A data-driven prognostics for an assembly machine for automatic transmissions

Prof. Hyunbo Cho, Ph.D. hcho@postech.ac.kr Industrial & Management Engineering POSTECH

Introduction to Project

Goal

Development of artificial intelligence-based diagnosis / prediction system for the **Seamless Manufacturing**

Layout for Assembly Line

Automatic Assembly Line for Transmission Drum

17 Main-process and 10 sub-process

- **(1)** OP5~OP50: HSG Loading and inspection
- (2) SUB1-1~SUB1-4: Piston, Cover, HSG Assembly
- **③** OP60~OP65: Fastening bolt and allowance inspection
- (4) SUB2-1~SUB2-5: SEAL Ring, O-RING assembly and operation check
- **(5)** OP70~OP150: Attaching barcode, Oil leak inspection, Oil remove, Package

Losses in Assembly Line

Efforts for Avoiding Equipment Failure

Predictive maintenance for motors and machine tools

Theses are not Today's Topic

Goal: Reduce Minor Stops

Definition: Unlike equipment failures, machine is stopped by the machine itself or operators for a time shorter than threshold due to transient errors

Cases of Minor Stops (difficult to measure or expensive)

- Screw jam
- Breakdown of proximity sensors
- Misaligned sensors
- Disconnection of harness

Problems on worksite

- (1) Stops without symptoms \rightarrow Cannot predict when it will happen
- (2) Cannot detect them all automatically \rightarrow Operators cannot recognize
 - (3) Cannot find reasons without experts \rightarrow Need time to fix

Data-driven Minor Stops detect and Reasoning

Data Exploration

Summary of Data

- 06/2017~07/2017 Data (> 800,000 rows)
- 400 kinds of sensor data
- 3 types of Minor stops on data

SerialNo	Cycle Time	Minor Stop	•••	Torque	ScrewLoading	Air Pressure	Temperature	Proximity sensor_1	
A0001	201	449		6.2	1	12.5	24.3	1	
A0001	201	449		6.2	1	12.5	24.3	1	
A0002	28.9	0		6.2	1	12.4	24.3	1	
A002	28.9	0		6.3	1	12.5	24.3	0	
				•••	•••	•••	•••		

< Example of data>

Problems on Data

SerialNo	Cycle Time	Minor Stop		Torque	ScrewLoading	Air Pressure	Temperature	Proximity sensor_1		
A0001	201	449		6.2	1	12.5	24.3	1		
A0001	201	449		6.2	1	12.5	24.3	1		
A0002	28.9	0		6.2	1	12.4	24.3	1		
A0002	28.9	0		• About 32% of data longer than Cycle time of the line (29s)						
				Don't have error codes of minor stops						
A1210	177	0				1207	21 0	-		
A1210	177	0	V	6.3	Low Ro	eligibility of the Data $\frac{0}{1}$				
A1210	177	0		6.2		iuviiiy	oj ine Duiu	1		
A1210	177	0		6.3	1	12.5	24.3	0		
A1211	28.9	0		6.2	1	12.4	24.3	1		
A1211	28.9	0		6.3	1	12.5	24.3	0		

Define that processing time **more than 30s is Minor Stop** Divide undefined minor stop data from normal condition data based on clustering

Data-driven diagnosis model for detecting and reasoning minor stops

Modeling Approach

Data Clustering with Whole Data and Labeling undefined Minor Stops

- Normal condition
- undefined minor stops
- Labeled minor stop #1
- Labeled minor stop #1
- Labeled minor stop #1

Labeling as minor stops

Fault Tree Analysis

Develop fault tree with worksite experts to find meaningful variables

Feature Extraction

- Variables from FTA are subjective
- Select meaningful and objective variables using ANOVA

Fault Code	X0B	XOF	X10	X11	X12	X13	X14	•••
0	11.7	4.3	0	0	1	1	0	
0	11.6	4.4	0	0	1	1	0	
0	11.6	4.3	0	0	1	1	0	
0	11.7	4.4	0	0	1	1	0	
321	11.6	3.9	1	1	1	1	0	
331	11.7	3.9	1	1	1	1	0	
0	11.7	4.4	1	1	1	1	0	
0	11.6	4.3	1	1	1	1	0	
0	11.7	4.4	1	1	1	1	0	
181	11.6	4.3	1	0	1	1	0	
0	11.7	4.4	1	1	1	1	0	
0	11.6	4.3	1	1	1	1	0	
0	11.6	4.4	1	1	1	1	0	
0	11.6	4.3	1	1	1	1	0	
0	11.6	4.4	1	1	1	1	0	

	p-value	Variables
N	0.00	X0B
 	0.01	X0F
	0.00	X10
	0.13	X12
5/	0.35	X13
ľ	0.00	X14

Variables	p-value
X0B	0.00
XOF	0.01
X10	0.00
X12	0.13
X13	0.35
X14	0.00

Data Clustering with Selected Variables and Labeling undefined Minor Stops

Undefined minor stops

Normal condition data+Undefined minor stops

POSTECH

 $= 32\% \rightarrow 14.8\%$

Result

Lessons Learned (1/2)

Importance of data reliability

- Developed model without considering cycle time \rightarrow low recall and precision
- Sensor data is not always accurate
- Machines do not make a mistake but humans do

Need more researches for reducing minor stops

- Many researches for equipment failures but a few for minor stops
- Minor stops happen more frequently than equipment failures
- Generally repaired by operators and is not easy to identify and solve problems (Office staff couldn't identify minor stops for 2 hours during strike)

Lessons Learned (2/2)

Convert tacit knowledge into explicit knowledge

- Reducing feature space of data from Fault Tree Analysis
- Knowledge should be part of the model (Data talks. But can operators.)

Increasing productivity is the key because of the regulation

- Korean new labor regulation = no more than 52 hours work in a week
- Cost ↑, Production capacity ↓
- Data analytics will play an important role for productivity

Future Works

Data Analytics (5-tics) Roadmap

