Efficient Sensitivity Analysis Method for Large Cloud Simulations Kevin Mills, James Filliben and Chris Dabrowski from NIST Proceedings of IEEE Cloud 2011, Washington D.C., July 4-9, 2011

We developed an objective method to compare distributed control algorithms in simulations of large systems. Our method has four steps: (1) develop a reduced-parameter model (i.e., Koala), (2) determine the most significant model behaviors and the parameters that most influence those behaviors, (3) construct a set of parameter combinations under which control algorithms should be compared and (4) use multidimensional data analysis techniques to find patterns revealing significant similarities and differences among the algorithms. This work describes steps (1) and (2) as applied to Koala, an laaS (Infrastructure-

as-a-Service) cloud simulator.

Theory

2-Level OFF Experiment Designs Reduce # of Parameter Combinations, While Improving Global Coverage and Minimizing Error in Effect Estimates in comparison with comparable Factor-at-a-Time (FAT) Designs

We selected two pairs of level settings (SA1 & SA2) and two system sizes (small & large)

			SA1-small a	nd SA1-large	SA2-small a	nd SA2-large
	Adopted 2-Level	Parameter	Plus Level	Minus Level	Plus Level	Minus Level
		x1	1200 hours	600 hours	1600 hours	200 hours
	(2 ¹¹⁻⁵) "Resolution IV"	x 2	500 (<mark>SA1-small</mark>) 5000 (<mark>SA1-large</mark>)	250 (<mark>SA1-small</mark>) 2500 (<mark>SA1-large</mark>)	750 (<mark>SA2-small</mark>) 7500 (<mark>SA2-large</mark>)	125 (<mark>SA2-small)</mark> 1250 (<mark>SA2-large</mark>)
	OFF experiment design, requiring 64 simulations per experiment		PU1 = 0.2 PU2 = 0.2 PU3 = 0.1 PU4 = 0.1 WS1 = 0.15 WS2 = 0.07	PU1 = 1/6 PU2 = 1/6, WS1 = 1/6	PU1 = 0.4 PU2 = 0.4 PU3 = 0.1	WS1 = 0.25 WS2 = 0.15 WS3 = 0.1 PS1 = 0.35
Experiment		x3	WS3 = 0.03 PS1 = 0.1	MS1 = 1/6 PS1 = 1/6	PU4 = 0.05 PU5 = 0.025	PS2 = 0.04 PS3 = 0.01 DS1 = 0.08 DS2 = 0.015 DS3 = 0.005
	Instantiated 4 designs, and simulated		PS2 = 0.01 MS1 = 0.1 MS3 =0.01 DS1 = 0.10 DS2 = 0.01	DS1 = 1/6	PU6 = 0.025	
Design	6 repetitions (different	x4	8 hours (a = 1.2)	4 hours (α = 1.2)	12 hours (a = 1.2)	2 hours (α = 1.2)
	random number seeds)	x5	20 (SA1-small) 40 (SA1-large)	10 (<mark>SA1-small</mark>) 20 (<mark>SA1-la</mark> rge)	30 (SA2-small) 40 (SA2-large)	5 (SA2-small) 10 (SA2-large)
	with the 2 smaller designs	x6	200 (SA1-small) 1000 (SA1-large)	100 (SA1-small) 500 (SA1-large)	400 (SA2-small) 1500 (SA2-large)	50 (<mark>SA2-small)</mark> 250 (<mark>SA2-large</mark>)
	Required (6 x 2 + 2) x 64 = 896	х7	C22 = 1.0	C8 = 0.25 C14 = 0.25 C18 = 0.25 C22 = 0.25	C14 = 0.2 C16 = 0.2 C18 = 0.2 C20 = 0.2 C22 = 0.2	C2 = 0.1 C4 = 0.1 C6 = 0.1 C8 = 0.1 C10 = 0.1 C12 = 0.1 C16 = 0.1 C22 = 0.3
	simulations	x8	Percent Allocated	Least-Full First	Percent Allocated	Least-Full First
		x9	Next-Fit	First-Fit	Next-Fit	First-Fit
		x10	4	1	8	1
		x11	10 ⁻³ to 10 ⁻⁸	10 ⁻⁴ to 10 ⁻⁹	10 ⁻² to 10 ⁻⁷	10⁻⁵ to 10⁻¹⁰

Correlation Analysis & Clustering (CAC) Reduces Dimensionality

We identified an **8-dimensional response space** within the 40 responses

	Res
Compute correlation coefficient	Dim
(r) for all response pairs	Clou Dem
Examine frequency distribution	Rati
for all r to determine threshold for correlation pairs to retain; r > 0.65, here	Clou Res Usa
	Vari
Create clusters of mutually correlated pairs; each cluster	Clus
represents one dimension	Mix
Select one response from each	Туре
cluster to represent the	Num
dimension; we selected	User Rate
response with largest mean	Real Rate
correlation that was not in another cluster*	Vari Cho

esponse mension	SA1-small (9 dimensions)	SA1-large (8 dimensions)	SA2-small (10 dimensions)	SA2-large (9 dimensions)
oud-wide emand/Supply atio	y1, y2, <mark>Y3</mark> , y5, y6, y8, y9, y10, y13, y23, y24, y25, y29, y30, y32, y34, y36, y38	y1, y2, <mark>y3</mark> , y5, y6, y7, y8, y9, y10, y13, y23, y34, y25, y29, y30, y32, y33, y34, y36, y38	y1, <mark>y2</mark> , y3, y5, y6, y8, y9, y10, y11, y13, y14, y15, y23, y24, y25, y38	y1, y2, y3, y5, y6, y8, y9, <mark>y23</mark> , y24, y25, y38
oud-wide esource sage	y10, y11, y12, y13, y14, y15	y10, y11, y12, y13, y14, y15	y10 , y11, y12, y13, y14, y15	y10 , y11, y12, y13, y14, y15
ariance in luster Load	y16, y17, y18, y19,y20, y21, <mark>y26</mark> , y27	y16, y17, y18, y19,y20, y21, <mark>y26</mark> , y27	y16, y18, y19, y20, y21, y26, y27 y17 (Mem. Util)	y16, y17, y18, y19 ,y20, y21, y26, y27
ix of VM /pes	<i>y34, <mark>y35</mark> (</i> ws)	у31 (мs)	y12, y14, y15, y30, y31, y33, y34, y35, <mark>y36</mark>	y14, y15, y30, y31 , y33, y34, y35
	у31 (MS)		y • •, y • •, y • •	<i>y</i> 15, y36 (DS)
umber of VMs	y29, <mark>y37</mark>	y37	y29, <mark>y37</mark>	y29
ser Arrival ate	y4	y4	y4	y4 , y37
eallocation ate	y7 , y22	у7, <mark>у22</mark>	y7 (cluster) y22 (node)	у7, у22
ariance in hoice of luster	y28	y28	y28	y28

*Not possible for cloud-wide resource usage in SA2-small, so we selected response with highest mean correlation

Significant

Behaviors

Main Effects Analysis (MEA) Identifies Significant Influence of Input Parameters on Response Variables

Most significant parameters determined through MEA of the responses selected using CAC

Main

Effects Analysis

We applied MEA to response variables selected using CAC – this example is **y15** (NIC Count Load) for **experiment SA1-small**

We computed percent of responses influenced (Ψ) for each parameter, weighting p < 0.05 at $\frac{1}{2}$ and p < 0.01 at 1:

 $\Psi = (|\{y \mid p < 0.01\}| + \frac{1}{2} |\{y \mid p < 0.05\}|) / |\{y\}| \times 100$

Computed average Ψ for each parameter, weighting experiment Ψ by number of repetitions

			Input Parameter									
Experiment	Weight	x1	x2	х3	x4	x5	x6	x 7	x8	x9	x10	x11
SA1 small	6/14	1	57	22	11	44	29	30	12	0	1	0
SA1 large	1/14	0	69	13	25	44	56	31	25	0	13	0
SA2 small	6/14	2	73	38	10	45	62	10	17	1	0	0
SA2 large	1/14	0	56	50	11	39	56	6	11	0	0	0
Avg. Ψ	Est.	1	65	30	12	44	47	20	15	0	1	0

green = major influence; yellow = modest influence; orange = minor influence; gray = no influence

Most significant parameters: x2 (# users), x5 (# clusters), and x6 (# nodes/cluster) **Moderately influential parameters**: x3 (user types) and x7 (platform types) **Somewhat influential parameters**: x4 (user hold time) and x8 (cluster-selection algorithm) **No influence** : *x1* (measurement interval), *x9* (node-selection algorithm), x10 (geo-distribution of cloud components), and x11 (packet loss prob.)

