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Parallel calculation of electron multiple scattering using Lanczos algorithms
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Real space multiple scattering calculations of the electronic density of states and x-ray spectra in solids
typically scale as the cube of the system and basis set size, and hence are highly demanding computationally.
For example, such x-ray absorption near edge structure~XANES! calculations typically require clusters of
orderNR atoms ands, p, andd states for convergence, withNR between about 102–103; for this case about 102

inversions of 9NR39NR matrices are needed, one for each energy point. We discuss here two ways to speed
up these calculations:~1! message passing interface~MPI! parallel processing and~2! fast, Lanczos multiple
scattering algorithms. Together these algorithms can reduce computation times typically by two orders of
magnitude. These are both implemented in a generalization of theab initio self-consistentFEFF8code, which
thus makes practical XANES calculations in complex systems with of order 103 atoms. The Lanczos algorithm
also yields a natural crossover between full and finite-order multiple scattering with increasing energy, thus
differentiating the extended and near-edge regimes.

DOI: 10.1103/PhysRevB.65.104107 PACS number~s!: 71.10.2w, 78.70.Dm
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I. INTRODUCTION

Multiple scattering~MS! theory is widely used to calcu
late physical properties of solids, ranging from electro
structure to optical and x-ray response.1 Within single par-
ticle theory, which is usually an adequate approximati
these physical properties can all be calculated in terms of
total one electron propagator or Green’s functionG51/(E
2H1 iG), whereH is the Hamiltonian andG accounts for
inelastic losses and lifetime effects. In this paper we focus
the real space version of MS theory, i.e., the real sp
Green’s function~RSGF! approach,1 which is the real space
analog of the KKR~Korringa-Kohn-Rostoker! band structure
method. The RSGF approach has several advantages
traditional electronic structure methods, especially for co
plex systems. First, a real space approach is not restricte
periodic materials, and second, the approach can be exte
to energies far above the Fermi level~e.g., up to about 2000
eV!. Moreover, a real space approach is essential for p
cesses such as x-ray absorption in which a symmetry br
ing effects such as the core-hole and inelastic losses~e.g., the
photoelectron mean free path damping!, must be taken into
account, even in perfect crystals.

The central quantity in RSGF calculations is t
matrix form of the propagatorGL8R8,LR(E) in a siteR and
angular momentum L5( l ,m) representation
uLR&5 i l j l(krR)Ylm( r̂ R), where rWR5rW2RW and L5( l ,m).
The matrix elements represent the amplitude for an elec
to propagate between the statesuLR& and uL8R8&. This ma-
trix satisfies the multiple-scattering equations2 for a cluster
with NR sites

G5Gc1Gsc

Gsc5eid@12G0T#21G0eid8, ~1!

where for simplicity here and elsewhere~unless otherwise
specified!, matrix indices are suppressed. In these equat
0163-1829/2002/65~10!/104107~11!/$20.00 65 1041
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Gc represents the central atom contribution for whic
(21/p)Im Gc5dLL8dR,R8 andGsc is the scattering part from
the surroundings. Thus the main ingredients in the calcu
tions are the damped free propagatorsGL8R8,LR

0 (E), and the
dimensionless scatteringt matrix T5t lRdR,R8dL,L8 which in-
corporates the spherical scattering potentials in terms oft lR
5eid lRsindlR , whered lR are partial wave phase shifts for si
R. In this formulation, multiple scattering is implicitly take
to all orders via matrix inversion. The multiple scatterin
series forGsc is obtained by expansion of the matrix inver
in a geometric series

Gsc5eid8@G0TG01G0TG0TG01•••#eid. ~2!

This expression give a separation of total Green’s funct
into contributions from individual scattering paths, and
hence is termed the multiple scattering~MS! or path expan-
sion. The complete expression in Eq.~1! is termed full mul-
tiple scattering~FMS!, since it is formally equivalent to a
sum over all MS paths within a chosen finite cluster throu
which an electron can propagate, starting from and return
to the central atom.3

Once the propagatorG is obtained using either Eq.~1! or
~2!, many physical quantities can be calculated. For exam
the contribution to the x-ray absorption spectra~XAS! from a
given site and final state angular momentumL ~with a re-
laxed core hole!, as given by the golden rule, can be writte
as

m~E!}2
1

p
Im (

L,L8
ML8

* ~E!GL80,L0~E!ML~E!, ~3!

whereML(E)5^L,0u ê•rWuc& is a transition dipole matrix el-
ement between the atomic core state and a local final s
uL,0& andê is the x-ray polarization. As the transition matr
elements are relatively smooth functions of energy, the fi
structure inm(E) arises predominantly from that in the sca
tering contribution to the propagatorGsc.
©2002 The American Physical Society07-1
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Remarkably the multiple scattering expansion@Eq. ~2!#
generally converges well for photoelectron energies ab
about 30 eV, where typically less than about 100 MS pa
account for all structure in the the x-ray absorption spec
This simplification justifies the traditional path-by-path EX
AFS ~extended x-ray absorption fine structure! analysis. On
the other hand, below about 30 eV, scattering is often m
stronger. There may even be eigenvalues of theG0T matrix
that are larger than unity, in which case the MS expans
Eq. ~2! fails to converge. For these reasons, XAS calcu
tions are often split into two regions, based on the strengt
photoelectron scattering: the EXAFS region above abou
eV based on Eq.~2!, and the XANES~x-ray absorption nea
edge structure! region below about 30 eV based on Eq.~1!.
XANES calculations probe low energy excited states and
thus important to determine electronic and chemical inform
tion from x-ray spectra~e.g, charge counts, spin and orbit
momenta!. However, the cross-over between these regime
ill defined, and heretofore, has lacked a quantitative dist
tion. In this work, we discuss iterative MS methods bas
primarily on Lanczos algorithms,4 which naturally interpo-
late between the full and finite MS limits. Our results belo
clarify how the MS expansion converges with respect to
ergy and when a path expansion is valid, thus providin
clear way to differentiate the extended and near edge
gimes.

