Purpose: The purpose of this document is to represent the uses of Positioning, Navigation, and Timing (PNT) within the USDA Natural Resources Conservation Service (NRCS), the adverse impacts of PNT disruption, the consequences to agency operations of PNT disruption, and current risk management protocols within the agency to mitigate PNT disruption.

Background: The employees of the USDA NRCS utilize Positioning, Navigation, and Timing (PNT) obtained from the Global Positioning System (GPS) and other Global Navigation Satellite Systems (GNSS) daily. Space Based PNT is utilized for timing of telemetry, navigation to features on the ground, performing inventory and inspection of engineering structures, ground survey for construction, as built documentation of built structures, inventory of soil, water, animal, plant, and air resources, layout of construction designs and conservation practices, and measurements for conservation practice certification.

Characterization of Space Based PNT disruption: The NRCS considers and plans for disruption of PNT services that occur in two principal categories: A) Denial of signal reception due to natural or technological means, and B) Manipulation of data encoded within the signals from space.

Risk Management and Mitigation: Risk management takes place at the NRCS National, State, and Local level. NRCS employees are briefed on disruption to PNT services and indicators of disruption. NRCS policy establishes a reporting chain for reporting disturbances. State and national level geospatial leads are aware of the reporting chain and will refer suspected cases to the NRCS National PNT Leader, who will in turn report suspected cases to the Coast Guard Navigation Center (NAVCEN).

Variability of Risk Management and Mitigation within NRCS: The NRCS is a large federal agency that employs over 9,000 personnel in the 50 U.S. states as well as Puerto Rico, Virgin Islands, Samoa, Guam, and cooperating Pacific island nations. National level briefing and training programs and curricula have not been created. State level coordinators have received briefings as have selected field personnel in other agency disciplines. Direction is provided in the agency policy guide, the General Manual. NRCS has utilized PNT tools and services since 1991 but most service center offices have not relinquished manual tools such as measuring wheels, total stations, levels, and chains. Reversion to use of these tools is expected if disruption is sustained or frequent.

See Profiles next page.

Prepared by Gary Hallbauer, National PNT Leader, USDA NRCS National Geospatial Center of Excellence, Fort Worth, Texas. Gary.Hallbauer@usda.gov

NRCS PNT Profiles

Activity or Business	PNT Service	Disruption Impact	Business Consequences	Agency Risk
Area and Description				Management
I. Snow Survey Program	Timing for monitoring	Severe – coordinated data	The availability,	SNOTEL/SCAN
(SNOTEL/SCAN)	sites, control stations,	transmission and	reliability, and integrity	engineers and technicians
telemetry transmission	data collection and	reception is disrupted.	of data from	monitor the system and
and reception to over 600	aggregation. Coordinate	Timing of servers, master	SNOTEL/SCAN is	are alerted when timing is
monitoring sites.	meteor burst, satellite,	control stations, and	diminished. Critical	disrupted. Log files are
SNOTEL is the source of	and cellular telemetry	control stations are	water supply forecasts are	generated periodically
critical water supply	from the networks.	disrupted. Ability for	delayed and less accurate.	and can be analyzed for
forecasts for the Western	Provide timing to servers	monitoring sites to	Disrupted server timing	sources and causes of
United States. The Soil	based at the Water &	transmit data is disrupted.	could result in loss of	disruption. Crews are
Climate Analysis	Climate Center.	Data are missing or	historical and current	dispatched to control
Network provides data to		corrupted.	data.	stations and monitoring
support natural resource				sites to perform trouble
assessments and				shooting. Satellite and
conservation planning.				cellular telemetry
				provides communicate
				disruption cases to the
				Water & Climate Center.