Significant

Parameters

Comparing VM-Placement Algorithms for On-Demand Clouds Kevin Mills, James Filliben and Chris Dabrowski from NIST Proceedings of IEEE CloudCom 2011, Athens, Nov. 29-Dec. 1, 2011

We developed an objective method to compare distributed control algorithms in simulations of large systems. Our method has four steps: (1) develop a reduced-parameter model (i.e., Koala), (2) determine the most significant model behaviors and the parameters that most influence those behaviors, (3) construct a set of parameter combinations under which control algorithms should be compared and (4) use multidimensional data analysis techniques to find patterns revealing significant similarities and differences among the algorithms. This work describes steps (3) and (4) as applied to Koala, an IaaS (Infrastructure-

VM Placement Algorithms

Criteria for C	Choosing a Cluster	Heuristics for Choosing Nodes		
Identifier	Criterion Name	Identifier	Heuristic Name	
LLF	Least-Full First	FF	First Fit	
		LF	Least-Full First	
PAL	Percent Allocated	MF	Most-Full First	
FAL	Percent Allocated	NF	Next Fit	
RAN	Random	RA	Random	
		TP	Tag & Pack	

Experiment Design

Layer	Parameter	Parameter Name	Plus (1) Level	Minus (-1) Level	
	x1	Number of users	2500	250	
			PU1 = 0.20		
			PU2 = 0.20		
			PU3 = 0.10		
			PU4 = 0.10	PU1 = 1/6	
			MS1 = 0.10	PU2 = 1/6	
		Brobability of a	MS3 = 0.01	MS1 = 1/6	
Demand	x2	Probability of a user's type	PS1 = 0.10	PS1 = 1/6	
		user s type	PS2 = 0.01	WS1 = 1/6	
Layer			WS1 = 0.15	DS1 = 1/6	
			WS2 = 0.07		
			WS3 = 0.03		
			DS1 = 0.10		
			DS2 = 0.01		
		Average (&			
	х3	shape) of user's	8 hours (a = 1.2)	4 hours (a = 1.2)	
		holding time			
	x4	Number of	20	10	
	~4	clusters	20		
		Number of			
Supply	x5	nodes per	1000	100	
Supply Layer		cluster			
Layer		Probability of a		C8 = 0.25	
	<i>x</i> 6	node's platform	C22 = 1.0	C14 = 0.25	
	70	configuration	022 - 1.0	C18 = 0.25	
		type		C22 = 0.25	

User Types

	User Turna		Max-Min	Max-Max			Max-Min	Max-Max
r	Туре	VM Type(s)	VMs	VMs	Туре	VM Type(s)	VMs	VMs
	PU1		10	100	PS1		3	10
	101			100	PS2	C1 medium	10	50
	PU3	M1 small	100	500	PS3		50	100
		ivit Sinan				M1 large		
	PU5		500	1000	WS1	M2 xlarge	1	3
						C1 xlarge		
						M1 large		
	PU2		10	100	WS2	M2 xlarge	3	9
						C1 xlarge		
		M1 large				M1 large		
	PU4		100	500	WS3	M2 xlarge	9	12
						C1 xlarge		
	PU6		500	1000	DS1		10	100
	MS1	M1 xlarge	10	100	DS2	M4 xlarge	100	500
	MS3	M1 xlarge	100	500	DS3		500	1000

