe that the spin polarization P (nT ) alternates
between positive and negative values, resulting in a sub-
harmonic peak at ⌫ = 1/2 (Fig. 1b). In our experiment,
the microwave pulses have an intrinsic uncertainty ⇠ 1%
stemming from a combination of spatial inhomogeneity
in the microwave fields, on-site potential disorder, and
the e↵ect of dipolar interactions (see Methods). These
eventually cause the oscillations to decay after ⇠ 50 pe-
riods. While such temporal oscillations nominally break
discrete time-translation symmetry, their physical origin
is trivial. To see this, we note that for su�ciently strong
microwave driving, ⌦x � W,Jij/r

3
0, the dynamics during

⌧1 are governed by an e↵ective polarization-conserving
Hamiltonian18, He↵ ⇡
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During ⌧2, the evolution can be approximated as R
✓
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i . When ✓ = ⇡, this pulse simply flips the sign

of the x̂ polarization during each Floquet cycle, resulting
in the ⌫ = 1/2 peak. However, this 2T -periodic response
originates from the fine tuning of ✓ and should not be ro-
bust against perturbations. Indeed, a systematic change
in the average rotation angle to ✓ = 1.034⇡ causes the 2T -
periodicity to completely disappear, resulting in a modu-
lated, decaying signal with two incommensurate Fourier
peaks at ⌫ = ±✓/2⇡ (Fig. 1c). Remarkably, we find that
a rigid 2T -periodic response is restored when interactions
are enhanced by increasing ⌧1 to 989 ns, suggesting that
the ⌫ = 1/2 peak is stabilized by interactions. In this
case, we observe a sharp subharmonic peak in the spec-
trum at ⌫ = 1/2 and the oscillations in P (nT ) continue
beyond n ⇠ 100 (Fig. 1d). We associate this with DTC
order9–12.

The robustness of DTC order at late times is further
explored in Fig. 2. With an interaction time ⌧1 = 790 ns
and ✓ = 1.034⇡, the polarization exhibits an initial de-
cay followed by persistent oscillations over the entire time
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FIG. 2: Gallery of fully loaded arrays with arbitrary, user-defined geometries (bottom images) obtained from the initial, random
configurations (top images). All images are single shots. (A): “Type-1” moves were used; (B): “Type-2” moves were used. The number of
elementary moves needed to achieve the sorting are indicated.

initial configuration. We want to emphasize that despite being
quite simple and non-optimal, our algorithm is efficient and
versatile. Finding better algorithms might however be impor-
tant for scaling up our approach to hundreds of atoms.

Figure 2 shows a gallery of trap arrays with arbitrary, user-
defined geometries relevant for quantum simulation, e.g., one-
dimensional chains, ladders, lattices with square, triangular,
honeycomb or kagome structures [14]. Neighboring traps are
separated by distances 3 < a < 6µm. In (A), type-1 moves
were used, while in (B), type-2 moves were used. For each
array, we show on the top panel a fluorescence image of sin-
gle atoms obtained with the CCD camera at the beginning of
the sequence. Since the probability for each trap to be filled is
p ⇠ 0.5, the arrays are initially half-filled. In the accompany-
ing bottom image we show the final fluorescence image after
the sorting is completed. Analyzing 100 repetitions of the ex-
periment for a 5⇥5 square target array [Fig. 3(A)], we achieve
a filling fraction ⌘ > 96%, which gives rise to a probabil-
ity of getting a defect-free array of about 40%. As shown in
Fig. 3(B), the filling fraction decreases only marginally when
the number of atoms increases, showing the scalability of our
approach. In order to achieve even higher filling fractions,
one could envision to iterate the procedure presented here, i.e.
skip the disposal of unused atoms, analyze the “final” image
and fill in defects (if any) with remaining atoms.

In conclusion, we have demonstrated the implementation
of a robust procedure based on site-selective atom manipula-
tion, that allows for the rapid preparation of defect-free ar-
rays of single neutral atoms. Analyzing the technical limi-
tations of the current implementation suggests that preparing
hundreds of individual atoms in arrays of arbitrary geometries
very close to unit filling is realistic with state-of-the-art tech-
nology [27]. These results, possibly combined with Raman
sideband cooling of atoms in optical microtraps [28, 29], open
promising paths to study many-body physics and constitute an
important resource for quantum information processing with
cold neutral atoms. In the future, using the same technique,
it should be possible to insert atoms one at a time into a mi-
crotrap [30], thus preparing small samples with an exact atom
number, e.g. for applications in cold chemistry.
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where S+i (along with Sz
i ) are the usual spin-1/2 angular momentum

operators on site i. The dipolar interaction energy includes a geomet-
rical factor, Vdd(ri 2 rj) 5 (1 2 3cos2(Hij))/jri 2 rjj3, where the vector
ri is the position of the ith molecule in units of the lattice constant a and
Hij is the angle between the quantization axis, defined by the B field,
and the vector connecting molecules i and j. More generally, polar
molecules realize the full spin-1/2 model with the capability of con-
trolling all relevant interaction parameters. In this work, we isolate the
spin-exchange interaction, which has been difficult to realize in other
systems, by setting the Ising term, which is proportional to Sz

i Sz
j , to zero

by working at zero electric field. The Hamiltonian reduces to the lim-
iting case known as the spin-1/2 quantum XY model, in which the

spin-exchange interaction is characterized by J\~{d2
;:

.
4pe0a3,

where e0 is the permittivity of free space and d#"5 Æ#jdj"æ is the dipole
matrix element between j#æ and j"æ. Physically, this term is responsible
for exchanging the spins of two trapped molecules (Fig. 1a).