Activity or Business	PNT Service	Disruption Impact	Business Consequences	Agency Risk
Area and Description				Management
II. Navigation to and	Positioning and	Severe – current position	Inability to perform task	Users of PNT navigation
recovery of soil, water,	Navigation – use of	and vector direction,	or excessive time spent to	services are instructed on
and resources inventory	current position and	speed over ground, and	perform task. Faulty	how to detect, monitor,
sample sites and	vector navigation to	navigation quality can't	navigation data and	and report disruptions or
instruments over ground.	achieve closest point of	be determined or has	inattention to situational	disturbances to space
Soil Scientists recover	approach in order to	gross error. More time is	awareness could lead to	based PNT signals.
typical soil sample sites	physically locate the	required – and some risk	accidental injury or death	Policy is in place to
to obtain samples and	sample site or instrument.	- to physically locate the	for the employee	ensure that quality data
perform additional		site or instrument.	performing the task.	are collected and an
characterization.			Incorrect data would be	evaluation of PNT signal
Resources Inventory			collected because of the	quality is included in
Specialists recover			location error. Vital clues	assessments. Users are
historic sample points and			to composition of plants	taught to distinguish
characteristic soils, forbs,			and soils would be lost or	between static and mobile
and woody plants. Data			would be misinterpreted	disturbances and how to
are placed into server-			leading to error.	perform rough
based database systems				localization. Users also
for analysis, trending, and				correlate PNT disruption
reporting.				with disruption of other
				spectrum use such as
				smart phone and cellular
				data.

Activity or Business	PNT Service	Disruption Impact	Business Consequences	Agency Risk
Area and Description				Management
III. Maritime navigation.	Navigation and	Moderate to severe –	Mispositioning in	Agency PNT users are
NRCS soil scientists	Positioning to obtain boat	degradation of current	offshore underwater data	advised of military
perform investigations	location relative to the	position can cause data	is not something easily	exercises that may
along some of the	shoreline and to avoid	collection inaccuracies	fixed. Surveys are often	degrade maritime
nation's coasts assessing	hidden obstructions.	that can cause	done using bottom	navigation and
the composition and	Navigation to prior work	mispositioning of	sampling tools that can't	positioning through Coast
condition of subaqueous	sites or new designated	features. Loss of	be seen from above the	Guard Navigation Center
soils. Boats are used to	work sites.	navigation can cause	surface. Data must be re-	advisories. Users of PNT
travel to sites offshore,		boats to collide with	collected which incurs	navigation services are
record data on site and		submerged features.	extra time and expense.	instructed on how to
return to port.		Modern maritime	Mispositioning and	detect, monitor, and
		navigation systems sound	interference with	report disruptions or
		proximity alarms but	navigation service can	disturbances to space
		mispositioning will affect	cause the boat to collide	based PNT signals.
		the accuracy of the	with electronically	Policy is in place to
		alarms	charted submerged	ensure that quality data
			features. Collisions can	are collected and an
			result in injury or death.	evaluation of PNT signal
				quality is included in
				assessments.

Activity or Business	PNT Service	Disruption Impact	Business Consequences	Agency Risk
Area and Description				Management
IV. Vehicle navigation is	Navigation: Site	If navigation service is	Loss of time while the	Alternative means of
performed by most NRCS	coordinates are loaded	disrupted the turn by turn	employee attempts to	navigation such as county
personnel to travel to	into vehicle GPS or	directions will be	overcome the issue with	highway maps are
work sites, sample sites,	GNSS devices. The	inaccurate. If the	the navigation device or	available in every Service
or inspection sites.	employee will follow the	disruption is severe	stops to ask for	Center Office.
Workloads are often	turn by turn directions of	enough the inaccuracy	directions. Loss of	Employees that operate
planned to maximize the	the navigation device.	could result in missed	professional credibility	handheld GPS/GNSS
number of sites or visits	Use of this service is	turns that force	may occur. NRCS is a	devices for data
that take place during a	especially valuable for	employees to double back	voluntary and cooperative	collection are briefed on
field day.	new employees or	and attempt to find the	conservation agency that	techniques to detect
	employees working in	correct direction. In areas	relies on the trust of the	disruption of navigation
	unfamiliar areas.	of small land holdings,	clients and the	service and to utilize
		the employee may report	professionalism of	maps and other means of
		to the wrong address.	employees. Prolonged	navigation reference.
			disruption or frequent	
			disruption can erode the	
			efforts of NRCS to	
			increase conservation on	
			the landscape.	

