Collaboration: The Semiconductor Industry's Path to Survival and Growth

Dr. Michael R. Polcari President and CEO SEMATECH 15 March 2005 SEMATECH

Accelerating the next technology revolution.

3/17/2005 J:\ADMCTR\OCE\M_Polcari\ITPC 10-0

Outline

- Environment

 Economic Challenges
 Technology Challenges
- Solutions
 - Innovation and Manufacturability through Collaboration
 - SEMATECH examples

"The future ain't what it used to be..." - Yogi Berra

The Electronics Ecosystem

\$36,356T **Global GDP** \$1,240B **Electronics** Semiconductors \$213B \$52B Semi. Equipment Materials \$28B

2004 data (GDP from 2003) Sources: World Bank, World Semiconductor Trade Statistics, VLSI Research, SIA, SEMI

Making the world

-1

Growth may slow, but will continue...

Sources: Gartner Dataquest and SIA, February 2004

Business Challenges The new economy for microelectronics

Affordability

- Increasing costs
 - Capital
 - Manufacturing
 - R&D

Manufacturability Fab and equipment productivity

Semiconductor Manufacturing Challenge Wafer Fab Cost Trend

Accelerating the next technology revolution

Semiconductor R&D Challenge

Chip Making R&D Versus Revenues

International Technology Roadmap for Semiconductors

Accelerating the next technology revolution.

Technology Challenges Innovation required

Still no known solutions in many areas:

- Lithography
- Front End
- Interconnect
- Metrology

Table 71a Thermal and Thin Film, Doping and Etching Technology Requirements—Near-term UPDATED									
Year of Production	2003	2004	2005	2006	2007	2008	2009	Driver	
Technology Node		hp90			hp65				
DRAM ½ Pitch (nm)	100	90	80	70	65	57	50	DRAM	
MPU/ASIC ½ Pitch (nm)	107	90	80	70	65	57	50	MPU	
MPU Printed Gate Length (nm)	65	53	45	40	35	32	28	MPU	
MPU Physical Gate Length (nm)	45	37	32	28	25	22	20	MPU	
Equivalent physical oxide thickness for MPU/ASIC T _{ox} (nm) [A, A1]	1.3	1.2	1.1	1	0.9	0.8	0.8	MPU	
Gate dielectric leakage at 100°C (nA/µm) High-performance [B, B1, B2]	100	170	170	170	230	230	230	MPU	
Physical gate length low operating power (LOP) (nm)	65	53	45	37	32	28	25	Low Power	
Physical gate length low standby power (LSTP) (nm)	75	65	53	45	37	32	28	LSTP	
Equivalent physical oxide thickness for low operating power T _{ax} (nm) [A, A1]	1.6	1.5	1.4	1.3	1.2	1.1	1	LOP	
Gate dielectric leakage at 100°C (nA/µm) LOP [B,B1, B2]	0.33	1	1	1	1.67	1.67	1.67	LOP	
Equivalent physical oxide thickness for low standby power Tax (nm) [A, A1]	2.2	2.1	2.1	1.9	1.6	1.5	1.4	LSTP	
Gate dielectric leakage at 100°C (pA/µm) LSTP [B, B1, B2]	3	3	5	7	8	10	13	LSTP	
Thickness control EOT (% 3 0) [C]	<±4	<±4	<±4	<±4	<±4	<±4	<±4	MPU/ASIC	
Gate etch bias (nm) [D]	20	16	14	12	10	10	8	MPU/ASIC	
$L_{gate} 3\sigma variation (nm) [E]$	4.46	 3.75 	3.15	2.81	2.5	2.2	2		
Total maximum allowable lithography $3\sigma(nm)$ [F]	3.99	3.35	2.82	2.51	2.24	1.97	1.79	MPU/ASIC	
Total maximum allowable etch 3σ (nm), including photoresist trim and gate etch [F]	1.99	 1.68 	 1.41 	1.26	1.12	0.98	0.89	MPU/ASIC	
Resist trim maximum allowable $3\sigma(nm)$ [G]	1.16	• 0.97	• 0.82	0.73	0.65	0.57	0.52	MPU/ASIC	
Gate etch maximum allowable $3\sigma(nm)$ [G]	1.62	 1,37 	1.15	1.02	0.91	0.8	0.73	MPU/ASIC	
CD bias between dense and isolated lines [H]	≤15%	♦ ≦15	♦ ≦15	≤15%	≤15%	≤15%	≤15%	MPU/ASIC	
Minimum measurable gate dielectric remaining (post gate etch clean) [I]	>0	>0	>0	>0	>0	>0	>0	MPU/ASIC	
Profile control (side wall angle) [J]	>89	90	90	90	90	90	90	MPU/ASIC	
PIDS Assumed Device Structure*	Enh	Enhanced Planar Bulk CMOS FDSOI, Elev. Contact *					t		
Drain extension Xj (nm) [K]	24.8	20.4	17.6	15.4	13.8	8.8	8	MPU/ASIC	
Maximum drain extension sheet resistance (PMOS) (Ω 'sq) [L]	545	663	767	833	884	1739	1800	MPU/ASIC	
Maximum drain extension sheet resistance (NMOS) (Ω sq) [L]	255	310	358	389	412	811	840	MPU/ASIC	
Extension lateral abruptness (nm/decade) [M]	5	4.1	3.5	3.1	2.8	TBD	TBD	MPU/ASIC	
Contact Xj (nm) [N]	49.5	40.7	35.2	30.8	27.5	NA	NA	MPU/ASIC	