Many other spectroscopies can be obtained with a sim
RSGF formalism. For example, calculations of the x-r
photoelectron spectroscopy~XPS! cross sections(kW ) and of
photoelectron diffraction~XPD! can be obtained fromG us-
ing the expression3

s~kW !}(
LR

UFYL~ k̂!dR,R8

1 (
L8R8

YL8~ k̂!e2 ikW•(RW 82RW )GL8R8,LR
sc

~Ek!Geid l ,RMLRU2

,

~4!

wherekW is the outgoing photoelectron momentum. Calcu
tions of Eq. ~4! thus require knowledge of the site of
diagonal matrix elements ofGL8R8,LR . Note that once these
matrix elements are determined, one can determines(kW ) for
any direction, i.e., the ARPES~angular resolved photoemis
sion spectra!. LEED ~low energy electron diffraction! spectra
can also be obtained froms(kW ) and the surface structur
factor.5

There is also a direct connection betweenG and elec-
tronic structure. For example, the angular momentum p
jected density of electron states or LDOSr l ,R at a given site
requires similar calculations, i.e.,

r l ,R~E!52
1

p
Im TrmGLR,LR~E!. ~5!

Thus, local electron densities and charge counts can als
obtained fromG.
10410
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Due to the core-hole lifetime and final state broadeni
the effective one-particle HamiltonianH is not Hermitian,
and the free propagators decay with distance, i
GL8R8;LR

0 (E)}exp@(ik21/lk)uR2R8u#/uR2R8u, where k
5(2E)1/2 is the electron wave number, andlk is an effective
energy dependent electron mean-free path that includes
time broadening. The effective mean free path can be q
large near the Fermi level, but is still finite at threshold d
to the core-hole lifetime. Thus the size of a cluster needed
an accurate solution to the MS equations forG is roughly
comparable to the mean free pathlk , which varies between
about 5 and 20 Å for all materials.

The high energy or extended regime is important in s
eral x-ray and electron spectroscopies such as EXAFS, X
XPD, and anomalous x-ray scattering~AXS!. These spectro-
scopic methods typically make use of the energy or ang
dependent modulations in photoelectron scattering to ext
local electronic and structural information. Due to develo
ments in curved-wave scattering theory, e.g., the separ
representation for the free propagators,3 EXAFS and XPD
calculations are now both accurate and efficient. Moreo
during the last years, computing power has increased
matically, following Moore’s law,6 so that now such calcula
tions using the MS expansion in Eq.~2! are readily executed
on inexpensive desktop computers. As a result such calc
tions have become routine in EXAFS data analysis to de
mine accurate geometrical information about the local str
ture of materials.

On the other hand, XANES calculations have remain
time consuming for many materials. The FMS calculatio
via Eq.~1! require repeated inversions of large, complex a
only semisparse matrices. For example, XANES calculati
at theK edge of Si~which has a long mean free path! require
atomic clusters of aboutNR5103 atomic sites withs, p, and
d electrons (l max52), i.e., a basis of dimensionNR( l max
11)2'93103. As a result, such a calculation up to about
eV above threshold using Eq.~1! requires inversions of
9NR39NR such matrices at about 100 energy points. Th
calculations typically scale as the cube of the matrix dim
sion, so the above example has heretofore taken several
on modern computers. HigherZ materials~e.g., transition
metals! may also requiref electrons~or higher!, but tend to
have shorter core-hole lifetimes, and hence comparable
trix dimensions. XANES calculations also demand a mo
sophisticated treatment of electronic structure than EXA
For example, self-consistent potentials, an accurate treatm
of lifetime effects and inelastic losses are needed to ob
quantitative results. Further improvements in computer co
for XANES, such as relaxation of the muffin-tin approxim
tion ~i.e., the use of non-spherical potentials! and better treat-
ments of many-body effects7 will likely improve accuracy,
but further increase computational time. These compu
tional demands have led us to investigate ways to speed
the calculations.

In this paper, we present two strategies for achiev
much faster near edge RSGF calculations for electro
structure and x-ray spectra. The first is to use iterative
algorithms that replace conventional matrix-inversion me
ods. In particular we make use of recent developments
7-2
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Lanczos-type algorithms for solving systems of line
equations.8 These methods are generally more efficient th
the conventional continued-fraction Lanczos approa
which usually gives only a single inverse matrix eleme
The second strategy is to use parallel processing, i.e.
distributing different parts of the calculation across multip
processors based on the MPI protocol.9 These techniques
may be applied simultaneously, and we demonstrate that
provements in computational time for typical XANES calc
lations of about two orders of magnitude are possible w
Lanczos MS algorithms on parallel computers. These
proaches have been implemented in a generalization of
ab initio XAS/electronic structure codeFEFF8~version 8.2!.10

These developments thus largely overcome the time bo
neck of XANES calculations in complex materials a
nanoscale systems with up to about 103 atoms.

The remainder of this paper is outlined as follows. In S
II., we discuss the fast Lanczos algorithms for solving
MS equations and in Sec. III the MPI parallel process
approach. Section IV contains a summary and conclusi
Technical details are presented in the Appendix.