Activity or Business	PNT Service	Disruption Impact	Business Consequences	Agency Risk
Area and Description			-	Management
V. Small UAS use of	Positioning and	Severe impact can result	Loss of ability to position	Agency sUAS operators
location and navigation	Navigation of sUAS	from even minor	and navigate home can	fly aircraft that meet
for acquisition of digital	aircraft is core to an	disruption. Loss of	result in loss of aircraft	guidelines for responding
imagery and elevation	acquisition mission. The	positioning and	and possible injury or	to loss of controller signal
data: Small UAS are	sUAS must be able to	navigation can cause an	death to person's below.	and PNT signals from
being utilized in more	establish a home position	sUAS to not be able to	Sustained disruption can	space. Remote pilots
NRCS activities such as	in case of low battery or	return home. Flight line	cause the aircraft to	have PNT quality
inspections and small	loss of ground guidance.	navigation will be	ground itself resulting in	indicators displayed on
area imagery and	The sUAS must also be	affected as will the	loss of valuable mission	the aircraft control smart
elevation data	able to navigate and	quality of positions	time and lost opportunity	device tethered to the
acquisitions. NRCS is	follow pre-planned flight	within the collected	to collect data. Ability	controller. The aircraft
not currently authorized	lines that ensure data	imagery or elevation data.	for approved Part 107	control app displays PNT
to own, operate, or fly	collection that meets		pilots to operate near	status (GNSS status).
sUAS and must rely on	national standards for		airports and other	Alerts are built into the
cooperating partners and	resolution and coverage		sensitive or restricted	sUAS to communicate to
contractors to fulfill	overlap.		sites is very dependent on	the controller and remote
requirements.			high quality PNT signals	pilot that PNT disruption
			from space. The NRCS	is occurring. If disruption
			assists clients near these	becomes too severe and
			type of facilities –	sustained – the aircraft
			sometimes even on the	internal processor
			facilities – and disruption	grounds the aircraft. The
			of PNT services will	controller app sustains the
			force NRCS to use less	information from the last
			efficient tools.	known position and
				enables recovery of the
				aircraft.

Activity or Business	PNT Service	Disruption Impact	Business Consequences	Agency Risk
Area and Description			•	Management
VI. Aircraft use of	Positioning and	Disruptions that are either	Disruptions Positioning	On the client side: Data
location and navigation	Navigation Services are	brief or sustained have an	and Navigation services	products undergo
for acquisition of digital	utilized to locate the	immediate impact on the	reduces the precision of	multiple tiers of Quality
imagery and elevation	position of the photo or	operation of a photo or	flight lines and results in	Assurance inspections.
data. USDA and NRCS	LiDAR aircraft and	LiDAR aircraft moving at	more flying time to cover	Error standards are tested
are users of digital aerial	provision precision flight	over 200 mph. The	the same area. The result	and reported back to the
photography flown by the	line navigation. Precision	slightest deviation in	is higher cost to acquire	agency contracting
National Aerial Imagery	navigation of flight lines	course can cause systemic	the data. The position	officials. On the vendor
Program as well as	reduces cost of	error all the way down	coordinate accuracy for	side: The aircraft flying
products flown under	acquisition and allows for	the flight line. Avionics	encoded data within the	aerial imagery and
contract by local units of	acquisition of larger areas	deployed in data	LiDAR or aerial imagery	LiDAR acquisition utilize
government and other	at reasonable price.	acquisition aircraft are	product will be reduced.	aviation GNSS avionics
federal agencies. Aerial	Newer acquisitions	designed to maintain	In cases where the	that warn pilots of
photographic imagery is	encode positional	precise flight lines at	coordinate accuracy does	disruptions and errors.
used in nearly every	coordinates – either	constant altitudes.	not meet National	Pilots can overcome
NRCS conservation line	within reference points	Disruptions in PNT	Program Specifications	disruption by reverting to
from conservation plan	within the aerial images	services also affect the	for NAIP and LiDAR the	backup navigation
mapping to engineering	or within the elevation	encoding of time and	data must be re-acquired.	systems. In the worst
design to long term	data record $(X,Y, \text{ and } Z)$.	position into aerial	Reacquiring data is	cases of disruption pilots
monitoring and trend		imagery and LiDAR data.	expensive for the vendor	would be forced to
analysis. Ad hoc aerial			and causes project	abandon and reschedule
imagery data collection is			deadline slippage. The	the mission with an
also utilized after natural			NRCS is not able to use	increase in overall costs.
disasters to assess impact			such data except for the	Contractual requirements
to resources and clients			most basic of planning	buffer the agency from
and to monitor recovery.			activities. Data would no	increases within a single
NRCS is a partner in the			longer be useful in	flying season but frequent
interagency 3D Elevation			engineering design or	or sustained disruption
Program. Elevation data,			water management	over time will increase
specifically LiDAR, is			activities. Imagery data	costs in the longer term.
utilized for multiple			could be salvaged by	

