

RECENT REALIZATIONS OF THE SF₆ AND CO₂ TRIPLE POINTS AT THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

NLST National Institute of Standards and Technology U.S. Department of Commerce

Weston L Tew¹, Andrea Peruzzi², and Klaus N. Quelhas³ National Institute of Standards and Technology, Gaithersburg, MD, 20199, USA Van Swinden Laboratory, Delft, The Netherlands **INMETRO**, Xerem, Brazil

email: westew@nist.gov

<≈ 10 mW

Cell 803: 2019

48 mW

Abstract / Introduction

International restrictions on the trade of mercury-based products have created a near-term need to develop alternative materials for temperature standards. The triple points of SF₆ and CO₂ are good candidates for replacing the Hg triple point (TP) as a defined fixed point on the International Temperature Scale of 1990 (ITS-90). We have constructed a series of immersion cells for realizations of both the SF₆ TP and CO₂ TP that are suitable as 'drop-in-replacements' for Hg TP cells as currently used in conventional refrigerated baths. These immersion cells are pressurized, with no external manifold, and refillable via a conventional service valve. Realizations are performed in a quasi-adiabatic mode inside of a small vacuum chamber that is immersed in an ethanol bath. We report recent measurements using capsule-type standard platinum resistance thermometers (SPRTs) that have been calibrated on the subrange 4 of the ITS-90. Melting plateaus are presented versus both melted fraction F and inverse fraction F⁻¹ scales. We compare the interpolated T_{90} temperatures as extrapolated to F=1 from these realizations with those reported in our prior work and from the published literature.

Results using SF₆

Recent History of SF₆ TP realizations.

History of CO₂ TP realizations since 1979.

Triple Point Cell Design and Construction

	T _{tp}	$p_{\rm tp}$	$\rho_{\rm l}$	$ ho_{ m s}$	Δh_{f}	dp_m/dT	d <i>T</i> /dz	A-1
	(K)	(MPa)	(kg/m^3)	(kg/m^3)	(J/cm^3)	(MPa/K)	mK/m	uK/ppm
Hg	234.3156	1.7×10^{-10}	13,690	14,184	156	18.5	8.6	199
SF ₆	223.556	0.231	1845	2281	66.7	1.56	11.6	79
CO ₂	216.59	0.55536	1178.5	1532	232	4.69	2.47	45

Five SF₆ TP cells and one CO₂ TP cell are in this study. Four cells (SF₆ serial numbers 1202, 801, 803 and CO₂ cell 810) are larger immersion types and two others (SF₆ Cell serial numbers 302 and 401) are smaller 'adiabatic' type cells. The cell design parameters are

summarized in the below Table. The cells are shown in the photographs below.

Cell	Volume	SF_6/CO_2	Density	CDR	Effective	Enthapy
	V_{cell}	mass, m_{cell}	$ ho_{ m cell}$	$ ho_{ m cell}$ / $ ho_{ m cr}$	Immersion	$\Delta H_{ m f}$
s/n	cm^3	g	g⋅cm ⁻³		cm	kJ
302	42	12.9	0.307	0.41	N/A	0.47
401	14	9.1	0.650	0.87	N/A	0.33
801	580	590	1.017	1.37	16	21.3
1202	550	467	0.849	1.14	13	17.0
803	537	573.3	1.068	1.44	18.3	20.7
810	352	68.55	0.195	0.42	16.8	13.5

Cell 803 is similar to cell 801, but with the addition of an internal set of 30 copper baffles (shown below) to equalize radial gradients and support the solid SF6 mantle.

Below: Experimental setup for immersion-type cells : capsule-type SPRTs to measure the cell (A) and bath (B) temperatures; (C) borosilicate glass adapter tubes; (D) nylon gas-tight fittings; (E) 50 l ethanol bath volume; (F) condensed (shown in green) portion of SF6 (G) pressure wall of cell volume; (H) SF6 fill line; (J) central thermowell; (K) bellows valve; (L) pressure gauge; (M) vacuum chamber; and (N) ISO-63 vacuum flange with aluminum gasket.

Immersion Profiles, CO₂ Cell 810, 2019

- Some distortions observed
- 10 mm steps downward
- Predicted from Clapeyron Equation :
- 0.0247 mK/cm
- assumes melting line: 4.69 MPa/K

Summary

- Results using SF₆ :
 - average of four cells (#302, 1202, 801, 401) 2017 [1]
 - 223.55587(33) K , F=0.5 ; 223.55607(33) K , F=1
 - cell #803 (immersion type), 2019, preliminary
 - 223.5556(5) K , F=0.5 ; 223.55608(50) K , F=1
 - Pressure head correction: 0.116(16) mK/cm [1]; Clapeyron Eqn. : 0.116 mK/cm
- Results using CO₂, Cell 810, 2019 *preliminary*: • 216.5910(5) K , F=0.5

• References

[1] W. Tew and K. Quelhas, *J Res NIST*, Vol 123, Art. No. 12013 (2018) https://doi.org/10.6028/jres.123.013