II. ITERATIVE MS ALGORITHMS

A. Lanczos type methods

In 1950 Lanczos4 discovered a powerful three term recu
sion operation which transforms an arbitrary complex ma
A to symmetric, tridiagonal form@Eq. ~A1!#. Many efficient
ways to solve sparse systems of linear equations are base
this transformation. These are referred to as Lanczos-
methods and have been reviewed by Gutknecht.8 They in-
clude various versions of the biconjugate gradient~BiCG!
method, the generalized minimum residual~GMRES!
method, etc. Recently, additional steps have been mad
improve or overcome various problems with these Lanc
procedures.11,12

In condensed matter physics, the Lanczos recurs
method was extensively developed by Haydocket al., espe-
cially for applications to tight-binding electronic structu
calculations.13 In their approach Haydocket al.usually use a
continued-fraction representation which gives a single e
ment of the inverse matrixA11

21 . The continued-fraction re
cursion method was also applied toK-shell XANES calcula-
tions by Filipponi.14 A great advantage of the Lanczo
continued-fraction representation is its lack of sensitivity
large eigenvalues of the matrixA. The reason seems to b
that the procedure systematically incorporates all large
genvalues into the solution. Indeed, the calculations
Filipponi14 showed that this representation does not h
such eigenvalue sensitivity, even when several eigenva
are significantly larger than unity. In contrast, many oth
Lanczos algorithms are less stable. We found that some
sions of the biconjugate gradient method need precondit
ing when some eigenvalues are greater than unity and ot
failed to converge for the large Si calculations discussed
low. The continued fraction representation has other adv
tages as well; for example, the spectral distribution aften
steps correctly gives the firstn moments of the distribution.13
10410
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A limitation of the continued fraction method is that
only gives a single element of the inverse matrix. Howev
for general XAS calculations, e.g., for XPS and XPD seve
or many elements of the inverse matrixA21 are needed.
Such calculations can be reduced to solving a few system
linear equations of the generic type11,12

Aux&5ub&, ~6!

whereA512G0T, andub& has a single nonzeroj th compo-
nent, e.g.,bi5d i , j in the original basis. This is the approac
adopted in this work. In this method, the vectorux& is then
the j th column of the desired inverse matrixA21 with com-
ponentsAji

21 , as can be verified by direct substitution. R
cently, de Abajoet al.5 developed an alternative Lanczos a
gorithm for such calculations. Their approach calcula
various inverse matrix elements recursively, in terms of
leading moments of the matrixB5G0T obtained during the
Lanczos procedure.

There have been many other attempts to speed up
calculations. Early approaches were based, for example
reordering the MS series,15 but these methods appear to ha
only mixed success. Wu and Tong16 introduced an iterative
solution to the matrix inverse, withux&5(11B1B2

1•••)ub& and suggested a simple mixing scheme of n
and previous iterations to stabilize the approach for pho
electron diffraction. However, such a solution may not co
verge when the matrixB has eigenvalues larger than unit
which is often the case in XANES. Another promisin
method is based on repartitioning the matrixB to improve
convergence.17 This method splits the problem into region
with stronger and weaker scattering with different treatme
appropriate to each region. Like the path expansion, this
proach has the advantage of having a clear physical inter
tation of the various MS contributions and can also tr
strong scattering. However, it appears to be less amenab
automation than the Lanczos approach.

B. LanczosÕLU method

As noted above, a knowledge of the complete inve
matrix @12G0T#21 is not required for all MS applications
nor is a single element sufficient. To address this problem
introduce here a combined Lanczos/LU method which g
eralizes the continued fraction approach to multipleAux&
5ub& problems. This approach differs from those discuss
above in that we employ the Lanczos procedure directly
calculate an entire column of the inverse matrix. In our a
proach, the Lanczos tridiagonalization is followed by the L
~i.e., lower upper! decomposition procedure in the tran
posed biorthonormal Lanczos vector space. Details are g
in the Appendix. Aftern steps of the Lanczos process th
method yields an iterative solutionuxn& to ux& with compo-
nentsxi5Ai1

21 ~for the choiceu1&5ub&). The value of the
first componentx1 agrees with then-tier continued fraction
result forA11

21 at each iteration. The method is computatio
ally efficient, since the time required to obtain the ent
column of the inverse matrix is the same as that for
7-3
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continued-fraction estimate of a single elementA11
21 . More-

over, it appears to be more direct than the recursion/mom
procedure of de Abajoet al.5

In our applications the matrix/vector indicesi of the origi-
nal basis label the combined atomic sitesR and angular mo-
menta statesL5( l ,m), i.e., u i &[uLR&, and should not be
confused with the Lanczos basis statesun& labeled by inte-
gersn. The vectorub& is chosen to define a particular se
stateu1& for the Lanczos procedure, e.g., to obtain a parti
lar projected density of states on some site or~e.g., through
the dipole selection rules! a particular channel of the x-ra
absorption process. For example, for the sDOS on the ce
atom,ub&5u(0,0)0&, and only one component ofux& needs to
be calculated for thatub&. For an unoriented powder samp
or a cubic system at theK absorption edge,~a common case
of experimental interest! one can calculate the polarization
averaged absorption within the dipole approximation for
initial s state, using at most three columns of the inve
matrix for three orthogonal vectorsub& corresponding to po-
larization componentsl 51 andm50,61 at the central site