Responses Evaluated

y1 User Request Rate (Requests by All Users /# User Cycles) y2 NERA Rate (NERAs / Requests by All Users) y3 Full Grant Rate (# User Cycles / Simulated Hours) y4 User Arrival Rate (# User Cycles / Simulated Hours) y5 User Give-up Rate (# User Cycles / Simulated Hours) y6 Grant Latency Weighted Avg. Delay in Granting VMs to Users that Gov VMs y41 Avg. Fraction VMs Obtained (Allocated VMs/Requested VMs) y42 Avg. Runinstance Response Time Weighted avg. for success/Rul allocations y42 Reallocation Rate (# Times Alternate Cluster Chosen / Requests Granted) y7 Reallocation Rate (# Times Alternate Cluster Seporting Full Grants) y40 Vers Distance (Avg. Fraction Clusters Offring Full Grants) y70 Vcore Utilization (Avg. Fraction of Virtual Cores Used in Cloud) y71 Disk Space Utilization (Avg. Virtual Ots Allocated / Physical Disk in Cloud) y71 Disk Space Utilization Variance Avg. Variance in Memory InUsical Disk in Cloud) y73 Disk Count Load (Avg. Variance in Memory Utilization across Clusters </th <th>Category</th> <th>ID</th> <th>Response Name</th> <th>Definition</th>	Category	ID	Response Name	Definition
V2 NERA Rate (NERAs / Requests by All Users) y2 Full Grant Rate (Full Grants / Full Grants + Partial Grants)) y4 User Arrival Rate (# User Cycles / Simulated Hours) y5 User Give-up Rate (# User Sthat Gave Up / # User Cycles) y4 User Success Rate ((Full Grants + Partial Grants)// Wis to Users that Got VMs y40 User Success Rate ((Full Grants + Partial Grants)// Wis to Users that Got VMs y41 Avg. Fraction VMs Obtained (Allocated VMs/Requested VMs) y42 Avg. Runinstance Response Time Weighted avg. for successful allocations y43 NERA Proportion (Avg. Fraction Clusters Offering Full Grants) y44 Avg. Runinstance Response Time (Avg. Fraction of Memory in Use in Cloud) y45 Full Grant Proportion (Avg. Fraction of Memory in Use in Cloud) y41 Memory Utilization (Avg. Vitrual Cores Allocated / Physical Cores in Cloud) y14 Disk Space Utilization (Avg. Vitrual Cores Allocated / Physical Nics in Cloud) y15 Disk Count Load (Avg. Vitrual Cores Allocated / Physical Nics in Cloud) y14 Disk Count Load (Avg. Viriance	category			
y2 Full Grant Rate (Full Grants / (Full Grants + Partial Grants)) y4 User Arrival Rate (# User Cycles / Simulated Hours) y5 User Give-up Rate (# User Cycles / Simulated Hours) y6 Grant Latency Weighted Avg. Delay in Granting VMs to Users that Got VMs y41 Avg. Fraction VMs Obtained (Allocated VMs/Requested VMs) y41 Avg. Runinstance Response Time Weighted avg. for success/ful allocations y41 Avg. Runinstance Response Time (# Times Alternate Cluster Chosen / Requests Granted) y8 Full Grant Proportion (Avg. Fraction Clusters Offering Full Grants) y9 NERA Proportion (Avg. Fraction of Virtual Cores Used in Cloud) y10 vCore Utilization (Avg. Fraction of Virtual Cores Used in Cloud) y12 Disk Space Utilization (Avg. Virtual Disk Salca et / Physical Disks in Cloud) y13 pCore Load (Avg. Virtual Disk Allocated / Physical Disks in Cloud) y14 Disk Count Load (Avg. Virtual Disk Allocated / Physical NCs in Cloud) y14 Disk Space Utilization Variance Avg. Variance in Memory Utilization across Clusters y16 vCore Utilization Varia			· · ·	
User 1/4 User Arrival Rate (# User Cycles / Simulated Hours) y5 User Give-up Rate (# Users that Gave Up / # User Cycles) y6 Grant Latency Weighted Avg. Delay in Granting VMs to Users that Got VMs y40 User Success Rate ((Full Grants + Partial Grants)/# User Cycles) y41 Avg. Fraction VMs Obtained (Allocated VMs/Requested VMs) y42 Avg. Runinstance Response Time Weighted avg. for successful allocations y45 Full Grant Proportion (Avg. Fraction Clusters Offering Pull Grants) y9 NERA Proportion (Avg. Fraction of Virtual Cores Used in Cloud) y10 vCore Utilization (Avg. Fraction of Olks Space in Use in Cloud) y13 pCore Load (Avg. Virtual Cores Allocated / Physical Disks in Cloud) y14 NUC Count Load (Avg. Virtual Disks Allocated / Physical NiCs in Cloud) y15 NIC Count Load (Avg. Virtual Cores Allocated / Physical NiCs in Cloud) y16 vCore Utilization Variance Avg. Variance in Memory Utilization across Clusters y17 Memory Utilization Variance Avg. Variance in NIC Count Load across Clusters y17 Voree Utiliz				
User y5 User Give-up Rate (# Users that Gave Up / # User Cycles) y6 Grant Latency Weighted Avg. Delay in Granting VMs to Users that Got VMs y6 User Success Rate ((Full Grants + Partial Grants)# User Cycles) y41 Avg. Runinstance Response Time Weighted avg. for successful allocations y42 Avg. Runinstance Response Time (# Times Alternate Cluster Chosen / Requests Granted) y8 Full Grant Proportion (Avg. Fraction Clusters Offering NERA) y10 vCore Utilization (Avg. Fraction of Disk Space Utilization Cluster Steponts Reporting NERA) y12 Disk Space Utilization (Avg. Fraction of Disk Space Utilization Cloud) y13 pCore Load (Avg. Virtual Cores Allocated / Physical Cores in Cloud) y14 Disk Count Load (Avg. Virtual Disk Allocated / Physical Nics in Cloud) y15 NiC Count Load (Avg. Virtual Disk Space Utilization across Clusters y17 Memory Utilization Variance Avg. Variance in Disk Space Utilization across Clusters y16 vCore Utilization Variance Avg. Variance in Disk Count Load across Clusters y17 Memory Utilization Variance Avg. Variance in Disk Count Coad acr				
y6 Grant Latency Weighted Avg. Delay in Granting VMs to Users that Got VMs y40 User Success Rate ((Full Grants + Partial Grants))# User Cycles) y41 Avg. Fraction VMs Obtained (Allocated VMs/Requested VMs) y42 Avg. Runinstance Response Time Weighted avg. for successful allocations y42 Avg. Runinstance Response Time Weighted avg. for successful allocations y43 Full Grant Proportion (Avg. Fraction Clusters Offering Pull Grants) y9 NERA Proportion (Avg. Fraction of Users Steparing Pull Grants) y10 vCore Utilization (Avg. Fraction of Mem ory in Use in Cloud) y11 Memory Utilization (Avg. Virtual Cores Allocated / Physical Cores in Cloud) y12 Disk Space Utilization Variance Avg. Variance in Nemory Utilization across Clusters y16 vCore Utilization Variance Avg. Variance in Disk Space Utilization across Clusters y18 Disk Space Utilization Variance Avg. Variance in Disk Count Load across Clusters y17 Memory Utilization Variance Avg. Variance in Disk Count Load across Clusters y17 NiC Count Variance Avg. Variance in Nicount Load across Clusters	User			
y40 User Success Rate ((Full Grants + Partial Grants)#User Cycles) y41 Avg. Fraction VMs Obtained (Allocated VMs/Requested VMs) y42 Avg. Runinstance Response Time Weighted avg. for successful allocations y7 Reallocation Rate (# Times Alternate Cluster Chosen / Requests Granted) y8 Full Grant Proportion (Avg. Fraction Clusters Reporting NERA) y10 vCore Utilization (Avg. Fraction of Memory in Use in Cloud) y11 Memory Utilization (Avg. Fraction of Disk Space in Use in Cloud) y12 Disk Space Utilization (Avg. Virtual Cores Allocated / Physical Cores in Cloud) y14 Disk Count Load (Avg. Virtual Ores Allocated / Physical NiCs in Cloud) y15 NIC Count Load (Avg. Variance in Ofer Utilization across Clusters y16 vCore Utilization Variance Avg. Variance in Disk Space Utilization across Clusters y17 Memory Utilization Variance Avg. Variance in Disk Count Load across Clusters y17 Memory Utilization across Clusters (# Disk Count Variance y24 Node Reallocation Rate (# Times Alternate Node Chosen I/Ms Allocated) y25 Disk Count V				
yd1 Avg. Fraction VMs Obtained (Allocated VMs/Requested VMs) yd2 Avg. Runinstance Response Time Weighted avg. for successful allocations yd1 Avg. Runinstance Response Time Weighted avg. for successful allocations yd2 Avg. Runinstance Response Time (# Times Alternate Cluster Chosen / Requests Granted) ys Full Grant Proportion (Avg. Fraction Clusters Reporting NERA) yd0 VCore Utilization (Avg. Fraction of Virtual Cores Used in Cloud) y11 Memory Utilization (Avg. Fraction of Memory in Use in Cloud) y12 Disk Space Utilization (Avg. Virtual Cores Allocated / Physical Disks in Cloud) y14 Disk Count Load (Avg. Virtual Disk Allocated / Physical Disks in Cloud) y15 NIC Count Load (Avg. Virtual Nics Allocated / Physical Disks in Cloud) y15 NIC Count Load Avg. Variance in Memory Utilization across Clusters y17 Memory Utilization Variance Avg. Variance in Disk Count Load across Clusters y17 Memory Utilization Variance Avg. Variance in Nic Count Load across Clusters y18 Disk Count Variance Avg. Variance in Nic Count Load across Clusters y20		<u> </u>	/	
y42 Avg. Runinstance Response Time Weighted avg. for successful allocations y7 Reallocation Rate (# Times Alternate Cluster Cluster Soren / Requests Granted) y8 Full Grant Proportion (Avg. Fraction Clusters Offering Full Grants) y9 NERA Proportion (Avg. Fraction Clusters Reporting NERA) y10 vCore Utilization (Avg. Fraction of Memory in Use in Cloud) y11 Memory Utilization (Avg. Fraction of Disk Space in Use in Cloud) y12 Disk Space Utilization (Avg. Virtual Cores Allocated / Physical Cores in Cloud) y14 Disk Count Load (Avg. Virtual Disk Allocated / Physical Cores in Cloud) y15 NIC Count Load (Avg. Virtual NICs Allocated / Physical Cores in Cloud) y15 NIC Count Load (Avg. Virtual NICs Allocated / Physical Cores in Cloud) y16 vCore Utilization Variance Avg. Variance in Memory Utilization across Clusters y18 Disk Space Utilization Variance Avg. Variance in Nick Count Load across Clusters y17 Memory Utilization Variance Avg. Variance in Nick Count Load across Clusters y18 Disk Space Utilization Variance Avg. Variance in Nick Count Load across Clusters				
V7 Reallocation Rate (# Times Alternate Cluster Chosen / Requests Granted) V8 Full Grant Proportion (Avg. Fraction Clusters Offering Full Grants) V9 NERA Proportion (Avg. Fraction Clusters Reporting NERA) V10 vCore Utilization (Avg. Fraction of Virtual Cores Used in Cloud) V11 Memory Utilization (Avg. Fraction of Disk Space in Use in Cloud) V12 Disk Space Utilization (Avg. Fraction of Disk Space in Use in Cloud) V13 pCore Load (Avg. Virtual Cores Allocated / Physical Cores in Cloud) V14 Disk Count Load (Avg. Virtual NICs Allocated / Physical NICs in Cloud) V15 NIC Count Load (Avg. Virtual NICs Allocated / Physical NICs in Cloud) V16 vCore Utilization Variance Avg. Variance in Memory Utilization across Clusters V18 Disk Space Utilization Variance Avg. Variance in Disk Space Utilization across Clusters V19 pCore Load Variance Avg. Variance in Disk Count Load across Clusters V20 Disk Count Variance Avg. Variance in Disk Count Load across Clusters V21 Disk Count Variance Avg. Variance in Disk Count Load across Clusters) V22		-		
VMs Full Grant Proportion (Avg. Fraction Clusters Offering Full Grants) V9 NERA Proportion (Avg. Fraction Clusters Reporting NERA) V10 vCore Utilization (Avg. Fraction of Virtual Cores Used in Cloud) V11 Memory Utilization (Avg. Fraction of Memory in Use in Cloud) V12 Disk Space Utilization (Avg. Fraction of Disk Space in Use in Cloud) V13 pCore Load (Avg. Virtual Cores Allocated / Physical Cores in Cloud) V14 Disk Count Load (Avg. Virtual Disks Allocated / Physical Disks in Cloud) V14 Disk Count Load (Avg. Virtual NICs Allocated / Physical NICs in Cloud) V16 vCore Utilization Variance Avg. Variance in Memory Utilization across Clusters V17 Memory Utilization Variance Avg. Variance in Disk Space Utilization across Clusters V17 Memory Utilization Variance Avg. Variance in Disk Space Utilization across Clusters V20 Disk Count Variance Avg. Variance in NIC Count Load across Clusters V21 NIC Count Variance Avg. Variance in NIC Count Load across Clusters V22 Noik Count Variance Avg. Variance in NIC Count Load across Clusters V22 <td></td> <td>- I - I - I - I - I - I - I - I - I - I</td> <td></td> <td></td>		- I - I - I - I - I - I - I - I - I - I		
Y9NERA Proportion(Avg. Fraction Clusters Reporting NERA)Y10vCore Utilization(Avg. Fraction of Virtual Cores Used in Cloud)Y11Memory Utilization(Avg. Fraction of Memory In Use in Cloud)Y12Disk Space Utilization(Avg. Fraction of Disk Space in Use in Cloud)Y14Disk Count Load(Avg. Virtual Disks Allocated / Physical Cores in Cloud)Y14Disk Count Load(Avg. Virtual NICs Allocated / Physical Disks in Cloud)Y15NIC Count Load(Avg. Virtual NICs Allocated / Physical NICs in Cloud)Y15NIC Count UsidAvg. Variance in Memory Utilization across ClustersY17Memory Utilization VarianceAvg. Variance in Disk Space Utilization across ClustersY18Disk Space Utilization VarianceAvg. Variance in Disk Space Utilization across ClustersY19pCore Load VarianceAvg. Variance in Disk Count Load across ClustersY20Disk Count VarianceAvg. Variance in NIC Count Load across ClustersY21NIC Count VarianceAvg. Variance in NIC Count Load across ClustersY22Node Reallocation Rate(# Times Alternate Node Chosen / VMs Allocated)Y23Cluster NERA Rate(# NERAs / # Responses Avg. across Clusters)Y24Cluster FUI-Grant Rate(# Full Grants # Responses Avg. across Clusters)Y25Allocation Rate(Times Cluster offsred Avg. across Clusters)Y24Custer Full-Grant Rate# WI Instances Extant in CloudY25Allocation-Allocation RateFraction of Current Instances that are MI arge VMsY26Standard				
