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Measurement Uncertainty — Pitot Tube
MEASUREMENT EQUATION

Airspeed v =

√
2∆RsT

p

∆ Difference between total and static
pressures

T Air temperature

Rs Specific gas constant for dry air

p Static air pressure
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Measurement Uncertainty — Pitot Tube
INPUTS & UNCERTAINTY EVALUATION

INPUTS

ESTIMATE STD. UNC. MODEL

∆ 1.993 kPa 0.0125 kPa Gaussian

p 101.4 kPa 1.05 kPa Lognormal

T 292.8 K 0.055 K Gaussian

Rs 287.058 J kg−1 K−1 0.114 823 J kg−1 K−1 Gaussian

EVALUATION

NIST Uncertainty Machine (uncertainty.nist.gov)

Gauss’s Formula (GUM) and Monte Carlo Method (GUM-S1)
produce same results: v = 40.6 m/s and u(v) = 0.25 m/s
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Measurement Uncertainty — Pitot Tube
NIST UNCERTAINTY MACHINE — INPUT
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Measurement Uncertainty — Pitot Tube
NIST UNCERTAINTY MACHINE — OUTPUT
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Measurement Uncertainty — Tensile Strength
OBSERVATION EQUATION

Observation equation expresses measurand as known function
of parameters of probability distribution of inputs

ALUMINA COUPONS

Rupture stress in flexure test modeled as
Weibull random variable with shape α and
scale σC

MEASURAND Weibull mean value
η = σCΓ(1 + 1/α)
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Measurement Uncertainty — Tensile Strength
RESULTS

Maximum likelihood estimates α̂ = 10.1, σ̂C = 383 MPa

η̂ = σ̂CΓ(1 + 1/α̂) = 365 MPa

Uncertainty evaluation

Monte Carlo (exact)

Statistical Theory (approximate)
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Measurement

Experimental or computational process

that, by comparison with a standard,

produces an estimate of the true value of a property

of a material or virtual object or collection of objects,
or of a process, event, or series of events,

together with an evaluation of the uncertainty associated
with that estimate,

and intended for use in support of decision-making

— NIST TN 1900, §2
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Measurement Uncertainty
HEAT CAPACITY OF AMMONIA

We think our reported value is good to 1 part in 10 000

We are willing to bet our own money at even odds that it
is correct to 2 parts in 10 000

Furthermore, if by any chance our value is shown to be in
error by more than 1 part in 1000, we are prepared to eat
the apparatus and drink the ammonia

— C. H. Meyers, 1930s

Told by D. P. Johnson, reported by H. Ku, 1973

Quoted by T. Doiron & J. Stoup, 1997
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Measurement Uncertainty

Doubt about the true value of the measurand that
remains after making a measurement

— NIST TN 1900, §3

Measurement uncertainty described fully and quantitatively by
probability distribution on set of values of measurand

Probability distribution represents state of knowledge:

Subjective construct that expresses how firmly metrologist
believes she knows measurand’s true value

Characterizes how degree of her belief varies over set of
possible values of measurand

11 / 17

Uncertainty Quantification
MATHEMATICAL MODELS & COMPUTER CODES

Simulator S is model for system W in physical world

Since S reproduces W only imperfectly or incompletely, its
output is surrounded by margin of doubt (uncertainty)

In many cases, each evaluation of S, and each observation of
W, are very costly: impracticable to characterize uncertainty
using conventional Monte Carlo methods

Build Emulator E that approximates S and can express all
recognized sources of uncertainty in play

Including model uncertainty and uncertainty associated

with model implementation in computer code

Calibrate emulator using only modest number of runs of S or
observations of W
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Simulator

Costly evaluations of simulator ϕS to be calibrated using
costly observations of physical world
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Physical World

y = ϕ(x)
yF = ϕS(xF, λF)
    = 5 exp(− λFxF)
λ̂F = 0.63

Simulator

yM = 5 exp(− λMxM)
λ̂M = 1.1
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Emulator

Gaussian random function Aα whose evaluations are much less
expensive than simulator’s — inherits simulator’s bias
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Bias Estimation & Correction

Bias is persistent effect modeled as another Gaussian random
function Bβ that is used to correct emulator
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ŷR = Aα̂(xE) + Bβ̂(xE)
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Bias-Corrected Emulator

Uncertainty quantification is by-product of Bayesian procedure
used to estimate bias-corrected emulator
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Summation

Uncertainty quantification (for mathematical models and
computer codes) can be done using same technical devices
used to characterize measurement uncertainty

Gaussian random functions (of several variables) provide
flexible, general purpose emulators

Bayesian approach (typically employing Markov Chain Monte
Carlo sampling) enables uncertainty quantification relying on
modest numbers of evaluations of costly simulator and of
costly observations of physical world system
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