All iterative methods that solve theAux&5ub& problem
have the potential to give faster calculations for large clus
than the usual LU algorithm for the inverse, apart from so
additional calculational overhead. Thus the exact LU ma
inversion algorithm can perform better only for smallN or
nonsparse matrices. An exact LU solution of a system
linear equations with Lanczos methods is also formally
O(N3) operation process, and hence comparable in comp
ity ~although slower in practice! than the exact LU algo-
rithm. However, if a system is sparse, i.e., there are a num
of nonzero elementsNz in the matrixA, the total number of
operations will scale only as O(NzN). Thus if (Nz!N2), the
Lanczos approach will be faster than LU, even for an ex
solution. Thus, due to the mean free path, one expects
large clusters thatNz}N, i.e., direct propagation only within
a cluster of radius a fewlk is important. Yet another advan
tage of Lanczos methods is that they tend to reduce the
sidual errorur n& in the inverse matrix elements with increa
ing n, where

ur n&[ub&2Auxn&. ~7!

It is natural to terminate the procedure once the residual
comes smaller than a given tolerance. Thus one gene
reaches a desired precision with a number of iterationsNit
,N, leading to O(NzNit) scaling and superior convergenc
properties. In the case of the MS expansion, the numberNit
corresponds to the maximum order of the expansion nee
for convergence.

C. Sample applications

Below, we compare the speed of various iterative Lanc
methods against the conventional LU method of ma
inversion.19 We have used the calculation of theK edge XAS
of Si as a key test case to evaluate the effectiveness of t
various alternatives. Real space MS XANES calculations
low Z materials such as Si are often notoriously ill conv
gent, and heretofore, have not yielded good agreement
experiment. This is due partly to their open structure, stro
10410
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scattering, and very long photoelectron mean free paths~i.e.,
long core-hole lifetime! at threshold for lowZ absorbers.
Nonspherical potential corrections can also be import
within a few eV of threshold, where they can strongly affe
scattering properties. Thus these are cases that could be
from improvements to theN3 scaling of the LU algorithm.
Indeed, we find that a reasonable agreement with XAN
experiment for Si can be obtained only for clusters of ab
600–1000 atoms.

We have implemented several Lanczos-type algorith
for the inversion of the matrixA512G0T ~see the Appen-
dix!, in an effort to determine the optimal choices for th
RSGF approach to electronic structure and x-ray spec
These include our Lanczos/LU approach, which is similar
the biconjugate Lanczos approach~i.e., BiCG or Lanczos/
Orthodir!, and a stabilized version due to Van der Vor
~BiCGStab!.11

As noted above, the matrixG0T is short ranged due to th
finite mean free path, and hence is semisparse. The pres
of inelastic losses also implies that the usual Lanczos
continuum fraction algorithms for Hermitian matrices mu
be generalized. Thus to reduce computation time, matrix
ements ofG0T are set to zero once they become smaller th
some tolerancet1 times the largest matrix element for
given energy. This effectively reduces the number of ess
tially nonzero matrix elementsNz . We also stop the calcula
tion, onceall components of the residual become less tha
second tolerance (t2) for unit vectorub&, which can be used
to reduce the number of iterationsNit . Typically we sett1
5t2'0.001. We found that this is a more appropriate cri
rion for convergence than the norm of the residual, since
size of the matrix12G0T changes with cluster size.

For initial tests, we carried out XAS calculations at the
K edge using a 191 atom cluster, and compared with
computation time for LU matrix inversions~taken to be
100% in the following comparisons!. The LU decomposition
algorithm19 was originally used by default in theFEFF8code,
since it is one of the fastest general algorithms for ex
matrix inversion. Our Lanczos/LU version of BiCG too
only 57% of the time to reach convergence within the lin
width of the LU calculations (t250.001). Only the BiCG-
Stab~Ref. 11! algorithm was found to converge faster~38%
of LU time!, while the Lanczos/Orthodir12 was slightly
slower. This was expected due to its similarity with o
method. However, BiCGStab appeared to lose stability
some very large clusters~see below!. Surprisingly, several
algorithms which were expected8 to perform as well or better
than BiGCStab did not work well for our applications. Po
sibly this is because our matrixA is both non-Hermitian and
not very sparse. For example, the so-called TFQMR
proach achieved convergence in 64% of LU time, wh
BiCGStab2~Ref. 8! was even slower than LU. Moreover, th
GMRES version of BiCG~Ref. 19! was about two times
slower than LU and sometimes failed to converge for larg
clusters.

As a result of these trials, all of our sample calculatio
reported below for bigger Si clusters were performed w
the BiCGStab or our Lanczos/LU methods, and the res
are summarized in Table I. For a 381 Si atom cluster th
7-4
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were faster than LU by factors of 4.9 and 3.0, respectiv
For 597 atoms, BiCGStab outperformed LU by a factor
5.5.

Results for the SiK XAS from the largest of our calcula
tions are shown in Fig. 1, and compared with high qua
experimental data, both of which were collected using to
electron yield detection at normal incidence and ro
temperature.20,21 Because the sets of experimental data
essentially identical within one or two linewidths, only one
shown for clarity. The close agreement between the exp
mental data sets and the convergence with respect to cl
size suggests that the discrepancy between theory and ex
ment in the near edge region is likely due to limitations
the one-electron theory, spherical muffin-tin potentials, a
electron gas self-energy used in our treatment, and not
MS expansion or limited cluster size. Although part of t
discrepancy is likely due to experimental resolution, no
ditional broadening, Debye-Waller factors, or edge sh
were included in our XANES calculations. Also shown
Fig. 1 beyond 1855 eV is the EXAFS, as calculated with
path expansion, but with Debye Waller factors from the c
related Debye model at room temperature and Debye t
peratureQD5625 K. These calculations demonstrate th
the MS expansion for Si converges well beyond about 1
eV. Note the discrepancy near 1846 eV between the res

TABLE I. Comparison of LU matrix inversion to iterative Lanc
zos type algorithms~BiCGStab and Lanczos/LU!, in terms of hours
of computation time on a SGI Octane 200 MHz workstation
several cluster sizesNR .