ViteVore Utilization(Avg. Fraction of Virtual Cores Used in Cloud)V10Vecore Utilization(Avg. Fraction of Memory in Use in Cloud)V12Disk Space Utilization(Avg. Fraction of Disk Space in Use in Cloud)V13pCore Load(Avg. Virtual Cores Allocated / Physical Disks in Cloud)V14Disk Space Utilization Variance(Avg. Virtual Nics Allocated / Physical Disks in Cloud)V15NIC Count Load(Avg. Virtual Nics Allocated / Physical Disks in Cloud)V16vCore Utilization VarianceAvg. Variance in vCore Utilization across ClustersV17Memory Utilization VarianceAvg. Variance in Disk Space Utilization across ClustersV19pCore Load VarianceAvg. Variance in Disk Space Utilization across ClustersV20Disk Count VarianceAvg. Variance in Disk Count Load across ClustersV21NIC Count VarianceAvg. Variance in Disk Count Load across ClustersV22Node Reallocation Rate(# Times Alternate Node Chosen / VMs Allocated)V22Node Reallocation Rate(# Full Grants / # Responses Avg. across Clusters)V23Cluster NERA Rate(# Full Grants / # Responses Avg. across Clusters)V24Cluster NERA Rate(# Full Grant Allocation Rate across Clusters)V25Allocation Rate(# und Grant Allocation Rate across Clusters)V26Standard Deviation-NERAStand. Dev. in Avg. NERA Rate across ClustersV27Standard Deviation-Full-GrantStand. Dev. in Avg. Full-Grant Rate across ClustersV28Standard Deviation-RateFraction of Current Instances		-	· · · · · · · · · · · · · · · · · · ·	
Cloud y11 Memory Utilization (Avg. Fraction of Memory in Use in Cloud) y12 Disk Space Utilization (Avg. Fraction of Disk Space in Use in Cloud) y13 p Core Load (Avg. Virtual Cores Allocated / Physical Cores in Cloud) y14 Disk Count Load (Avg. Virtual Disks Allocated / Physical Disks in Cloud) y15 NIC Count Load (Avg. Virtual Disk Allocated / Physical Disks in Cloud) y15 NIC Count Load (Avg. Virtual Disk Space Utilization across Clusters y17 Memory Utilization Variance Avg. Variance in Nemory Utilization across Clusters y18 Disk Space Utilization Variance Avg. Variance in Disk Space Utilization across Clusters y18 Disk Count Variance Avg. Variance in Disk Count Load across Clusters y21 NIC Count Variance Avg. Variance in Disk Count Load across Clusters y21 NIC Count Variance Avg. Variance in Disk Count Load across Clusters y22 Node Reallocation Rate (# Times Alternate Node Chosen / VMs Allocated) y23 Cluster NERA Rate (# Hell Grants / # Responses Avg. across Clusters) y24 Cluster NERA Rate (# Full Grant Rate across Clusters) <tr< td=""><td></td><td>-</td><td>•</td><td></td></tr<>		-	•	
y12Disk Space Utilization(Avg. Fraction of Disk Space in Use in Cloud)y13pCore Load(Avg. Virtual Cores Allocated / Physical Cores in Cloud)y14Disk Count Load(Avg. Virtual Disks Allocated / Physical Disks in Cloud)y15NIC Count Load(Avg. Virtual NICS Allocated / Physical NICS in Cloud)y16vCore Utilization VarianceAvg. Variance in vCore Utilization across Clustersy17Memory Utilization VarianceAvg. Variance in Disk Space Utilization across Clustersy18Disk Space Utilization VarianceAvg. Variance in Disk Space Utilization across Clustersy19pCore Load VarianceAvg. Variance in Disk Space Utilization across Clustersy20Disk Count VarianceAvg. Variance in Disk Count Load across Clustersy21NIC Count VarianceAvg. Variance in NIC Count Load across Clustersy22V22Node Reallocation Rate(# Times Alternate Node Chosen / VMs Allocated)y23Cluster NERA Rate(# Full Grants /# Responses Avg. across Clusters)y24Cluster Full-Grant Rate(# Full Grant S'# Responses Avg. across Clusters)y25Allocation RateStand. Dev. in Avg. NERA Rate across Clustersy28Standard Deviation-NERAStand. Dev. in Avg. Full-Grant Rate across Clustersy29Current InstancesFraction of Current Instances that are M1 small VMsy31M1small InstancesFraction of Current Instances that are M1 small VMsy33C1medium InstancesFraction of Current Instances that are C1 medium VMsy34C1xlarge InstancesFraction		<u> </u>		
y13pCore Load(Avg. Virtual Cores Allocated / Physical Cores in Cloud)y14Disk Count Load(Avg. Virtual Disks Allocated / Physical Disks in Cloud)y15NIC Count Load(Avg. Virtual Disk Allocated / Physical NiCs in Cloud)y16vCore Utilization VarianceAvg. Variance in vCore Utilization across Clustersy17Memory Utilization VarianceAvg. Variance in Disk Space Utilization across Clustersy18Disk Space Utilization VarianceAvg. Variance in Disk Space Utilization across Clustersy19pCore Load VarianceAvg. Variance in Disk Space Utilization across Clustersy20Disk Count VarianceAvg. Variance in Disk Count Load across Clustersy21NIC Count VarianceAvg. Variance in NIC Count Load across Clustersy22Node Reallocation Rate(# Times Alternate Node Chosen / VMs Allocated)y23Cluster NERA Rate(# NERAs / # Responses Avg. across Clusters)y24Cluster Full-Grant Rate(# Ularants / # Responses Avg. across Clusters)y25Allocation Rate(Times Cluster chosen / Cluster offered Avg. across Clusters)y26Standard Deviation-NERAStand. Dev. in Avg. Full-Grant Rate across Clustersy27Standard Deviation-Allocation RateStand. Dev. in Avg. Full-Grant Rate across Clustersy28Standard Deviation-Allocation RateStand. Dev. in Avg. Full-Grant Rate across Clustersy29Current InstancesFraction of Current Instances that are M1 small VMsy30M1small InstancesFraction of Current Instances that are M1 small VMsy31M1lar	Cloud			
V14Disk Count Load(Avg. Virtual Disks Allocated / Physical Disks in Cloud)V15NIC Count Load(Avg. Virtual NICs Allocated / Physical NICs in Cloud)V16vCore Utilization VarianceAvg. Variance in vCore Utilization across ClustersV17Memory Utilization VarianceAvg. Variance in Disk Space Utilization across ClustersV18Disk Space Utilization VarianceAvg. Variance in Disk Space Utilization across ClustersV19pCore Load VarianceAvg. Variance in Disk Space Utilization across ClustersV20Disk Count VarianceAvg. Variance in Disk Count Load across ClustersV21NIC Count VarianceAvg. Variance in NIC Count Load across ClustersV22No de Reallocation Rate(# Times Alternate Node Chosen / VMs Allocated)V23Cluster NERA Rate(# NERAs / # Responses Avg. across Clusters)V24Cluster Full-Grant Rate(# Full Grants / # Responses Avg. across Clusters)V25Allocation Rate(Times Cluster chosen / Cluster offered Avg. across Clusters)V26Standard Deviation-NERAStand. Dev. in Avg. Full-Grant Rate across ClustersV27Standard Deviation-Allocation RateStand. Dev. in Avg. Full-Grant Rate across ClustersV28Standard Deviation-Allocation RateFraction of Current Instances that are M1 small VMsVMsY33M1smal InstancesFraction of Current Instances that are M1 small VMsVMsY34C1xlarge InstancesFraction of Current Instances that are M1 slarge VMsY35M24arge InstancesFraction of Current Instances that are C1 medium VMs <td></td> <td></td> <td></td> <td></td>				
V15NIC Count Load(Avg. Virtual NICs Allocated / Physical NICs in Cloud)y16vCore Utilization VarianceAvg. Variance in vCore Utilization across Clustersy17Memory Utilization VarianceAvg. Variance in Memory Utilization across Clustersy18Disk Space Utilization VarianceAvg. Variance in Disk Space Utilization across Clustersy19pCore Load VarianceAvg. Variance in Disk Count Load across Clustersy20Disk Count VarianceAvg. Variance in Disk Count Load across Clustersy21NIC Count VarianceAvg. Variance in NIC Count Load across Clustersy22Node Reallocation Rate(# Times Alternate Node Chosen / VMs Allocated)y23Cluster NERA Rate(# NERAS /# Responses Avg. across Clusters)y24Cluster Full-Grant Rate(# Full Grants /# Responses Avg. across Clusters)y25Allocation Rate(Times Cluster chosen / Cluster offered Avg. across Clusters)y26Standard Deviation-NERAStand. Dev. in Avg. NERA Rate across Clustersy27Standard Deviation-Allocation RateStand. Dev. in Avg. Full-Grant Rate across Clustersy28Standard Deviation-Allocation RateStand. Dev. in Allocation Rate across Clustersy39Mismall InstancesFraction of Current Instances that are M1 small VMsy31Milarge InstancesFraction of Current Instances that are M1 large VMsy33Cimedium InstancesFraction of Current Instances that are C1 medium VMsy34Citalarge InstancesFraction of Current Instances that are M1 slarge VMsy34Mixlarge Instances <td></td> <td></td> <td></td> <td></td>				
y16vCore Utilization VarianceAvg. Variance in vCore Utilization across Clustersy17Memory Utilization VarianceAvg. Variance in Memory Utilization across Clustersy18Disk Space Utilization VarianceAvg. Variance in Disk Space Utilization across Clustersy19pCore Load VarianceAvg. Variance in Disk Count Load across Clustersy20Disk Count VarianceAvg. Variance in Disk Count Load across Clustersy21NIC Count VarianceAvg. Variance in NIC Count Load across Clustersy22Node Reallocation Rate(# Times Alternate Node Chosen / VMs Allocated)y23Cluster NERA Rate(# Full Grants / # Responses Avg. across Clusters)y24Cluster Full-Grant Rate(# Full Grants / # Responses Avg. across Clusters)y25Standard Deviation-NERAStand. Dev. in Avg. NERA Rate across Clustersy27Standard Deviation-Full-GrantStand. Dev. in Avg. Full-Grant Rate across Clustersy28Standard Deviation-Full-GrantStand. Dev. in Avg. Full-Grant Rate across Clustersy29Current InstancesFraction of Current Instances that are M1 small VMsy30M1small InstancesFraction of Current Instances that are M1 small VMsy33C1medium InstancesFraction of Current Instances that are C1 medium VMsy34C1xlarge InstancesFraction of Current Instances that are C1 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are C1 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are C1 xlarge VMsy37WS Message Rate				
VMs917Memory Utilization VarianceA vg. Variance in Memory Utilization across Clusters918Disk Space Utilization VarianceA vg. Variance in Disk Space Utilization across Clusters919p Core Load VarianceA vg. Variance in pCore Load across Clusters920Disk Count VarianceA vg. Variance in Disk Count Load across Clusters921NIC Count VarianceA vg. Variance in NIC Count Load across Clusters922Node Reallocation Rate(# Times Alternate Node Chosen / VMs Allocated)923Cluster NERA Rate(# Full Grants /# Responses Avg. across Clusters)924Cluster Full-Grant Rate(# Full Grants /# Responses Avg. across Clusters)925Allocation Rate(Times Cluster chosen / Cluster offered Avg. across Clusters)926Standard Deviation-NERAStand. Dev. in Avg. NERA Rate across Clusters927Standard Deviation-Full-GrantStand. Dev. in Avg. Full-Grant Rate across Clusters928Standard Deviation-Allocation RateStand. Dev. in Avg. Full-Grant Rate across Clusters929Current InstancesFraction of Current Instances that are M1 small VMs931M1large InstancesFraction of Current Instances that are M1 small VMs933C1medium InstancesFraction of Current Instances that are C1 maine VMs934M2xlarge InstancesFraction of Current Instances that are C1 xlarge VMs935M2xlarge InstancesFraction of Current Instances that are M2 xlarge VMs936M4xlarge InstancesFraction of Current Instances that are M4 xlarge VMs936M4xlarge		y15	NIC Count Load	(Avg. Virtual NICs Allocated / Physical NICs in Cloud)
y18Disk Space Utilization VarianceA vg. Variance in Disk Space Utilization across Clustersy19pCore Load VarianceA vg. Variance in pCore Load across Clustersy20Disk Count VarianceA vg. Variance in Disk Count Load across Clustersy21NIC Count VarianceA vg. Variance in NIC Count Load across Clustersy22Node Reallocation Rate(# Times Alternate Node Chosen / VMs Allocated)y23Cluster NERA Rate(# NERAs / # Responses A vg. across Clusters)y24Cluster Full-Grant Rate(# Full Grants / # Responses A vg. across Clusters)y25Allocation Rate(Times Cluster chosen / Cluster offered Avg. across Clusters)y26Standard Deviation-NERAStand. Dev. in Avg. NERA Rate across Clustersy27Standard Deviation-Full-GrantStand. Dev. in Avg. NERA Rate across Clustersy28Standard Deviation-Full-GrantStand. Dev. in Allocation Rate across Clustersy29Current InstancesAvg. # VM Instances Extant in Cloudy30M1sm all InstancesFraction of Current Instances that are M1 small VMsy31M1large InstancesFraction of Current Instances that are M1 small VMsy33C1medium InstancesFraction of Current Instances that are M1 small VMsy34C1xlarge InstancesFraction of Current Instances that are M1 slarge VMsy35M2xlarge InstancesFraction of Current Instances that are M1 slarge VMsy36M4xlarge InstancesFraction of Current Instances that are M1 slarge VMsy36M2xlarge InstancesFraction of Current Instances that are		y16	vCore Utilization Variance	Avg. Variance in vCore Utilization across Clusters
y19pCore Load VarianceAvg. Variance in pCore Load across Clustersy20Disk Count VarianceAvg. Variance in Disk Count Load across Clustersy21NIC Count VarianceAvg. Variance in NIC Count Load across Clustersy22Node Reallocation Rate(# Times Alternate Node Chosen / VMs Allocated)y23Cluster NERA Rate(# NERAs / # Responses Avg. across Clusters)y24Cluster Full-Grant Rate(# Full Grants / # Responses Avg. across Clusters)y25Allocation Rate(Times Cluster chosen / Cluster offered Avg. across Clusters)y26Standard Deviation-NERAStand. Dev. in Avg. NERA Rate across Clustersy27Standard Deviation-Full-GrantStand. Dev. in Avg. Full-Grant Rate across Clustersy28Standard Deviation-RateFraction of Current Instances that across Clustersy30M1small InstancesFraction of Current Instances that are M1 small VMsy31M1large InstancesFraction of Current Instances that are M1 large VMsy33C1medium InstancesFraction of Current Instances that are M1 large VMsy34C1xlarge InstancesFraction of Current Instances that are C1 medium VMsy34C1xlarge InstancesFraction of Current Instances that are C1 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are M2 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are M4 xlarge VMsy37WS Message RateAvg. # WS Messages Send Per Simulated Hour		y17		Avg. Variance in Memory Utilization across Clusters