Source: ITRS 2004

Future Transistors Non-classical CMOS will take us through next 15 years

Many Approaches

nMOS MOSFET pMOS FINFET

Source: Bruce Doris (IBM)

Sub 10 nm Beyond CMOS Already Demonstrated

Transistor on thin SOI

Accelerating the next technology revol

3/17/2005 J:\ADMCTR\OCE\M_Polcari\ITPC 10-04

Future Patterning

Future Connectivity 2003-2008 2009→ k_{eff} ~ 2.3-2.6 k_{eff} ~ 3.1-3.6 k_{eff} ~ 2.7-3.0 **Projects Projects** Cu Low k & Reliability **Optically active Determine**; **Nanotubes Molecules** Roadmap **Future Timelines** Connectivity **Critical Needs Next Generation Interconnect Optical Interconnects** SWCNT ਿੱਸੀ ਡੱਵੀ 061931 25KV X2.50K 12.0um

acelerating the next technology revolution

Future Metrology CD-SEM of the Future? Migration of TEM LENS Technology to SEM

Future Manufacturing

The New Economy for Microelectronics

- Slower growth of industry foreseen, compared to last 30 years
- Escalating R&D, capital, and manufacturing costs
 - A new factory at 90nm technology on 300mm wafers has a capital cost of \$2-3B
 - Rising technology R&D product cycle costs
- Staggering technology challenges
 - 193 immersion/EUV, high/low-k, masks, 3D interconnect, 300mm/450mm
- Changing business models in the industry
 - Foundries, fabless and fab-lite
 - New alliances and partnerships

zedina the next technology re

Collaboration at All Levels

Device manufacturers

- Crolles cluster: Freescale, Philips, STMicro, TSMC
- IBM cluster: AMD, IBM, Infineon, Samsung
- Equipment and materials suppliers and device manufacturers
 - SEMATECH, Selete, individual companies
- Universities
 - SRC/MARCO Focus Centers
 - SEMATECH AMRC programs
- Governments
 - Texas Advanced Materials Center
 - Albany Nanotech
 - IMEC
- Suppliers

Innovation and Manufacturability Two ways to sustain Moore's Law

Accelerating the next technology revolution.

SEMATECH Worldwide collaboration

Accelerating the next technology revolution.