NR 99 191 381 597

LU 0.28 1.99 20.8 60.7
Lanczos/LU 0.21 1.13 7.52 20.8
BiCGStab 0.16 0.75 4.24 11.2

FIG. 1. Lanczos/LU XANES calculations for the SiK edge of
849 ~solid! and 597~dots! atom clusters, compared to room tem
perature experimental data~Refs. 20,21! ~dashes!. No additional
broadening, Debye Waller factors or edge shifts were included
the XANES calculations. Also shown beyond 1855 eV is the SK
edge EXAFS calculated with the path expansion~dash-dots!, with
Debye-Waller factors from the correlated Debye model~see text!.
The calculations for the 849 atom cluster were done using 32
cessors of the NERSC IBM SP machine with the Lanczos/
method.
10410
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for 597 to 849 atoms clusters; this demonstrates that
atom clusters are generally sufficient for convergence of
MS expansion for Si, but that clusters of 1000 or more ato
are needed at some energies. The calculations even for
atoms are very time consuming, requiring about 21 hours
a single processor SGI with a 200 MHz R10K processor, a
about 6 h on adual Alpha EV-6 processor machine with ou
parallel MPI implementation~see Sec. III!. The calculations
for 849 atoms with BiCGStab failed to converge for seve
energy points, and were slower than those with Lanczos
method, which did not show any signs of such instabiliti
The calculations in Fig. 1 for 849 atoms were done with
processors on the NERSC IBM SP computer, and took o
1.86 wallclock hours; according to Table I one would expe
a calculation time of order 54 hours on a 250 MHz S
Octane workstation. The scaling of computation time bo
for BiCGStab and Lanczos/LU methods varies appro
mately asN2.5 in this limited cluster size range. The scalin
exponent is 3.2 for LU, 2.6 for Lanczos/LU and 2.4 f
BiCGStab. The reason is that the number of nonzero ma
elementsNz in G0T still scales roughly asN2 due to the
large mean free path in Si, and the time savings are du
the fact thatNit scales asN0.5. Eventually, i.e., for thousand
of atoms in the cluster, one would expect the number
nonzero elements inG0T to scale linearly withN, since dis-
tant pairs of atoms would not contribute, and for the sa
reason theNit should eventually saturate. However, for
even with almost a thousand atoms we did not reach
limit.

In Fig. 2 we plot the number of matrix-vector multiplica
tionsNit required for the BiCGStab method to converge to
tolerancet2 for each energy point. This number has a phy
cal interpretation as the maximum order of MS expans
necessary to reach convergence. For Si, one sees thatNit is
of about 100 at threshold~1838 eV!, but drops rather quickly
to about 50 at 15 eV and then to 12 or less about 35
above the edge for the chosen tolerancet250.001. By in-
spection of the EXAFS calculations in Fig. 1, these values
Nit may be overestimates, since the EXAFS appears to
reasonably converged beyond about 35 eV of threshold.

r

in

o-

FIG. 2. Number of iterationsNit needed for convergence of th
Lanczos/LU algorithm vs energy for the 597 atom SiK edge
XANES calculations. This number corresponds to the maxim
order of the MS expansion needed for convergence. Note the
proximate cross-over at about 1870 eV between XANES~where
very high order MS is needed! and EXAFS~where a relatively low
order MS path expansion suffices!. This crossover is consistent wit
Fig. 1.
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terestingly, the variation ofNit with energy appears to b
correlated with the magnitude of the fine structure, which
a measure of overall scattering strength. Thus it is larg
near threshold, becomes small at sufficiently high ene
and exhibits a ‘‘fine structure’’ of its own. Hence these r
sults clearly show how the full MS expansion applied to
crosses over to the high-order MS expansion about 35
above threshold, consistent with the results shown in Fig
For comparison, we checked that for fcc Cu metal, the ma
mum number of iterations is at most 8 throughout t
XANES, showing that the high order path expansion for
is always valid. This was not completely unexpected, sinc
has been verified numerically that the MS expansion c
verges for Cu,3 but it is also known that some eigenvalues
G0T for Cu exceed unity near threshold.22 Of course, the
maximum MS order can also depend on cluster size, but
value is expected to tend to a limit for clusters larger tha
cutoff of order the mean free path. For example, ifNit be-
comes less than 10 above a certain energy, one expects
the MS path expansion will converge well beyond that e
ergy.

III. PARALLEL PROCESSING

A. MPI parallel calculations of XANES

As discussed in the Introduction, a series of similar M
calculations must be done at a large number~typically of
order 102) of energy points to obtain a complete XANE
spectrum. This number is determined by the natural ene
resolution~due to lifetime broadening and inelastic losse!
and the range of the XANES region~typically below 30 eV
of threshold! for which full MS calculations are needed
Thus it is reasonable to consider doing these similar
calculations in parallel.