VMsy20Disk Count VarianceAvg. Variance in Disk Count Load across Clustersy21NIC Count VarianceAvg. Variance in NIC Count Load across Clustersy22Node Reallocation Rate(# Times Alternate Node Chosen / VMs Allocated)y23Cluster NERA Rate(# NERAs / # Responses Avg. across Clusters)y24Cluster Full-Grant Rate(# Full Grants / # Responses Avg. across Clusters)y25Allocation Rate(Times Cluster chosen / Cluster offered Avg. across Clusters)y26Standard Deviation-NERAStand. Dev. in Avg. NERA Rate across Clustersy27Standard Deviation-Full-GrantStand. Dev. in Avg. NERA Rate across Clustersy28Standard Deviation-Allocation RateAvg. # VM Instances Extant in Cloudy30M1small InstancesFraction of Current Instances that are M1 small VMsy31M1large InstancesFraction of Current Instances that are M1 small VMsy33C1medium InstancesFraction of Current Instances that are M1 small VMsy34C1xlarge InstancesFraction of Current Instances that are M1 small VMsy34C1xlarge InstancesFraction of Current Instances that are C1 medium VMsy35M2xlarge InstancesFraction of Current Instances that are C1 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are M4 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are M4 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are M4 xlarge VMs			Disk Space Utilization Variance	Avg. Variance in Disk Space Utilization across Clusters
VMsy21NIC Count VarianceAvg. Variance in NIC Count Load across Clustersy22Node Reallocation Rate(# Times Alternate Node Chosen / VMs Allocated)y23Cluster NERA Rate(# NERAs /# Responses Avg. across Clusters)y24Cluster Full-Grant Rate(# Full Grants /# Responses Avg. across Clusters)y25Allocation Rate(Times Cluster chosen / Cluster offered Avg. across Clusters)y26Standard Deviation-NERAStand. Dev. in Avg. NERA Rate across Clustersy27Standard Deviation-Full-GrantStand. Dev. in Avg. Full-Grant Rate across Clustersy28Standard Deviation-Allocation RateStand. Dev. in Allocation Rate across Clustersy29Current InstancesAvg. # VM Instances Extant in Cloudy30M1small InstancesFraction of Current Instances that are M1 small VMsy33C1medium InstancesFraction of Current Instances that are M1 large VMsy34C1xlarge InstancesFraction of Current Instances that are C1 medium VMsy35M2xlarge InstancesFraction of Current Instances that are C1 medium VMsy36M4xlarge InstancesFraction of Current Instances that are M2 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are M4 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are M4 xlarge VMsy37WS Message RateAvg. # WS Messages Send Per Simulated Hour		y19	pCore Load Variance	Avg. Variance in pCore Load across Clusters
Clustery22Node Reallocation Rate(# Times Alternate Node Chosen / VMs Allocated)y23Cluster NERA Rate(# NERAs / # Responses Avg. across Clusters)y24Cluster Full-Grant Rate(# Full Grants / # Responses Avg. across Clusters)y25Allocation Rate(Times Cluster chosen / Cluster offered Avg. across Clusters)y26Standard Deviation-NERAStand. Dev. in Avg. NERA Rate across Clustersy27Standard Deviation-Full-GrantStand. Dev. in Avg. Full-Grant Rate across Clustersy28Standard Deviation-Allocation RateStand. Dev. in Allocation Rate across Clustersy29Current InstancesAvg. # VM Instances Extant in Cloudy30M1small InstancesFraction of Current Instances that are M1 small VMsy31M1large InstancesFraction of Current Instances that are M1 large VMsy33C1medium InstancesFraction of Current Instances that are C1 medium VMsy34C1xlarge InstancesFraction of Current Instances that are C1 medium VMsy35M2xlarge InstancesFraction of Current Instances that are M2 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are M2 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are M4 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are M4 xlarge VMsy37WS Message RateAvg. # WS Messages Send Per Simulated Hour		y20	Disk Count Variance	Avg. Variance in Disk Count Load across Clusters
y23Cluster NERA Rate(# NERAs / # Responses Avg. across Clusters)y24Cluster Full-Grant Rate(# Full Grants / # Responses Avg. across Clusters)y25Allocation Rate(Times Cluster chosen / Cluster offered Avg. across Clusters)y26Standard Deviation-NERAStand. Dev. in Avg. NERA Rate across Clustersy27Standard Deviation-Full-GrantStand. Dev. in Avg. Full-Grant Rate across Clustersy28Standard Deviation-Allocation RateStand. Dev. in Allocation Rate across Clustersy29Current InstancesAvg. # VM Instances Extant in Cloudy30M1small InstancesFraction of Current Instances that are M1 small VMsy31M1large InstancesFraction of Current Instances that are M1 large VMsy33C1medium InstancesFraction of Current Instances that are C1 medium VMsy34C1xlarge InstancesFraction of Current Instances that are C1 medium VMsy35M2xlarge InstancesFraction of Current Instances that are M2 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are M2 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are M4 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are M4 xlarge VMsy37WS Message RateAvg. # WS Messages Send Per Simulated Hour		y21	NIC Count Variance	Avg. Variance in NIC Count Load across Clusters
VMsy24Cluster Full-Grant Rate(# Full Grants / # Responses Avg. across Clusters)y25Allocation Rate(Times Cluster chosen / Cluster offered Avg. across Clusters)y26Standard Deviation-NERAStand. Dev. in Avg. NERA Rate across Clustersy27Standard Deviation-Full-GrantStand. Dev. in Avg. Full-Grant Rate across Clustersy28Standard Deviation-Allocation RateStand. Dev. in Allocation Rate across Clustersy29Current InstancesAvg. # VM Instances Extant in Cloudy30M1sm all InstancesFraction of Current Instances that are M1 sm all VMsy31M1large InstancesFraction of Current Instances that are M1 large VMsy32C1medium InstancesFraction of Current Instances that are M1 large VMsy34C1xlarge InstancesFraction of Current Instances that are C1 medium VMsy34C1xlarge InstancesFraction of Current Instances that are C1 xlarge VMsy35M2xlarge InstancesFraction of Current Instances that are M2 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are M4 xlarge VMsy37WS Message RateAvg. # WS Messages Send Per Simulated Hour	Cluster	y22	Node Reallocation Rate	(# Times Alternate Node Chosen / VMs Allocated)
y25Allocation Rate(Times Cluster chosen / Cluster offered Avg. across Clusters)y26Standard Deviation-NERAStand. Dev. in Avg. NERA Rate across Clustersy27Standard Deviation-Full-GrantStand. Dev. in Avg. Full-Grant Rate across Clustersy28Standard Deviation-Allocation RateStand. Dev. in Allocation Rate across Clustersy29Current InstancesAvg. # VM Instances Extant in Cloudy30M1small InstancesFraction of Current Instances that are M1 small VMsy31M1large InstancesFraction of Current Instances that are M1 large VMsy32M1xlarge InstancesFraction of Current Instances that are M1 klarge VMsy33C1medium InstancesFraction of Current Instances that are C1 medium VMsy34C1xlarge InstancesFraction of Current Instances that are C1 xlarge VMsy35M2xlarge InstancesFraction of Current Instances that are M2 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are M4 xlarge VMsy37WS Message RateAvg. # WS Messages Send Per Simulated Hour		y23	Cluster NERA Rate	(# NERAs / # Responses Avg. across Clusters)
y25Allocation Rate(Times Cluster chosen / Cluster offered Avg. across Clusters)y26Standard Deviation-NERAStand. Dev. in Avg. NERA Rate across Clustersy27Standard Deviation-Full-GrantStand. Dev. in Avg. Full-Grant Rate across Clustersy28Standard Deviation-Allocation RateStand. Dev. in Allocation Rate across Clustersy29Current InstancesAvg. # VM Instances Extant in Cloudy30M1small InstancesFraction of Current Instances that are M1 small VMsy31M1large InstancesFraction of Current Instances that are M1 large VMsy32M1xlarge InstancesFraction of Current Instances that are M1 klarge VMsy33C1medium InstancesFraction of Current Instances that are C1 medium VMsy34C1xlarge InstancesFraction of Current Instances that are C1 xlarge VMsy35M2xlarge InstancesFraction of Current Instances that are M2 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are M4 xlarge VMsy37WS Message RateAvg. # WS Messages Send Per Simulated Hour		y24	Cluster Full-Grant Rate	(# Full Grants / # Responses Avg. across Clusters)
y27Standard Deviation-Full-GrantStand. Dev. in Avg. Full-Grant Rate across Clustersy28Standard Deviation-Allocation RateStand. Dev. in Allocation Rate across Clustersy29Current InstancesAvg. # VM Instances Extant in Cloudy30M1small InstancesFraction of Current Instances that are M1 small VMsy31M1large InstancesFraction of Current Instances that are M1 large VMsy32M1xlarge InstancesFraction of Current Instances that are M1 xlarge VMsy33C1medium InstancesFraction of Current Instances that are C1 medium VMsy34C1xlarge InstancesFraction of Current Instances that are C1 xlarge VMsy35M2xlarge InstancesFraction of Current Instances that are M2 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are M4 xlarge VMsInternet/y37WS Message RateAvg. # WS Messages Send Per Simulated Hour		y25	Allocation Rate	
y28Standard Deviation-Allocation RateStand. Dev. in Allocation Rate across Clustersy29Current InstancesA vg. # VM Instances Extant in Cloudy30M1small InstancesFraction of Current Instances that are M1 small VMsy31M1large InstancesFraction of Current Instances that are M1 large VMsy32M1xlarge InstancesFraction of Current Instances that are M1 xlarge VMsy33C1medium InstancesFraction of Current Instances that are C1 medium VMsy34C1xlarge InstancesFraction of Current Instances that are C1 xlarge VMsy35M2xlarge InstancesFraction of Current Instances that are C1 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are M2 xlarge VMsInternet/y37WS Message RateAvg. # WS Messages Send Per Simulated Hour		y26	Standard Deviation-NERA	Stand. Dev. in Avg. NERA Rate across Clusters
VMsy29Current InstancesAvg. # VM Instances Extant in Cloudy30M1sm all InstancesFraction of Current Instances that are M1 sm all VMsy31M1large InstancesFraction of Current Instances that are M1 large VMsy32M1xlarge InstancesFraction of Current Instances that are M1 xlarge VMsy33C1medium InstancesFraction of Current Instances that are C1 medium VMsy34C1xlarge InstancesFraction of Current Instances that are C1 xlarge VMsy35M2xlarge InstancesFraction of Current Instances that are C1 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are M4 xlarge VMsInternet/y37WS Message RateAvg. # WS Messages Send Per Simulated Hour		y27	Standard Deviation-Full-Grant	Stand. Dev. in Avg. Full-Grant Rate across Clusters
VMsy30M1small InstancesFraction of Current Instances that are M1 small VMsy31M1large InstancesFraction of Current Instances that are M1 large VMsy32M1xlarge InstancesFraction of Current Instances that are M1 xlarge VMsy33C1medium InstancesFraction of Current Instances that are C1 medium VMsy34C1xlarge InstancesFraction of Current Instances that are C1 xlarge VMsy35M2xlarge InstancesFraction of Current Instances that are M2 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are M4 xlarge VMsInternet/y37WS Message RateAvg. # WS Messages Send Per Simulated Hour		y28	Standard Deviation-Allocation Rate	Stand. Dev. in Allocation Rate across Clusters
VMsy30M1small InstancesFraction of Current Instances that are M1 small VMsy31M1large InstancesFraction of Current Instances that are M1 large VMsy32M1xlarge InstancesFraction of Current Instances that are M1 xlarge VMsy33C1medium InstancesFraction of Current Instances that are C1 medium VMsy34C1xlarge InstancesFraction of Current Instances that are C1 xlarge VMsy35M2xlarge InstancesFraction of Current Instances that are M2 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are M4 xlarge VMsInternet/y37WS Message RateAvg. # WS Messages Send Per Simulated Hour		y 29	Current Instances	Avg. # VM Instances Extant in Cloud
VMsy31M1large InstancesFraction of Current Instances that are M1 large VMsy32M1xlarge InstancesFraction of Current Instances that are M1 xlarge VMsy33C1medium InstancesFraction of Current Instances that are C1 medium VMsy34C1xlarge InstancesFraction of Current Instances that are C1 xlarge VMsy35M2xlarge InstancesFraction of Current Instances that are M2 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are M4 xlarge VMsInternet/y37WS Message RateAvg. # WS Messages Send Per Simulated Hour		-		
VMsy32M1xlarge InstancesFraction of Current Instances that are M1 xlarge VMsy33C1medium InstancesFraction of Current Instances that are C1 medium VMsy34C1xlarge InstancesFraction of Current Instances that are C1 xlarge VMsy35M2xlarge InstancesFraction of Current Instances that are M2 xlarge VMsy36M4xlarge InstancesFraction of Current Instances that are M4 xlarge VMsInternet/y37WS Message RateAvg. # WS Messages Send Per Simulated Hour				
VMs y33 C1medium Instances Fraction of Current Instances that are C1 medium VMs y34 C1xlarge Instances Fraction of Current Instances that are C1 xlarge VMs y35 M2xlarge Instances Fraction of Current Instances that are M2 xlarge VMs y36 M4xlarge Instances Fraction of Current Instances that are M4 xlarge VMs Internet/ y37 WS Message Rate Avg. # WS Messages Send Per Simulated Hour			¥	
y34 C1xlarge Instances Fraction of Current Instances that are C1 xlarge VMs y35 M2xlarge Instances Fraction of Current Instances that are M2 xlarge VMs y36 M4xlarge Instances Fraction of Current Instances that are M4 xlarge VMs Internet/ y37 WS Message Rate Avg. # WS Messages Send Per Simulated Hour	V Ms	-		
y35 M2xlarge Instances Fraction of Current Instances that are M2 xlarge VMs y36 M4xlarge Instances Fraction of Current Instances that are M4 xlarge VMs Internet/ y37 WS Message Rate Avg. # WS Messages Send Per Simulated Hour				
y36 M4xlarge Instances Fraction of Current Instances that are M4 xlarge VMs Internet/ y37 WS Message Rate Avg. # WS Messages Send Per Simulated Hour		-	-	·
Internet/ y37 WS Message Rate Avg. # WS Messages Send Per Simulated Hour		-	•	-
	Internet/			
	Intranet	y 38	Intra-Site Messages	(# WS Messages Sent with Sites / # WS Messages Sent)
	Revenue			