SEMATECH: Focus on Innovation and Manufacturability

- SEMATECH is the catalyst for accelerating the commercialization of technology innovations into manufacturing solutions
 - Accelerated commercialization of university research (AMRC)
 - Advanced technology innovations (SEMATECH)
 - Manufacturing productivity (ISMI)
 - World-class R&D processing & prototyping (ATDF)
- Benefits of collaboration
 - Save money
 - Reduce risk
 - Accelerate development
 - Increase productivity

SEMATECH Accelerating the next technology revolution

INTERNATIONAL SEMATECH

FOSTERING INNOVATION

Advanced Gate Stack for 45nm Node Fundamental Materials Understanding

Advanced Materials Research Center Accelerating commercialization of university research

Attributes

- Accelerate commercialization from universities to corporate products
- Provide technology pipeline
 - Fundamental understanding
 - High-quality students, technical skills

Structure/Scope

- Participating facilities include:
 - SEMATECH/ATDF
 - Microelectronics Research Center
 - Texas Materials Institute
 - Center for Nano & Molecular Science and Technology
- Focus on future transistors, interconnects, patterning, metrology; emerging nanotechnology applications

2004 AMRC University Programs

Торіс		Details	UT Lead	Title			
	Advanced CMOS Materials &	Gate Stack Materials	Lee Kwong	PVD High -K Dielectrics: Reliability Issues Materials and Structures frng and Characterization of Key Issues Related to High-K Gate Dielectrics and Metal Gate Elecrodes			
Materials and Structure for Future Transistors (FEP)	Processes	Ohannal Matariala	Register	Modeling of Gate Stack Materials			
			Banerjee				
		New Transistors on Strained Silicon + SOI	Hwang Singh / Banerjee	Novel Transistors: Multi-gate SOI MOSFETS, FinFETs, and Vertical MOSFETS			
	Beyond CMOS Novel Transistors	NanoTechnology	Register Dodabalapur	Transport Models for Strained Si and FinFETs Advanced Organic/Silicon Devices for chemical and Biosensing			
			Ekerdt	Quantum Dot Floating Gate Flash Memories			
		生动的。 <i>则是</i> 为自己性心的通知,是	与市场, 能力, 如何				
Marerials and Structure for Future Connectivity (Interconnect)	Advanced Cu & Low- K Interconnects	Barrier Materials / Low-k	Ekerdt / White	Ultra Thin Diffusion Barrier and Pore Sealing Techniques for 45 nm and Beyond			
	Future Connectivity	Nano-Conductors / Low-k	Ho	Nanoconductors for Future Interconnects			
		3-D Technology	Neikirk	Measurement, Electrical Characterization, and Design of Advanced Interconnects			
		Optical Interconnect	R. Chen Deppe	Optical Interconnects Optical Interconnects			
		Optical Detectors for Interconnect	Campbell Holmes	Optical Interconnects Optical Interconnects			
新闻的 化 有限			的動包的加強的影響				
Patterning of Materials and Structures (Litho)	Optical Extension	Immersions Lithography Studies	Willson / Bonnecaze / Shi	Immersion Lithography - Fluids and Resists			
	Nanotechnology Patterning	Functional Resist	Willson / Ekerdt / Shi	Functional Resissts			
		Common Resist for 193nm, eBeam, & Imprint Template	Willson / Ekerdt / Shi	Common Electron Beam Resists			
		Field Assisted Lithography	Willson / Sreenivasan	Field Assisted Lithography			
新教育的新教 的		进动运行运行的保护 站和进行动力的		别的是我的自己的问题是则是我的这是没用的形式很多的			
Metrology and Characterization of Materials and Structures (Metrology)	Future Transistors	Advanced CMOS	Downer	Spectroscopic Methods for Profiling High-K Dielectric Films and Nanometer-Scale SOI Structures			
			Shih	Dopant Profiling with STM			
			Yacaman	Transition Electron Microscopy Studies			
		Beyond CMOS	Campion	Strain Measurement by Raman Spectroscopy			
	Patterning	Patterning & Standards	Korgel	Nanowires and Nanodots for Metrology Standards			
	Defects		De Lozzane	STM Studies for Metrology			