In our experiment, we create up to 2 3 104 ground-state KRb mole-
cules in the lowest motional band of a 3D lattice formed by three
mutually orthogonal standing waves with wavelengths of l 5 1,064 nm.
The lattice constant is a 5 l /2 and the lattice depth is 40Er in each

direction, where Er 5 B2k2/2m is the recoil energy,B is Planck’s constant
divided by 2p, k 5 2p/l and m is the mass of KRb. We use microwaves
at ,2.2 GHz to couple the j0, 0æ and j1, 21æ states, which form the j#æ
and j"æ two-level system. The degeneracy of the N 5 1 rotational states
is broken by the interaction between the nuclear quadrupole moments
and the rotation of the molecules, and in a 54.59 mT magnetic field the
j1, 0æ and j1, 1æ states are higher in frequency than the j1, 21æ state by
270 and 70 kHz, respectively14 (Fig. 1b). All rotational states used in
this work involve the nuclear spin quantum numbers mRb

I ~1=2 and
mK

I ~{4, following the notation of ref. 14. The quantization axis is set
by the magnetic field, which is oriented at 45uwith respect to the X̂ and
Ŷ lattice directions (Fig. 1c). The polarizations of the lattice beams are
chosen such that the tensor a.c. polarizabilities of the j0, 0æ and j1, 21æ
states are very similar25, so that we create a spin-state-independent
lattice trap (Methods). We address the entire sample with a microwave
field and achieve a p-pulse fidelity of .99%.

The energy scale for our spin-1/2 quantum XY system is characterized
by (JH/2)Vdd(ri 2 rj). For our rotational states, d;:

!! !!~0:98|0:57=
ffiffiffi
3
p

D
and jJH/2hj5 52 Hz. Here the additional factor of 0.98 in the trans-
ition dipole matrix element comes from an estimated 2% admixture of
another hyperfine state14. Each molecule in the lattice will experience
an interaction energy with contributions from all other molecules,
where each contribution depends on molecular separation and angle
H. Figure 1c shows the geometrical factors for nearby sites relative to a
central molecule (green) for our experimental conditions.

We employ coherent microwave spectroscopy to initiate and probe
spin dynamics. Figure 2a shows a basic spin-echo pulse sequence and its
Bloch sphere representation. Starting with the molecules prepared in
j#æ, the first (p/2)y-pulse creates a superposition state (j;izj:i)=

ffiffiffi
2
p

.
Any residual differential a.c. Stark shift, which gives rise to single-
particle dephasing, can be removed using a spin-echo pulse. After a
free-evolution time of T/2, we apply a (p)y echo pulse, which flips the
spins and reverses the direction of single-particle precession. The spins
rephase after another free-evolution time of T/2, at which time we
probe the coherence by applying ap/2-pulse with a phase offset relative
to the initial pulse. We measure the number of molecules left in j#æ as a
function of this offset phase, which yields a Ramsey fringe (Fig. 2b).

With the single-particle dephasing effectively removed, the contrast
of the Ramsey fringe as a function of T yields information on spin
interactions in the system26. We note that the spin-echo pulse has no
impact on the dipolar spin-exchange interactions described by equa-
tion (1). The most striking feature evident in the measured contrast
curves (Fig. 2c, d) is the oscillations on top of an overall decay. We
attribute both the contrast decay and the oscillations to dipolar inter-
actions. Imperfect lattice filling and many-body interactions each give
a spread of interaction energies, which results in dephasing and a
decaying contrast in the Ramsey measurement. Figure 1c illustrates
the different interaction energies coming from Vdd, which can be posi-
tive or negative. For low lattice fillings, the interaction energy spectrum
can have a strong contribution from the highest-magnitude nearest-
neighbour interaction. Oscillations in the contrast can then result from
the beating of this particular frequency with the contribution from
molecules that experience negligible interaction shifts. In principle,
there should be several different oscillation frequencies owing to the
differing geometrical factors in the lattice. Although a dominant oscil-
lation frequency is observed, we note that our data does not rule out
additional frequencies.

Because interaction effects depend on the density, we investigate
spin coherence for different lattice filling factors. To reduce the density
of molecules without changing the distribution, we hold the molecules
in the lattice for a few seconds while inducing single-particle losses
with an additional strong optical beam that enhances the rate of off-
resonance light scattering15. We fit the measured time dependence of
the Ramsey contrast to an empirical function, Ae–T/t 1 Bcos2(pfT), to
extract a coherence time, t, and an oscillation frequency, f. As shown in
Fig. 2d, f is essentially unchanged over our accessible range of densities,
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Figure 1 | Dipolar interactions of polar molecules in a 3D lattice. a, Polar
molecules are loaded into a deep 3D optical lattice. Microwaves are used to
address the transition between two rotational states (red and blue represent
different rotational states). JH characterizes the spin-exchange interaction
energy. b, Schematic energy diagram (not to scale) for the ground and first
excited rotational states. The degeneracy of the excited rotational states is
broken as a result of a weak coupling of the nuclear and rotational degrees of
freedom. We use | 0, 0æ and | 1, 21æ as our two spin states. c, The interaction
energy between any two molecules depends on their relative position in the
lattice. The numbers shown give the geometrical factor 2Vdd(ri 2 rj) for the
dipolar interaction of each site relative to the central site (green), under the
specific quantization axis (B field). Negative values (blue) correspond to
attractive interactions, and positive values (red) correspond to repulsive
interactions.
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• short-range                                   vs long-range

• fast preparation of entangled states for time-keeping and sensing 
(electrometry, magnetometry, thermometry, gravimetry) 

• medium for fast quantum state transfer: speed up many quantum 
computing algorithms and outpace decoherence 