Parallel algorithms generally depend on specifying in
pendent tasks that can be executed simultaneously by d
ent processors, and can be implemented in several ways~1!
using the natural parallelism intrinsic to independent phy
cal processes;~2! using independent repeated element
mathematical operations; and~3! using independent compu
tational tasks, such as rewriting matrix inversion routines
execute in parallel on a set of processors. The first appro
is particularly advantageous when it can be applied. Si
we aim to model the physical process of x-ray absorption
is natural to exploit the intrinsic task-parallelism~or physical
parallelism! in this problem, namely, that the x-ray absor
tion at a given x-ray energy is independent of the absorp
at other energies, assuming they are separated by the inh
energy resolution~typically a fraction of an eV!. Thus a natu-
ral way to parallelize the full spectral calculation is simply
distribute the energy points among an available set of p
cessors. The results can the be assembled to obtain the
absorption spectrum. The second approach listed abov
hardware specific, and exploits the characteristics of part
lar processors~e.g., vector processors such as Altivec
PowerPC G4 processor or MMX in Intel processors!. The
third approach can also be fruitful in special applications,
can require substantial revisions to existing code and/or la
amounts of communication time between processors. We
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not address methods~2! and ~3! further here, primarily be-
cause they require demanding recoding, and tend to be
chine specific and hence not portable.

Thus in this work we exploit only the natural parallelis
in XAS. To this end we have used the message passing
terface~MPI! protocol.9 MPI is now a standard library for
implementing parallel processing, and is used withFORTRAN,
C, or C11 and standard TCP/IP ethernet communications
leads to a fast, portable system for parallel processing
problems with intrinsic parallelism. Using MPI, we have d
veloped a parallel version of theab initio full MS XANES
code FEFF8,2 based on the RSGF approach as briefly d
scribed in the Introduction. This parallel code~here dubbed
FEFFMPI! compiles and runs without changes on all curren
available operating systems tried to date~e.g., LINUX , WIN-

DOWS NT, IBM-AIX , SGI, CRAY, . . . ). Torealize such a paral
lel processing code, we began with the recent sing
processor version ofFEFF8~version 8.10!. FEFF8is written in
portable FORTRAN77, and uses a number of computation
strategies for efficient calculations. Our goal is to impleme
a parallel processing version that retained all the advanta
and portability of the the single-processor version, wh
gaining a significant improvement in speed on parallel m
chines. We also wanted a single code base, so improvem
such as the Lanczos algorithms and other future deve
ments can be incorporated without major recoding. The
sultant codeFEFFMPI runs on any parallel processing clust
or multiple-cpu machine that supports MPI. Moreover, su
systems need not be homogeneous and can use distribut
shared memory~or even a mixture!.

The starting point for ‘‘parallelizing’’ any code is to de
termine which parts of the calculation are the most time c
suming. Profiling tests showed that three small sections
the 33 000 lineFEFF8 code dominated the computation
time: the calculation of self consistent potentials~SCF!, the
optional calculation of the local density of electronic sta
~LDOS!, and the XANES calculation itself. All of these se
tions involve repeated full MS calculations~i.e., large matrix
inversions! and altogether these steps account for about 9
98 % of the total runtime in typical XANES calculations
Altering these calculations to run in parallel is straightfo
ward with MPI, because each step involves similar calcu
tions at a different energy and utilizes identical matrix inve
sion routines. Thus the main computational bottleneck
FEFF8.1is the LU matrix inversion algorithm used in solvin
the full MS problem.

By concentrating on a few ‘‘hot spots’’ in the code, we le
most ~over 99.5%! of the original single-processor code u
changed.FEFF8reads a single plain-text free-formatted inp
file ~FEFF.INP!, which contains the atomic positions an
atomic numbers defining the system as well as other rele
input data. We retained the same input file inFEFFMPI by
running the parallel code from a single cross-mounted dir
tory on a singleexecutivenode. Thus, all read and writ
statements go to theexecutivenode on the MPI cluster con
taining Np processors. The parts of the code that still r
sequentially are still executed by all nodes simultaneou
This results in a small amount~typically a few percent! of
redundant calculation, but no reduction in overall wall clo
7-6
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runtime. When the subroutine that executes a FMS calc
tion is reached, the MPI libraries are used to designate s
cluster node as the executive node, and the remainingNp
21 nodes asworkers. Each worker is assigned a uniqu
integer identification number or MPI ‘‘rank.’’ In the cyclic
loop over theNe x-ray energies~labeled by the pointsi e in
the SCF, LDOS, and XANES calculations, each node~ex-
ecutive or worker! executes a fraction'1/Np of the FMS
calculations, at the energy points rank, rank1Np , rank
12Np, . . . . That is, the main loop seen by each proces
has the behavior

Do i e5rank, Ne , Np . ~8!

After each processor completes its part of the task, the res
are sent back to the executive~e.g., by ethernet communica
tion!. This approach has the following properties:~1! exactly
the same executable code is run on every node in the clu
because the only distinction made between processors i
processorrank; ~2! all of the changes to the single-process
FEFF8are confined within a few subroutines;~3! the FEFFMPI

version of the code is virtually identical to the singl
processor version ofFEFF8; and ~4! communication between
executive and worker processors is kept to a minimum. T
the only fundamental difference is that each clone of
FEFFMPIprocess is aware~by virtue of its rank! that it is on a
different node of a MPI cluster ofNp processors. With this
code structure, we succeeded in using a single code-bas
both the single processor and MPI versions ofFEFF8. For the
single-processor version, this required the substitution
dummy MPI libraries into the original code.