AMRC Metrology Programs Innovative approaches

- Spectroscopic Methods for Profiling High-K Dielectric Films and Nanometer-Scale SOI Structures
- Dopant Profiling with STM
- Transmission Electron Microscopy Studies
- Strain Measurement by Raman Spectroscopy
- Nanowires and Nanodots for Metrology Standards
- STM Studies for Metrology
 Conductivity of nanowires

Accel eralime the next technology w

XIDEX Carbon Nanotube Tip for SPM Accelerating commercialization

Advanced Technology Development Facility (ATDF): R&D processing and prototyping

Non-classical CMOS MuGFET

ASSURING MANUFACTURABILITY

Immersion Coatings Test Chamber

Immersion Technology Center (iTC) Focus on high-NA applications, future extensibility

- Austin-based iTC will support the development of commercial immersion materials for high-NA applications to meet production requirements
 - Centerpiece is 1.3NA 193nm microstepper (Exitech/Tropel)
 - Design study, and option for manufacture and 2006 delivery of ~1.5NA lens
 - Fluid development required
 - Interference lithography tool to provide complementary platform for high-index fluid development
- Additional objective to understand extensibility of immersion lithography

SEMATECH EUV Program at Albany Accelerate EUV infrastructure development

- 5-year strategic alliance
- EUV Mask Blank Development Center will speed the development of commercial EUV masks
- EUV Resist Test Center will support the development of commercial EUV photoresists to meet production requirements

Accelerating the next technology revolution.

Manufacturing Initiative (ISMI) Improving manufacturing effectiveness and productivity

 Fab benchmarking – today's installed base Cost reductions

Resist reduction \$1.4M-1.6M/year savings

- Tool improvements (EPITs) ~8% improvement in scanner availability
- Factories of the future
 - e-Manufacturing
 - Next wafer size
- Yield enhancement
- Metrology
- ESH

Accelerating the next technology revolution.

Sharing Manufacturing Excellence through councils and benchmarking

- Manufacturing Methods
 Councils
 - 20% productivity improvement in Members' wafer fabs over last two years
- Water optimization and reduction
 - Savings of over 42M gallons per year

Percentile Performance Index Yield, Cycle Time, Avg People, Aligner Prod, 9 Tool Avg 200mm Fabs with 6+ Quarters of Data (1Q99 - 4Q02)

Energy reduction

 Savings of over \$3M per year

3/17/2005 J:\ADMCTR\OCE\M_Polcari\ITPC 10-04

ISMI Strategic Directions Improving productivity and yields

- Short cycle time
- "Monitor-free" manufacturing
- Plug & play equipment
- Continuous scaling
- Next wafer size transition
- Green fab
- Fully automated fab (hardware, software)
- People productivity
- Zero defects, 100% yield

Semiconductor is the Platform for Emerging Technologies

MEMS Airbag Sensor

J:\ADMCTR\OCE\M_Polcari\ITPC 10-04

The dots are at the atomic level

\ccelerating the next technology revolution.

Collaboration is the Key at **SEMATECH**

- Global Collaboration
 SEMATECH & Selete
 - 300mm, masks, resists
 - SEMATECH & SEMI
 - Industry Executive Forum
 - SEMATECH & IMEC

- High-k, 157nm → 193i lithography, EUV
- SEMATECH & Semiconductor Research Corporation
 - FEP Transition Center, FORCe, ERC
- SEMATECH & Albany Nanotech
- SEMATECH & the Texas Technology Initiative

Catalyst for Commercialization Innovation Acceleration Manufacturability

University Research

ADVANCED MATERIALS RESEARCH Technology Development

SEMATECH

Productivity

R&D Processing & Prototyping

