

Measurement of Current Polarization by Doppler-Shifted Spin Waves

PROJECT LEADER:

COLLABORATORS:

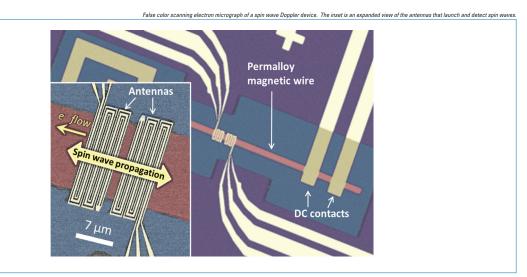
Robert McMichael (NIST)

Meng Zhu, Cindi Dennis (NIST); Brian Soe (Harvey Mudd College); Matthew Carey, Stefan Maat, Jeffrey Childress (Hitachi Global Storage Technologies); Rebecca Thomas, Veena Misra (North Carolina State University); Tim Mewes (University of Alabama)

GOAL

To develop methods for measuring the spin polarization of current in ferromagnetic metals, which is a pivotal parameter for spin-based future electronics.

KEY ACCOMPLISHMENTS


Designed and fabricated devices to measure spin wave propagation at sub-micrometer wavelengths in currentcarrying ferromagnetic metals.

Measured current polarization in $Ni_{80}Fe_{20}$ (Permalloy) with two times the precision of existing measurements and provided the first measurements of temperature dependence in current polarization.

Measured nearly complete polarization (0.95 \pm 0.05) in (CoFe)_{0.2}Ge_{0.2} alloy.

KEY NANOFAB PROCESS

Electron beam lithography.

REFERENCES

Enhanced magnetization drift velocity and current polarization in (CoFe)_{1-x}Ge_x alloys, M. Zhu, B. D. Soe, R. D. McMichael, M. J. Carey, S. Maat, and J. R. Childress, *Applied Physics Letters* **98**, 072510 (2011). Temperature dependence of magnetization drift velocity and current polarization in Ni₈₀Fe₂₀ by Spin-Wave Doppler Measurements, M. Zhu, C. L. Dennis, and R. D. McMichael, *Physical Review B* **81**, 140407 (2010).