Only one section of the originalFEFF8 code had to be
rewritten in our MPI implementation. Since this illustrates
common problem in implementing task parallelism, it
worth a brief comment. As noted above the key to imp
menting task parallel calculations is that the tasks must
independent of one another. However, in the originalFEFF8

algorithm for self-consistent potentials, a ‘‘smart searc
procedure was used to determine the Fermi level. Suc
search cannot be run in parallel because it is an itera
algorithm, with successive steps depending on previous o
To make the SCF calculation run in parallel, we had to
place the iterative search with a grid search method.
though the resultant algorithm is somewhat slower on sin
processors~i.e., by a factor of about 1.6!, it can be task
parallelized and yields excellent scaling of the calculat
speed with cluster size. This algorithm change amounte
only about 100 lines of recoding~out of 33 000!.

B. Parallelization with fast Lanczos algorithms

It is straightforward to replace the default LU algorith
for inverting the multiple-scattering matrix12G0T with the
fast Lanczos algorithms investigated in this work, simply
substituting subroutine calls. However, since fewer Lanc
iterations are needed at high energies, this led to a situa
in which different execution times were needed by the va
ous processors. Ideally, for the parallel execution, one wa
to spread jobs evenly between processors or ‘‘load-level’’
calculation. To compensate for this load imbalance, we
10410
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signed each processor a widely spaced fraction of the e
gies, designed to cover the total spectral range, as in
cyclic loop in Eq.~8!.

C. Scaling with cluster size

To evaluate how well the parallel algorithm succeeds
FEFFMPI, we first conducted tests of XANES and LDOS ca
culations for an 87 atom GaN system on six computer s
tems. As representative single-processor systems, we us
450 MHz AMD K6-3 runningSuSe LINUX 6.1, and a 450
MHz Apple PowerMac G4 running OS 9. For the MPI clu
ters we used:~1! a cluster of 48 Pentium II 500 MHz system
running REDHAT LINUX; ~2! a similar cluster of 400 MHz
Pentium III machines runningWINDOWS NT; ~3! a cluster of
SGI R12K machines runningIRIX 6.5; and~4! a 16 processor
IBM SP3 runningAIX . All of these systems were connecte
via 100 MB ethernet. In these tests, the fastest clusters c
pleted the total calculation about 50 times faster than
single processor Linux system. However, despite the dis
ate nature of these machines, we found that the relative
cessing speed could be fit to a simple scaling law as func
of MPI cluster size, given by

T5T0@0.0310.97/Np#, ~9!

whereT is the net runtime,T0 is a constant which represen
the speed of a given processor type and the efficiency of
compiler, andNp is the number of processors in the MP
cluster, as shown in Fig. 3.

Once the single processor execution timeT0 is deter-
mined, the speed of every MPI cluster scales almost ide
cally. As cluster size is increased, the part of the code
runs in parallel changes from the dominant part of the r
time, to a small or insignificant fraction of the total. In th
limit of large MPI clusters, the runtime is then dominated

FIG. 3. FEFF8MPItotal runtime scaling vs inverse cluster size f
LINUX , SGI, WINDOWS NT, andIBM SP2 clusters. Once the calculatio
times are rescaled by a factorT0 to account for single processo
speed~see text!, theFEFFMPIscaling is independent of processor a
cluster. This scaling can be used to predict the speedup ofFEFF8on
any MPI cluster, relative to a single processor in that cluster.
7-7
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the 3% of the original runtime which at present still execu
sequentially. Thus in extremely large clusters, we would
pect no further increase in speed because the runtime i
tally dominated by sequentially executing code, and la
clusters can evenincreasethe runtime due to communica
tions overhead.

D. Sample applications ofFEFFMPI

In this section we give some examples of how the f
turnaround of XANES calculations usingFEFFMPI can be
used to advantage. For this sample application, we have
sen a simulation of the changes in XANES in thin films
BaTiO3 as a function of deposition conditions. In these m
terials, BaTiO3 films are deposited on silicon or MgO sub
strates that are held at relatively low temperatures. Beca
of the low substrate temperatures and incomplete contro
the deposition process, the actual structure of the films
parts from that of ideal BaTiO3 in unknown ways. In an
attempt to determine the structure, we first usedFEFFMPI to
calculate the XANES for a series of possible trial structu
and then used these structures as a starting point for fi
the EXAFS. The input toFEFFMPI is a cluster of 119 atoms
around a central Ti atom, which includes full occupancy
all atomic sites in the BaTiO3 structure to a distance of 7 Å
from the central Ti atom. Our original hypothesis about t
film structure was that there is a variation in the oxyg
coordination around the Ti atom, and that the films contain
regions of fourfold-, fivefold, and sixfold oxygen coordin
tion. This hypothesis was motivated by the observed co
lation between energy position and peak size shifts of
small ‘‘pre-edge peak’’ at the Ti K absorption edge in pre
ous studies of various Ti-O compounds.18 This peak appears
to be due to a hybridization betweenp and d states on Ti
largely mediated by multiple scattering. However, t
BaTiO3 films showed a much smaller peak size change t
is found in empirical standards, as the Ti-O geome
changes from tetrahedral to square-pyramidal to octahe
Using FEFFMPI we had fast ('20 min! turnaround on full
MS XANES calculations, and were able to try out ma
different structural models. X-ray fluorescence~XRF! mea-
surements showed that many of the films departed sig
cantly from the ideal 1:1 Ba-Ti stoichiometry of BaTiO3, so
we eventually tried models that preserved the BaTiO3 struc-
ture but included randomly distributed Ba vacancies
amounts consistent with the XRF. Figure 4 shows the exp
mental data from the BaTiO3 films and the XANES calcu-
lated from a model that assumes an intact BaTiO3 structure
with full octahedral O coordination about the Ti atoms, b
with an increasing number of Ba vacancies.

