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We developed an objective method to compare distributed control algorithms in simulations of large sys-
tems. Our method has four steps: (1) develop a reduced-parameter model (i.e., Koala), (2) determine the
most significant model behaviors and the parameters that most influence those behaviors, (3) construct
a set of parameter combinations under which control algorithms should be compared and (4) use multi-
dimensional data analysis techniques to find patterns revealing significant similarities and differences
among the algorithms. This work describes steps (1) and (2) as applied to Koala, an laaS (Infrastructure-

as-a-Service) cloud simulator.
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We developed an objective method to compare distributed control algorithms in simulations of large sys-
tems. Our method has four steps: (1) develop a reduced-parameter model (i.e., Koala), (2) determine the
most significant model behaviors and the parameters that most influence those behaviors, (3) construct
a set of parameter combinations under which control algorithms should be compared and (4) use multi-
dimensional data analysis techniques to find patterns revealing significant similarities and differences
among the algorithms. This work describes steps (3) and (4) as applied to Koala, an laaS (Infrastructure-

as-a-Service) cloud simulator.
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A simple message discard attack initiated by a Trojan in compromised Web-server

code leads to VM Leakage that exhausts resources in an laaS cloud based on com-

monly available open-source code. Adding two orphan control processes, (1) crea-

tion orphan control and (2) persistent termination, mitigates the VM Leakage.
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Orphan control processes do not eradicate all leaked VMs at highest mes-

sage loss rate due to existence of temporary termination orphans that occur

because we limited persistent termination to final termination requests
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IDENTIFY FAILURE SCENARIOS IN CLOUD
SYSTEMS USING MARKOV CHAIN ANALYSIS

. .
— Chris Dabrowski and Fern Hunt
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Problem: Identifying failure scenarios in distributed systems such as clouds
is critical to understanding areas where performance may degrade. However,
potential failure scenarios may be numerous and difficult to find.

Objective: To perturb Discrete Time Markov Chains (DTMCs) of cloud
system behavior to identify potential failure scenarios more quickly than
through detailed large-scale simulation or use of test beds.

Steps:

(1) Using Koala as proxy for real-world cloud, develop detailed state model
of cloud behavior and convert to time-inhomogeneous DTMC.

(2) Find minimal s-t cut sets in a directed graph of cloud DTMC to identify
critical state transitions that break paths to desirable system goal states.

(3) Perturb critical state transitions to describe potential failure scenarios,
create predictive performance curves, and find performance thresholds.

State Model of Resource Request in Cloud

A detailed representation of the states that a cloud system (Koala) may enter
under normal and failure conditions, shown for two of the five major phases.

High-Level Model of

Phases of Request Lifecycle
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Detailed State Models of Two Phases
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Creating a Discrete Time Markov Chain

 Observe Koala (as proxy for real-world system) to derive set of
transition probability matrices (TPMs) that describe probabilities of
transition between states over different time periods - form a time-
inhomogeneous DTMC.

 Generate1000 time period TPMs of 3600 s each.

Given states s, s;, /, j= 1...n where n = 39, p;, is the
Jij probability of transitioning from state i to state j, written
as s; =2 s;. This probability is estimated by calculating the
frequency of s, > s;, Or f,-j, divided by the sum of the
frequencies of s; to all other states.

8 9 10

% 8| Allocating_Minimum 0 0.248 | 0.752
9 |Allocating_Maximum 0 0 €
10|Transferring Failure_Estimate 0 0 £

Using the DTMC to simulate large-scale

system (Koala) behavior

 Markov chains can emulate Koala to capture high-level system
behavior, but in two orders of magnitude less computational time.