conservation and engineering business			using georeferencing and photogrammetric	
lines.			techniques to create	
			orthometric products, but	
			the result would add cost	
			to an acquisition project.	
Activity or Business	PNT Service	Disruption Impact	Business Consequences	Agency Risk
Area and Description		1	_	Management
VII. Agency personnel	Positioning services	Disruption to positioning	The collections of paper	Agency employees in the
use location for recording	provided by GPS and	services provided by	topo and plan maps that	Service Centers have
resource concerns and	GNSS signals in space	GPS/GNSS would not	have been cleaned out of	been reluctant to recycle
other landscape	have enabled NRCS	shut down NRCS	many Service Centers	paper base reference
information for	personnel to perform	conservation planning	would have to	materials and forms but
conservation planning by	more work, with more	activities but would	reconstituted. Much	these can be recreated
connecting the planning	accuracy, in a shorter	lengthen the time to	more time would be	and distributed. Most
data to a conservation	amount of time.	collect data and nullify	required to input data	Service Centers have
plan map. More than	Resource issues are noted	gains in productivity the	onto forms and sketches	retained analog methods
7,000 agency personnel	by position and type.	agency has enjoyed since	and then manually enter	to capture data. Agency
augmented by hundreds	Concerns are then input	GPS was made fully	that into the agency GIS	employees in the Service
of contractors and Soil	into Conservation Plan	operational. Personnel	based digital planning	Centers know how to
and Water Conservation	maps that assist the client	would have to utilize	tools. Costs to obtain a	initiate an interference
District partners	with decision making and	manual methods to record	conservation plan – either	report if disruption is
incorporate location into	conservation	data. Data would be	through an agency	suspected. The reporting
all aspects of	implementation.	recorded onto paper	employee or through a	chain is documented in
conservation planning.	Programmatic	forms, topo maps, and	contractor or partner –	agency policy known as
Many of the GPS/GNSS	requirements drive the	paper plan maps in the	would escalate because of	the General Manual.
devices, including smart	types and quantities of	field. Data would have to	the extra time involved.	Employees are aware of
phones, used to record	data collected for	be manually input into	Multiply impact by 2,300	what indicators to look
data are equipped with	conservation planning.	agency digital planning	Service Centers to get an	for during periods of
geotagging digital	Legislative mandates	tools.	insight into agency	suspected disruption and
cameras.	including NEPA are also		impacts.	are trained to utilize
	requirements drivers.			manual tools.

Activity or Business	PNT Service	Disruption Impact	Business Consequences	Agency Risk
Area and Description				Management
VIII. Agency personnel	Navigation and	Severe impact can be	As GPS PNT has	Agency employees in the
use location for	positioning services are	expected from disruption	improved and more PNT	Service Centers know
measuring installed	used to find practices that	of PNT services used for	services have been	how to initiate a
conservation practices for	have been downloaded to	measurements.	provided by other GNSS	disruption report if
certification of financial	GPS/GNSS devices from	Infrequent disruptions	the ability to measure	disruption is suspected.
assistance. Inspection	GIS data bases.	can introduce error into	accurately and precisely	The reporting chain is
and certification are	Personnel utilize	measurements while	has increased	documented in agency
required under the	positioning best practices	sustained disruption of	dramatically. What used	policy known as the
Federal Acquisition Rules	to measure lengths and	PNT services may force a	to take a 2 or 3-person	General Manual.
(FAR) and other Federal	areas on a client field.	change of technology to	crew to accomplish with	Employees are aware of
laws, and Departmental	Results are recorded and	complete the certification	manual tools such as	what indicators to look
regulations. Allowable	entered into agency	and permit payment to	chains is now performed	for during periods of
deviation from contract	contracting applications	the client.	by one person – and in	suspected disruption and
performance is pre-	that permit or deny		much time. The	are trained to utilize
documented and	payment based on the		possibility PNT services	manual tools.
discrepancies in the field	results of the		disruption threatens the	
are noted and sent to a	measurements.		integrity of the	
state level officials.			certification process and	
			will create a substantial	
			loss of efficiency for	
			NRCS personnel.	