	V	irtual		rtual Block	-			
	C	ores	_	Devices	# Virtual			
	#	Speed	#	Size (GB)	Network	Memory	Instruct.	Price in
VM Type	#	(GHz)	#	of Each	Interfaces	(GB)	Arch.	\$/Hour
M1 small	1	1.7	1	160	1	2	32-bit	0.12
M1 large	2	2	2	420	2	8	64-bit	0.34
M1 xlarge	4	2	4	420	2	16	64-bit	0.96
C1 medium	2	2.4	1	340	1	2	32-bit	0.17
C1 xlarge	8	2.4	4	420	2	8	64-bit	0.68
M2 xlarge	8	3	1	840	2	32	64-bit	1.00
M4 xlarge	8	3	2	850	2	64	64-bit	2.00
M4 Xlarge	•	ు	2	000	2	64	64-DIL	2.00

Platform		ysical Cores	Memory	# Pł	nysical [Disks by	# Network	Instruct.	
Туре	#	Speed	(GB)	250	500	750	1000	Interfaces	s Arch.
	#	(GHz)		GB	GB	GB	GB		
C8	2	2.4	32	0	3	0	0	1	64-bit
C14	4	3	64	0	4	0	3	2	64-bit
C18	8	3	128	0	0	4	3	4	64-bit
C22	16	3	256	0	0	0	7	4	64-bit

