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Measurement Uncertainty — Pitot Tube
MEASUREMENT EQUATION
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@ Airspeed v =
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Measurement Uncertainty — Pitot Tube
INPUTS & UNCERTAINTY EVALUATION

INPUTS
ESTIMATE STD. UNC. MODEL
A 1.993 kPa 0.0125 kPa Gaussian
p 101.4 kPa 1.05kPa Lognormal
T 292.8K 0.055 K Gaussian
R. 287.058Jkg 'K™! 0.114823Jkg !K~! Gaussian

EVALUATION
@ NIST Uncertainty Machine (uncertainty.nist.gov)

@ Gauss's Formula (GUM) and Monte Carlo Method (GUM-S1)
produce same results: v = 40.6 m/s and u(v) = 0.25m/s
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Measurement Uncertainty — Pitot Tube
NIST UNCERTAINTY MACHINE — INPUT

Measurement Uncertainty — Pitot Tube

Number of input quantities:

Names of input quantities:

D

elta

Update quantity names
111 #] Gaussian (Mean, StdDev)

Number of realizations of the output quantity:

s ]I L ognormal (Mean, StdDev)
| I Gaussian (Mean, StdDev)
{3 Gaussian (Mean, StdDev)

N R

5000000

Definition of output quantity (R expression):

Symmetrical coverage intervals
B Correlations

Run the computation

NIST UNCERTAINTY MACHINE — OUTPUT

RESULTS

Monte Carlo Method

Summary statistics for sample of size 5000000
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Measurement Uncertainty — Tensile Strength
OBSERVATION EQUATION

@ Observation equation expresses measurand as known function
of parameters of probability distribution of inputs

ALUMINA COUPONS

@ Rupture stress in flexure test modeled as
Weibull random variable with shape o and
scale o¢

@ MEASURAND Weibull mean value
n=ocl(1+1/a)
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Measurement Uncertainty — Tensile Strength
RESULTS

@ Maximum likelihood estimates & = 10.1, o¢ = 383 MPa

o 77=05cl(1+1/@) = 365MPa

S
@ Uncertainty evaluation z 2
2 8
» Monte Carlo (exact) s °
a3 |
= Statistical Theory (approximate) g _ .
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Measurement

Experimental or computational process
that, by comparison with a standard,
produces an estimate of the true value of a property

of a material or virtual object or collection of objects,
or of a process, event, or series of events,

together with an evaluation of the uncertainty associated
with that estimate,
and intended for use in support of decision-making

— NIST TN 1900, §2
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Measurement Uncertainty
HEAT CAPACITY OF AMMONIA

We think our reported value is good to 1 part in 10000

We are willing to bet our own money at even odds that it
Is correct to 2 parts in 10000

Furthermore, if by any chance our value is shown to be in
error by more than 1 part in 1000, we are prepared to eat
the apparatus and drink the ammonia

— C. H. Meyers, 1930s
Told by D. P. Johnson, reported by H. Ku, 1973
Quoted by T. Doiron & J. Stoup, 1997
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Measurement Uncertainty

Doubt about the true value of the measurand that
remains after making a measurement

— NIST TN 1900, §3

@ Measurement uncertainty described fully and quantitatively by
probability distribution on set of values of measurand

@ Probability distribution represents state of knowledge:

= Subjective construct that expresses how firmly metrologist
believes she knows measurand’s true value

= Characterizes how degree of her belief varies over set of
possible values of measurand

Uncertainty Quantification
MATHEMATICAL MODELS & COMPUTER CODES

@ Simulator S is model for system )V in physical world

@ Since S reproduces MV only imperfectly or incompletely, its
output is surrounded by margin of doubt (uncertainty)

@ In many cases, each evaluation of S, and each observation of
W, are very costly: impracticable to characterize uncertainty
using conventional Monte Carlo methods

* Build Emulator £ that approximates & and can express all
recognized sources of uncertainty in play

Including model uncertainty and uncertainty associated
with model implementation in computer code

= Calibrate emulator using only modest number of runs of S or
observations of W
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Simulator

@ Costly evaluations of simulator ¢ s to be calibrated using
costly observations of physical world
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Emulator

@ Gaussian random function A, whose evaluations are much less

expensive than simulator's — inherits simulator’s bias
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Bias Estimation & Correction

@ Bias is persistent effect modeled as another Gaussian random
function Bj that is used to correct emulator
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Bias-Corrected Emulator

@ Uncertainty quantification is by-product of Bayesian procedure
used to estimate bias-corrected emulator
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Summation

@ Uncertainty quantification (for mathematical models and
computer codes) can be done using same technical devices
used to characterize measurement uncertainty

@ Gaussian random functions (of several variables) provide
flexible, general purpose emulators

@ Bayesian approach (typically employing Markov Chain Monte
Carlo sampling) enables uncertainty quantification relying on
modest numbers of evaluations of costly simulator and of
costly observations of physical world system
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