Total Grants

To evolve system state in discrete time steps,
multiply state vector v, (at time step m) by the oo
TPM, Q' for the applicable time period tp to g °* , /Z
produce a new system state vector v, .4, 5 0o //
OP)T *vy =v ., where tp = integral value (m/S) + 1 g o //
where T indicates a matrix transpose. B /| TetsiGrants (Markov simulation)
Zj [ Total Grants (Large-scale simulation)
Vm Vm+1 'o / ‘ ‘ ‘ ‘ ‘ ‘ ‘
~ E= Full and Partial Grants
% g @ 0.5 S
—] E '25"0.45 <
N E ,5_%; 0.4
E £ EO.SS
= = 2 os ,
E i .§_,025 //
% % §001z ’———' Full Grant (Markov simulation)
i é § ’ / r_;:‘ Full Grant (Large-scale simulation)
% i g ot / ___________ — Partial Grant (Markov simulation)
. . o - 0.05 ---Partial Grant (Large-scale simulation)
Repeated for 576 time steps in 16 hour 0 ‘
. . . . O S0 Yo, L <o o Vo, Ny Yo By So, N, %
simulated period, one time period per hour. e sten

Using minimal s-t cut set analysis
to find potential failure scenarios

High-Level Model
of Request Lifecycle

Detailed Model of
Cluster Estimating Phase

In a directed graph of the Koala
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One-transition cut sets Two-transition cut sets | Absorbing
Set of member Total Set of member Mumber of |Total - __ _St_at‘f v
transitions from Fig. 3 |Probabilty transitions from Fig. 3 |From States |Probabilty

1-1 i1, 2} 0.001 2-1 {14, 17} {14, 18} 1 0.895

1-2 {2, 3} 0.025 2-2 {9, 11} {9, 12} 1 1.000

1-3 i3, 47 0.124 2-3 {9, 12} {11, 12} 2 1.395

1-4 18, 91 0.2684 L. | i |

..................... 2-23 {33r 35} {3.}.‘[r 35} 2 2,000

1-10 112, 13} 1.000 *Provan S., and Ball M., 1984, “Computing Network Reliability in Time

Polynomial in the Number of Cuts,” Operations Research, 32(3), pp. 516-526.

Perturbing state transitions in a cut set to
predict system behavior in failure scenario (1)
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Increase in Probability of Transition from Allocating_Minimum
state (8) to Transferring_Failure_Estimate state (10)

which software or hardware failures make
resource databases inaccessible, preventing
clusters from computing minimum allocation
estimates. Instead, clusters return failure
estimates to the cloud controller.

—(a) Total Grants (Markov Simulation)

A (b) Total Grants (Large Scale Simulation)

Decline in total requests granted (Full and Partial) due
to cluster estimation failure:

(a) As estimated by perturbing the DTMC; and

(b) As computed in Koala large-scale simulation.

Portions of TPM perturbed

8 9 10 Blue curves show the resulting decrease in requests
8|Allocating Minimum 0 0_244 0'7521 granted as estimated using the DTMC and as actually
— occurred in the Koala ‘large-scale simulation. These
9|Allocating_Maximum ° ° £ curves are plotted against the left vertical axis. The
10]Transferring Failure_Estimate 0 0 2 right vertical axis provides units for the decrease in

+ Raise probabiltiy of Allocating_Minimum -
Transferring_Failure_Estimate:TPM element {8, 10}

» Lower probablity of Allocating_Minimum -
Allocating Maximum: TPM elements {8, 9}.

probability of the state transition.

Perturbing state transitions in a cut set to

predict system behavior in failure scenario (2)
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Cut set #2-3 could relate to a failure scenario in
which viruses or other faults cause widespread
software process failures in clusters, which
prevent completion of cluster allocation
estimation computations. Instead, clusters
return failure estimates to the controller.

o
o

A 0.0

Q Q Q Q Q Q Q Q Q Q 4
2 ‘o <0 % 2 ) @ ] % 2 %

Proportion o

Increase in Probability of Transition from Allocating_Partial
state (11) to Transferring_Failure_Estimate state (10).

—(a) Total Grants (Markov Simulation)

A (b) Total Grants (Large Scale Simulation)

Decline in total requests granted (Full and Partial) due
to cluster estimation failure:
(a) As estimated by perturbing the DTMC; and

Portions of TPM perturbed (b) As computed by Koala large-scale simulation.