Platform Types

ANOVA Analyses

Summary of 84 ANOVA Tests

Category	ID	Response Name	ANOVA Cdf Cloud Crit (3)	ANOVA Cdf Cluster Alg (6)
	y1	User Request Rate	99.96	62.19
	y2	NERA Rate	100	22.33
	¥3	Full Grant Rate	100	2.75
	y4	User Arrival Rate	99.87	77.15
User	y5	User Give-up Rate	94.63	98,6
	y6	Grant Latency	98.01	96.11
	y40	User Success Rate	95.86	98.02
	y41	Avg. Fraction VMs Obtained	99.99	51.52
	y42	Avg. RunInstance Response Time	37.35	97.49
	y7	Reallocation Rate	99.99	9.5
	y8	Full Grant Proportion	100	0.02
	y9	NERA Proportion	100	0.4
	y10	vCore Utilization	67.85	99.81
Cloud	y11	Memory Utilization	98.97	91.47
	y12	Disk Space Utilization	97.29	96.27
	y13	pCore Load	67.85	99.81
	y14	Disk Count Load	96.76	97.56
	y15	NIC Count Load	99.78	79.49
	y16	vCore Utilization Variance	100	1.28
	y17	Memory Utilization Variance	100	0.09
	y18	Disk Space Utilization Variance	100	0.14
	y19	pCore Load Variance	100	1.28
	y20	Disk Count Variance	100	0.42
	y21	NIC Count Variance	100	1.02
Cluster	y22	Node Reallocation Rate	100	6.09
	y23	Cluster NERA Rate	100	0.19
	y24	Cluster Full-Grant Rate	100	0.06
	y25	Allocation Rate	99.88	77.64
	y26	Standard Deviation-NERA	63.92	61.08
	y27	Standard Deviation-Full-Grant	99.73	30.95
	y28	Standard Deviation-Allocation Rate	100	0.02
	y29	Current Instances	99.98	50.54
	y30	M1small Instances	99.99	35.85
	y31	M1large Instances	60.58	99.02
VMs	y32	M1xlarge Instances	99.83	77.1
VIVIS	y33	C1medium Instances	99.97	27.57
	y34	C1xlarge Instances	82.1	99.89
	y35	M2xlarge Instances	74.62	99.97
	y36	M4xlarge Instances	99.95	66.03
Internet/	y37	WS Message Rate	99.7	83.74
Intranet	y38	Intra-Site Messages	89	99.05
Revenue	y39	Aggregate Revenue in \$/Hour	99.99	44.51

Means Per Cluster-Choice

Category	ID	LLF	PAL	RAN
	v1	7.461	8.386	7.696
	y2	0.444	0.506	0.450
	v3	0.624	0.574	0.514
	v4	37324	35878	37170
User	v5	0.066	0.074	0.067
	v6	9044	10488	9526
	v40	0.925	0.915	0.923
	v41	0.579	0.597	0.551
	v42	0.278	0.277	0.278
	v7	0.000052	0.000084	0.000057
	 	0.438	0.332	0.389
	v9	0.481	0.587	0.537
	v10	0.774	0.791	0.783
Cloud	v11	0.188	0.197	0.199
oloud	v12	0.413	0.428	0.418
	v13	0.774	0.791	0.783
	v14	0.964	0.997	0.948
	v15	1.591	1.645	1.554
	y16	0.0017	0.019	0.0071
	v17	0.0009	0.0034	0.0015
	y18	0.0022	0.0086	0.0038
	y10 y19	0.0017	0.019	0.0071
	y20	0.018	0.052	0.024
	y20 y21	0.045	0.127	0.052
Cluster	y22	0.00015	0.00015	0.00008
Citaster	y23	0.507	0.606	0.562
	v24	0.421	0.323	0.375
	y25	0.19	0.232	0.232
	y26	0.01	0.01	0.011
	y27	0.008	0.011	0.015
	y28	0.034	0.058	0.02
	y29	21808	22139	20365
	y30	0.355	0.354	0.333
	y30 y31	0.308	0.311	0.307
	y32	0.138	0.142	0.151
VMs	y32 y33	0.057	0.053	0.052
	y34	0.025	0.022	0.025
	v35	0.026	0.023	0.026
	y36	0.091	0.096	0.106
Internet/	y37	60867	62677	60841
Intranet	y37 y38	0.977	0.977	0.977
		-		
Revenue	y39	11322	11706	11624

Means Per Node-Selection

Category	ID	FF	LF	MF	NF	TP	RA
	y1	7.643	8.450	7.692	7.710	7.871	7.718
	y2	0.460	0.493	0.458	0.462	0.455	0.470
	y3	0.566	0.593	0.563	0.57	0.555	0.577
User	y4	37138	35624	37188	36938	37051	36807
USEI	y5	0.065	0.080	0.065	0.067	0.067	0.069
	y6	10130	8636	10439	9643	10420	8848
	y40	0.925	0.908	0.925	0.923	0.922	0.921
	y41	0.57	0.598	0.567	0.574	0.561	0.583
	y42	0.278	0.276	0.278	0.279	0.277	0.278
	y7	0.000063	0.000064	0.000068	0.000073	0.000055	0.000063
	y8	0.387	0.387	0.378	0.389	0.385	0.39
	y9	0.529	0.55	0.536	0.528	0.536	0.532
	y10	0.789	0.761	0.812	0.786	0.764	0.78
Cloud	y11	0.198	0.188	0.204	0.196	0.191	0.193
	y12	0.419	0.428	0.424	0.421	0.402	0.424
	y13	0.789	0.761	0.812	0.786	0.764	0.78
	y14	0.958	1.013			0.928	0.99
	y15	1.58	1.639		1.592	1.542	1.631
	y16	0.0085	0.008	0.0127	0.0097	0.008	0.008
	y17	0.0019	0.0020	0.0022	0.0019	0.0019	0.0017
	y18	0.0045	0.0054			0.0046	0.0045
	y19	0.0085	0.0089			0.0080	0.0080
	y20	0.029	0.036			0.029	0.029
	y21	0.067	0.088			0.065	0.073
Cluster	y22	0.00013	0.00012			0.00011	0.00012
	y23	0.555	0.569			0.558	0.553
	y24	0.373	0.375			0.373	0.378
	y25	0.228	0.192				0.201
	y26	0.011	0.009				0.009
	y27	0.012	0.010				0.010
	y28	0.037	0.040				0.038
	y29	21237	22244			20824	21888
	y30	0.344	0.356			0.341	0.352
	y31	0.306	0.315			0.311	0.312
VMs	y32	0.144	0.149				0.142
	y33	0.054	0.053				0.054
	y34	0.025	0.018	Card Control Control Control	and the second second	0.027	0.022
	<u>y35</u>	0.027	0.019			0.029	0.023
	y36	0.100	0.090				0.095
Internet/	y37	61018	63016	0.958 0.97 0.92 1.597 1.592 1.54 0.0127 0.0097 0.00 0.0022 0.0019 0.007 0.0053 0.0050 0.004 0.0127 0.0097 0.008 0.0127 0.0097 0.008 0.032 0.032 0.02 0.080 0.074 0.06 0.00013 0.00014 0.000 0.562 0.552 0.55 0.364 0.376 0.37 0.237 0.216 0.23 0.013 0.010 0.01 0.037 0.037 0.03 0.013 0.010 0.01 0.037 0.037 0.03 0.037 0.037 0.03 0.037 0.037 0.03 0.037 0.037 0.03 0.037 0.037 0.34 0.342 0.348 0.34 0.053 0.053 0.05 0.02	60571	61785	
Intranet	y38	0.977	0.977	0.977	0.977	0.976	0.977
Revenue	y39	11603	11529	11683	11587	11362	11541

http://www.nist.gov/itl/antd/emergent_behavior.cfm

VM Leakage and Orphan Control in Open-Source Clouds Chris Dabrowski & Kevin Mills from NIST Proceedings of IEEE CloudCom 2011, Athens, Nov. 29-Dec. 1, 2011

A simple message discard attack initiated by a Trojan in compromised Web-server code leads to VM Leakage that exhausts resources in an laaS cloud based on commonly available open-source code. Adding two orphan control processes, (1) creation orphan control and (2) persistent termination, mitigates the VM Leakage.

Without orphan control processes, most leaked VMs are creation orphans because VMs must be created before they can become orphans and user retries

Full and Partial)

and Un-served

Users

Probability of Message Loss

Probability of Message Loss

Full and Partial)

and Un-served

Users

Orphan control processes do not eradicate all leaked VMs at highest mes-

sage loss rate due to existence of temporary termination orphans that occur because we limited persistent termination to final termination requests

http://www.nist.gov/itl/antd/emergent_behavior.cfm

IDENTIFY FAILURE SCENARIOS IN CLOUD SYSTEMS USING MARKOV CHAIN ANALYSIS

Problem: Identifying failure scenarios in distributed systems such as clouds is critical to understanding areas where performance may degrade. However, potential failure scenarios may be numerous and difficult to find.

Objective: To perturb Discrete Time Markov Chains (DTMCs) of cloud system behavior to identify potential failure scenarios more quickly than through detailed large-scale simulation or use of test beds.

