Evaluating and Quantifying Uncertainty

Antonio Possolo
NIST Fellow \& Chief Statistician
Statistical Engineering Division
Information Technology Laboratory

January 14, 2016

NGT

National Institute of Standards and Technology

References

- M. J. Bayarri et al. (2007)

A Framework for Validation of Computer Models Technometrics 49(2), 138-154 http://dx.doi.org/10.1198/004017007000000092

- J. Palomo et al. (2015) SAVE: An R Package for the Statistical Analysis of Computer Models Journal of Statistical Software, 64(13), 1-23
http://dx.doi.org/10.18637/jss.v064.i13
- A. Possolo (2015) Simple Guide for Evaluating and Expressing the Uncertainty of NIST Measurement Results
NIST Technical Note 1900
http://dx.doi.org/10.6028/NIST.TN. 1900
- Airspeed $v=\sqrt{\frac{2 \Delta R_{s} T}{p}}$

Δ Difference between total and static pressures
T Air temperature
$R_{S} \quad$ Specific gas constant for dry air
p Static air pressure

Measurement Uncertainty - Pitot Tube INPUTS \& UNCERTAINTY EVALUATION

INPUTS

ESTIMATE

	ESTIMATE
Δ	1.993 kPa
p	101.4 kPa
T	292.8 K
R_{S}	$287.058 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$

STD. UNC.
0.0125 kPa
1.05 kPa
0.055 K
$0.114823 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$

MODEL
Gaussian
Lognormal
Gaussian Gaussian

EVALUATION

- NIST Uncertainty Machine (uncertainty.nist.gov)
- Gauss's Formula (GUM) and Monte Carlo Method (GUM-S1) produce same results: $v=40.6 \mathrm{~m} / \mathrm{s}$ and $u(v)=0.25 \mathrm{~m} / \mathrm{s}$

Measurement Uncertainty - Pitot Tube

NIST UNCERTAINTY MACHINE - OUTPUT

Measurement Uncertainty - Tensile Strength OBSERVATION EQUATION

- Observation equation expresses measurand as known function of parameters of probability distribution of inputs

ALUMINA COUPONS

- Rupture stress in flexure test modeled as Weibull random variable with shape α and scale σ_{C}
- MEASURAND Weibull mean value $\eta=\sigma_{\mathrm{C}} \Gamma(1+1 / \alpha)$

Measurement Uncertainty — Tensile Strength RESULTS

- Maximum likelihood estimates $\widehat{\alpha}=10.1, \widehat{\sigma}_{\mathrm{C}}=383 \mathrm{MPa}$
- $\widehat{\eta}=\widehat{\sigma}_{C} \Gamma(1+1 / \widehat{\alpha})=365 \mathrm{MPa}$
- Uncertainty evaluation
- Monte Carlo (exact)
- Statistical Theory (approximate)

Measurement

Experimental or computational process

that, by comparison with a standard, produces an estimate of the true value of a property of a material or virtual object or collection of objects, or of a process, event, or series of events, together with an evaluation of the uncertainty associated with that estimate, and intended for use in support of decision-making
— NIST TN 1900, §2

Measurement Uncertainty

HEAT CAPACITY OF AMMONIA

We think our reported value is good to 1 part in 10000
We are willing to bet our own money at even odds that it is correct to 2 parts in 10000

Furthermore, if by any chance our value is shown to be in error by more than 1 part in 1000, we are prepared to eat the apparatus and drink the ammonia

- C. H. Meyers, 1930s

Told by D. P. Johnson, reported by H. Ku, 1973
Quoted by T. Doiron \& J. Stoup, 1997

Doubt about the true value of the measurand that remains after making a measurement
— NIST TN 1900, §3

- Measurement uncertainty described fully and quantitatively by probability distribution on set of values of measurand
- Probability distribution represents state of knowledge:
- Subjective construct that expresses how firmly metrologist believes she knows measurand's true value
- Characterizes how degree of her belief varies over set of possible values of measurand

Uncertainty Quantification
 MATHEMATICAL MODELS \& COMPUTER CODES

- Simulator \mathcal{S} is model for system \mathcal{W} in physical world
- Since \mathcal{S} reproduces \mathcal{W} only imperfectly or incompletely, its output is surrounded by margin of doubt (uncertainty)
- In many cases, each evaluation of \mathcal{S}, and each observation of \mathcal{W}, are very costly: impracticable to characterize uncertainty using conventional Monte Carlo methods
- Build Emulator \mathcal{E} that approximates \mathcal{S} and can express all recognized sources of uncertainty in play

Including model uncertainty and uncertainty associated with model implementation in computer code

- Calibrate emulator using only modest number of runs of \mathcal{S} or observations of \mathcal{W}

Simulator

- Costly evaluations of simulator $\varphi_{\mathcal{S}}$ to be calibrated using costly observations of physical world

Emulator

- Gaussian random function A_{α} whose evaluations are much less expensive than simulator's - inherits simulator's bias

Bias Estimation \& Correction

- Bias is persistent effect modeled as another Gaussian random function B_{β} that is used to correct emulator

Bias-Corrected Emulator

- Uncertainty quantification is by-product of Bayesian procedure used to estimate bias-corrected emulator

Summation

- Uncertainty quantification (for mathematical models and computer codes) can be done using same technical devices used to characterize measurement uncertainty
- Gaussian random functions (of several variables) provide flexible, general purpose emulators
- Bayesian approach (typically employing Markov Chain Monte Carlo sampling) enables uncertainty quantification relying on modest numbers of evaluations of costly simulator and of costly observations of physical world system