9 10 | 11 | 12

9|Allocating_Maximum

Blue curves show the resulting decrease in requests
granted as estimated using the DTMC and as actually
occurred in the Koala large-scale simulation. These
curves are plotted against the left vertical axis. The
right vertical axis provides units for the decrease in
probability of the state transition.
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*Raise Allocating  Maximum -> Allocating _Partial: TPM element {9, 11}
sLowerAllocating_Maximum > Recording_ Allocation (TPM element {9, 12})

*Raise Allocating _Partial-> Transferring_Failure _Estimate: TPM element {11, 10}
*Lower Allocating_Partial > Recording_Allocation: TPM element {11, 12}

Ongoing Work

Apply methodology to larger problems and determine scalability

 Current model consists of 39 states and 139 transitions

* |ncludes user, cloud controller, and cluster behavior, but not
node behavior or actual use of VMs

Apply methodology to different types of failure scenarios

For more information, see:

 Identifying Failure Scenarios in Complex Systems by Perturbing Markov Chain
Models, by Christopher Dabrowski and Fern Hunt, Proceedings of the 2011
Pressure Vessels and Piping Division Conference. July 17-21, Baltimore, MD.

« Using Markov Chains and Graph Theory Concepts to Analyze Behavior in
Complex Distributed Systems, by Christopher Dabrowski and Fern Hunt,
Proceedings of the 23rd European Modeling and Simulation Symposium,
September 12-14, 2011. Rome ltaly.




Predicting Catastrophic Failure Scenarios in Cloud Systems

(Proposed Research)

C. Dabrowski, J. Filliben, D. Genin, F Hunt, K. Mills and S. Ressler from NIST

No effective methods exist to predict failure regimes in large distributed systems—the search space is

large and causality is difficult to establish. Today, system operators wait for failures and diagnose, react

and mitigate. We propose to leverage models and methods from the physical sciences to predict unfore-

seen dynamics and failure scenarios that could lead to spatiotemporal collapse in designs and deploy-

ments of large distributed systems. We intend to investigate and demonstrate our methods in the con-

text of IaaS (Infrastructure-as-a-Service) clouds. Our work aims to improve cloud computing reliability,

benefiting designers of distributed systems running on clouds, and those deploying clouds.

First
Hard

Problem

Possible

Approaches

Complex information systems encompass an
infeasible search space.

Vir ever Y = T X111,k =2 Xn|[1,...k] )

System Response Space System Parameter Space

1000

System Parameter Space = k¥, e.g., for k of 232 and x of 1000, = (232) = 0(10°%33)

Atoms in the visible universe = about 10%°

Plausible approaches to investigate:

— Anti-Optimization + Directed Search (e.g., genetic
algorithms, simulated annealing, evolutionary
strategies)

— Markov Models + Graph & Perturbation Analyses
(e.g., transform system models into Markov models
and use graph theory to find cut-sets and
perturbation to explore failure trajectories)

Proposed
Tasks

Existing Commitments (EC1) — comparing virtual machine
placement algorithms under suboptimal conditions

* Anti-Optimization + Genetic Algorithms (GA)
— GA1: design/develop GA software for existing Koala simulator

— GAZ2: test GA software on a known problem within Koala
— GA3: design/develop laaS model that includes recovery behaviors
— GAA4: use GA to explore new simulation for failure scenarios

 Markov Models + Graph & Perturbation Analysis (MM)

— MM1: design/develop MM software that captures dependencies
— MM2: test MM software on a known problem within Koala
— MM3: generate MM from the new laaS simulator (see GA3)

— MMA4: use graph & perturbation analysis to explore new MM for
failure scenarios

Determining causality is difficult given only
patterns of global system behavior.

For example, unexpected collapsein
the mitigation probability density
function of job completion times in

£
a computing grid was unexplainable :

without more detailed data and
analysis.

Great NIST team! Experienced in modeling and analyzing complex systems:

Kevin Mills [PhD] (Senior Research Scientist — Simulation & Genetic Algorithm)
Christopher Dabrowski (Computer Scientist — Markov models & Graph Theory)

___Normal pdf

Attack pdf

| r/ \\ Mitigation pdf

@%@ﬁﬁﬁﬁ@@ﬁﬁﬁ@%@ﬁﬁﬁﬁ@@ﬁﬁﬁﬁ

Fern Hunt [PhD] (Mathematician — Markov Models and Eigenanalysis)
James Filliben [PhD] (Statistician — Exploratory Data Analysis)
Sandy Ressler (Computer Scientist — Information Visualization)
Daniel Genin [PhD] (Mathematician — Analytical Models)
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Second
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http:llwww.nist.govlitllantdlemergent_behavior.cfm
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