Steps:

- (1) Using *Koala* as proxy for real-world cloud, develop detailed state model of cloud behavior and convert to time-inhomogeneous DTMC.
- (2) Find minimal s-t cut sets in a directed graph of cloud DTMC to identify critical state transitions that break paths to desirable system goal states.
- (3) Perturb critical state transitions to describe potential failure scenarios, create predictive performance curves, and find performance thresholds.

Creating a Discrete Time Markov Chain

- Observe Koala (as proxy for real-world system) to derive set of transition probability matrices (TPMs) that describe probabilities of transition between states over different time periods \rightarrow form a timeinhomogeneous DTMC.
- Generate1000 time period TPMs of 3600 s each.

Given states s_i , s_j , i, j = 1...n where n = 39, p_{ij} , is the probability of transitioning from state *i* to state *j*, written as $s_i \rightarrow s_j$. This probability is estimated by calculating the frequency of $s_i \rightarrow s_i$, or f_{ii} , divided by the sum of the

State Model of Resource Request in Cloud

A detailed representation of the states that a cloud system (*Koala*) may enter under normal and failure conditions, shown for two of the five major phases.

Using the DTMC to simulate large-scale system (Koala) behavior

Markov chains can emulate Koala to capture high-level system behavior, but in two orders of magnitude less computational time.

To evolve system state in discrete time steps, multiply state vector v_m (at time step m) by the TPM, Q^{tp}, for the applicable time period tp to produce a new system state vector v_{m+1} ,

 $(Q^{p})^{T} * v_{m} = v_{m+1}$, where tp = integral value (m/S) + 1where T indicates a matrix transpose.

		8	9	10
8	Allocating_Minimum	0	0.248	0.752
9	Allocating_Maximum	0	0	ω
10	Transferring Failure_Estimate	0	0	3
	9	 8 Allocating_Minimum 9 Allocating_Maximum 10 Transferring Failure_Estimate 	9 Allocating_Maximum 0	9 Allocating_Maximum 0 0

Using minimal s-t cut set analysis to find potential failure scenarios

High-Level Model

of Request Lifecycle

Preparing To Submit

[Initial Processing]

Cluster Estimating

Allocating Request

Implementing Allocation (F/P)

Request_Granted (F/P)

Absorbing

States

Initial • State

In a directed graph of the Koala DTMC, minimal s-t cut sets consist of critical state transitions, which if removed, disconnect all paths to absorbing Requests_Granted (F/P) state.

Applying algorithm to find minimal s-t cut sets* to the Koala DTMC resulted in 159 cut sets. Examples of one and twotransition cut sets are shown.

One-transition cut sets

Cluster Estimating Phase	
Cut set #1-4 (9) (10) Transferring_Failure_Estimate]
Cut set (12) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (12)	
Recording_Allocation (13)	
Transferring_Allocation_Estimate	
Both out goto disconnect all nothe	

Detailed Model of

Cating ating Dhas

Both cut sets disconnect all paths from Initial State to Request Granted (F/P) absorbing states.

Two-transition cut sets

	Set of member	Total		Set of member	Number of	Total
	transitions from Fig. 3	Probabilty		transitions from Fig. 3	From States	Probabilty
1-1	{1, 2}	0.001	2-1	{14, 17} {14, 18}	1	0.895
1-2	{2, 3}	0.025	2-2	{9, 11} {9, 12}	1	1.000
1-3	{3, 4}	0.124	2-3	{9, 12} {11, 12}	2	1.395
1-4	{8, 9}	0.264				
			2-23	{33, 35} {34, 36}	2	2.000
1-10	{12, 13}	1.000			rovan S and	Ball M 198

*Provan S., and Ball M., 1984, "Computing Network Reliability in Time Polynomial in the Number of Cuts," Operations Research, 32(3), pp. 516–526.

Perturbing state transitions in a cut set to predict system behavior in failure scenario (1)

Cut set #1-4 could relate to a scenario in which software or hardware failures make resource databases inaccessible, preventing clusters from computing minimum allocation estimates. Instead, clusters return failure estimates to the cloud controller.

Portions of TPM perturbed

		8	9	10
8	Allocating_Minimum	0	0.248	0.752
9	Allocating_Maximum	0	0	ε
10	Transferring Failure_Estimate	0	0	3

 Raise probability of Allocating_Minimum → Transferring_Failure_Estimate:TPM element {8, 10}

 Lower probablity of Allocating_Minimum → Allocating_Maximum: TPM elements {8, 9}.

Decline in total requests granted (Full and Partial) due to cluster estimation failure: (a) As estimated by perturbing the DTMC; and (b) As computed in *Koala* large-scale simulation.

Blue curves show the resulting decrease in requests granted as estimated using the DTMC and as actually occurred in the Koala `large-scale simulation. These curves are plotted against the left vertical axis. The right vertical axis provides units for the decrease in probability of the state transition.

Ongoing Work

ton Technolog

Full and Partial Grants

predict system behavior in failure scenario (2)

Cut set #2-3 could relate to a failure scenario in which viruses or other faults cause widespread software process failures in clusters, which prevent completion of cluster allocation estimation computations. Instead, clusters return failure estimates to the controller.

		P • • •			
		9	10	11	12
9	Allocating_Maximum	0	ε	0.464	0.536
10	Transferring Failure_Estimate	0	ε	0.000	0.000
11	Allocating Partial	0	ε	0.000	1-3e
12	Recording Allocation	0	3	0.000	0.000

Portions of TPM perturbed

 Raise Allocating_ Maximum → Allocating_Partial: TPM element {9, 11} •LowerAllocating Maximum \rightarrow Recording Allocation (TPM element {9, 12})

•Raise Allocating_Partial→Transferring_Failure_Estimate: TPM element {11, 10} •Lower Allocating_Partial → Recording_Allocation: TPM element {11, 12}

Decline in total requests granted (Full and Partial) due to cluster estimation failure: (a) As estimated by perturbing the DTMC; and (b) As computed by *Koala* large-scale simulation.

Blue curves show the resulting decrease in requests granted as estimated using the DTMC and as actually occurred in the *Koala* large-scale simulation. These curves are plotted against the left vertical axis. The right vertical axis provides units for the decrease in probability of the state transition.

Apply methodology to larger problems and determine scalability

- Current model consists of 39 states and 139 transitions •
- Includes user, cloud controller, and cluster behavior, but not node behavior or actual use of VMs

Apply methodology to different types of failure scenarios

For more information, see:

- Identifying Failure Scenarios in Complex Systems by Perturbing Markov Chain Models, by Christopher Dabrowski and Fern Hunt, Proceedings of the 2011 Pressure Vessels and Piping Division Conference. July 17–21, Baltimore, MD.
- Using Markov Chains and Graph Theory Concepts to Analyze Behavior in Complex Distributed Systems, by Christopher Dabrowski and Fern Hunt, Proceedings of the 23rd European Modeling and Simulation Symposium, September 12-14, 2011. Rome Italy.

Predicting Catastrophic Failure Scenarios in Cloud Systems (*Proposed Research*)

C. Dabrowski, J. Filliben, D. Genin, F. Hunt, K. Mills and S. Ressler from NIST

No effective methods exist to predict failure regimes in large distributed systems—the search space is large and causality is difficult to establish. Today, system operators wait for failures and diagnose, react and mitigate. We propose to leverage models and methods from the physical sciences to predict unforeseen dynamics and failure scenarios that could lead to spatiotemporal collapse in designs and deployments of large distributed systems. We intend to investigate and demonstrate our methods in the context of laaS (Infrastructure-as-a-Service) clouds. Our work aims to improve cloud computing reliability,

benefiting designers of distributed systems running on clouds, and those deploying clouds.

Complex information systems encompass an infeasible search space.

First

Hard Problem

Atoms in the visible universe = about 10⁸⁰

Determining causality is difficult given only patterns of global system behavior.

Proble

Mitigation pdf

Possible Approaches Plausible approaches to investigate:

 Anti-Optimization + Directed Search (e.g., genetic algorithms, simulated annealing, evolutionary strategies)

 Markov Models + Graph & Perturbation Analyses
 (e.g., transform system models into Markov models and use graph theory to find cut-sets and perturbation to explore failure trajectories) Great NIST team! Experienced in modeling and analyzing complex systems: Kevin Mills [PhD] (Senior Research Scientist – Simulation & Genetic Algorithm) Christopher Dabrowski (Computer Scientist – Markov models & Graph Theory) Fern Hunt [PhD] (Mathematician – Markov Models and Eigenanalysis) James Filliben [PhD] (Statistician – Exploratory Data Analysis) Sandy Ressler (Computer Scientist – Information Visualization) Daniel Genin [PhD] (Mathematician – Analytical Models)

Team

 Existing Commitments (EC1) – comparing virtual machine placement algorithms under suboptimal conditions

Anti-Optimization + Genetic Algorithms (GA)

ſ		Task Name	2011		20	12			20	13			20)14		2015
I	ID	Task Name	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1

Proposed

Tasks

- GA1: design/develop GA software for existing Koala simulator
- GA2: test GA software on a known problem within Koala
- GA3: design/develop laaS model that includes recovery behaviors
- GA4: use GA to explore new simulation for failure scenarios
- Markov Models + Graph & Perturbation Analysis (MM)
 - MM1: design/develop MM software that captures dependencies
 - MM2: test MM software on a known problem within Koala
 - MM3: generate MM from the new IaaS simulator (see GA3)
 - MM4: use graph & perturbation analysis to explore new MM for failure scenarios

http://www.nist.gov/itl/antd/emergent_behavior.cfm