Activity or Business	PNT Service	Disruption Impact	Business Consequences	Agency Risk
Area and Description				Management
IX. Agency personnel use	Positioning for	Inspection of dams, many	Engineering inspectors	Agency employees in the
location for inspection of	geolocation of issues and	of which are classified as	would need to use manual	Service Centers know
engineering structures	deficiencies as well as	high hazard because of	sketching and traverse a	how to initiate a
and agricultural	measurements to ensure	age, is a high priority for	substantially greater	disruption report if
easements: Agency	easement contract	NRCS. Denoting issues	amount of the site to	disruption is suspected.
personnel perform	compliance. Navigation	using GPS/GNSS PNT or	locate and document	The reporting chain is
periodic inspections on	services to directly move	sUAS LiDAR or imagery	issues. The ability to	documented in agency
over 10,000 PL-566	to issue points or areas	is a powerful tool to	return to issues and	policy known as the
Small Watershed Dam	discovered through	reveal issues in dam	monitor those over time	General Manual.
structures in more than 20	remote sensing.	surfaces as well as	would be lost with	Employees are aware of
states. Agency also	Positioning services to	secondary structures such	sustained PNT disruption.	what indicators to look
perform ground	delineate changes in	as spillways and	Inspectors would incur	for during periods of
inspections on more than	boundary or denote	channels. Many of the	greater risk because of	suspected disruption and
10,000 agricultural	encroachment.	dams are over 40 years	the extended on-ground	are trained to utilize
easements to ensure		old and require more time	time on higher risk dams.	manual tools.
compliance with		to inspect. PNT services	Inspections of	
contractual requirements		provide a way for	agricultural easements	
and program law.		inspectors quickly and	would take longer and be	
		safely inspect dams that	less efficient. Manual	
		have issues – some of	methods would have to	
		which could be hidden.	be used for navigation,	
			mensuration, and	
			documentation of issues.	
			In either inspection case –	
			issues could be missed	
			without the use of PNT	
			services on sUAS.	

Activity or Business	PNT Service	Disruption Impact	Business Consequences	Agency Risk
Area and Description		1 1	1	Management
Area and Description X. Agency personnel use PNT location for survey work as input to engineering design of structures and water management systems. Use of survey methods date back to the earliest days of NRCS with topographic surveying for construction of field water conveyance channels, terraces, and small structures being the primary utilization. Use of manual methods such as theodolite, chaining, and plane table were replaced by positioning	PNT Service Positioning services are vital to successful use of modern survey instruments within the NRCS. Space based PNT is utilized every day by one or more offices and multiple personnel each day. Measurements from PNT services are used to plan irrigated pipeline installation, channel placement and design, land forming to improve drainage and reduce erosion, and design and construct larger structures such as PL-566 Small Watershed Dams.	Disruption of PNT services for survey work would at the minimum be a nuisance for infrequent disruptions to creating real data quality and workflow issues for more frequent and sustained disruptions. Direct impact to work in progress and project management milestones would become quickly apparent. Loss of efficiency as personnel revert to manual methods would occur. Use of less efficient methods would slow the pace of	Business Consequences The NRCS will not be hiring more personnel to make up for increased use of less efficient methods. Loss of efficiency means that less engineering conservation practices would be installed. Field work would take longer, and employee performance would suffer over a long term.	Management The engineering community in NRCS are very well versed in PNT services disruption. The equipment in use can flag subthreshold performance but indicating a reason for the issue something that needs to be investigated. RTK methods are known to be vulnerable to disruption but the tolerance level for equipment purchased recently is unknown. Engineers are aware of the reporting chain for PNT disruption. Field
and plane table were	such as PL-566 Small	efficient methods would		the reporting chain for