Clearly there is good qualitative agreement between
simulation series and the data. From this starting point,
were able to model the EXAFS data and then determine
the film structural variation is clearly due to Ba vacanc
around octahedral Ti-O structural units. Details of this ana
sis will be given elsewhere.

IV. CONCLUSIONS AND FUTURE PROSPECTS

We have demonstrated how parallel processing using
MPI protocol, combined with modern Lanczos type MS
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gorithms can speed up real-space XANES and electro
structure calculations by about two orders of magnitu
Similar techniques can be applied to many other sp
troscopies. Our Lanczos/LU algorithm is both efficient a
stable. It is an improvement on other Lanczos approache
electronic structure calculations such as the continued f
tion representation, in that it yields many elements~i.e., an
entire column vector! of the matrix inverse simultaneousl
without additional calculation. Moreover, the approach a
defines a natural crossover energy between the applicab
of full and finite MS calculations, thus unambiguously di
tinguishing the near edge and extended regimes.

These combined developments largely overcome the c
putational time bottleneck of XANES calculations in larg
complex systems. In particular the MPI approach alone
yield typically a 30-fold speed increase compared to
equivalent single processor system. The Lanczos/LU a
rithm yields an additional factor typically between 3–
These speed-up factors are system dependent, dependin
example, on the size of the XANES region~or equivalently

FIG. 4. Ti K edge XANES of~a! theoreticalFEFFMPI calcula-
tions of the BaTiO3 structure, assuming full Ba occupancy~solid
line!, two vacancies~dash-dots!, and four vacancies~circles and
solid line! in the Ba second shell. Note the slight shift of the pr
edge peak~A! to lower energy, the change in the inflection point~B!
and the decrease in peak~C!; ~b! experimental data from BaTiO3
films deposited at various substrate temperatures and with var
Ba:Ti ratios. XANES from these Ba-deficient samples show sim
trends in the three feature changes seen in theFEFFMPIcalculations.
7-8
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the net scattering strength!, mean free path, and experiment
resolution. Thus the speed-up factor can be significa
greater when the MS expansion converges rapidly. The
allel processing algorithm exploits the natural or physi
parallelism implicit in a XANES calculation and scales we
for clusters of up to about 48 processors in our GaN t
Above that number, the execution time becomes domina
by the part of the originalFEFF code ~presently about 3%!
which still runs sequentially.

The combination of both MPI and Lanczos algorithm
changes the overall scaling parameters of the calculat
since a larger fraction of the total time is then taken by u
avoidable sequential part. Indeed, using both MPI and La
zos can sometimes totally reverse the situation that exi
with the single processor version ofFEFF8. The matrix inver-
sion steps that previously dominated the execution time
now become irrelevant. This occurs, for example, at h
energies~see Fig. 2!, when the calculation converges in
few iterations, just like in path-expansion approach to E
AFS.

The new algorithms developed here have been inco
rated into theab initio FEFF8 code for calculations of XAS
and electronic structure in version 8.2. The resultantFEFFMPI

code is nearly as portable as the originalFEFF8 code, since
MPI libraries are available for most modern platforms. W
have demonstrated an inverse scaling ofFEFFMPI with the
number of processors on several MPI CPU clusters.
code is also compatible with shared or distributed mem
clusters, and with combinations of both memory archit
tures, i.e., networks with shared memory machines on e
node. Thus the code also works with heterogeneous clus
although the speed in that case is limited by the slow
processor. The present version ofFEFFMPIuses only task par
allelism, by giving each processor the same fraction of
energy values required for the full XANES and LDOS ca
culations, and approximately the same computational wo
load. Obviously, the scalability of this approach ends wh
each processor has only one FMS calculation to deal w
this will occur in cluster sizes of about 100 processors
typical XANES spectra. But a similar parallel approa
could be employed to generate the entire EXAFS spectr
well, a step that typically requires an additional 100 ene
points.

To obtain even faster XANES calculations, there are t
obvious next steps to consider. One is to examine
FEFFMPI code for secondary hot spots. For example,
present code does not take advantage of the conside
redundancy in the elements of the large matrixG0T. Nor do
we take advantage of the separation ofG0 into energy inde-
pendent rotation matrices~depending on bond angles! and
energy dependent radial quantities, as in the Rehr-Albers
proach. This has been used to advantage in theFEFF path
expansion algorithms,3 and also by de Abajoet al.5 in their
Lanczos algorithms. These redundant calculations likely
count for a large fraction of the remaining sequential part
the calculation. Although implementing this requires reco
ing, it should lead to a considerable improvement both
execution time and in in overall storage requirements. A
other advantage of the Lanczos procedure, is that it perm
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formulation in which storage can be reduced considerably
storing only the results of matrix-vector multiplications
each stage, rather than the entire matrix. Yet another
would be to betterload level the parallel calculations, e.g
by assigning more of the calculation to processors wh
tasks finish more quickly. In addition, the Lanczos alg
rithms can determine the cross-over energy between XAN
and EXAFS. With knowledge of the cross-over energy, o
can now considering automatically replacing the FMS cal
lations with the more efficient path expansion beyond t
energy, or alternatively, doing parts of the path expans
with the fast Lanczos approach. It may also be possible
the future to bypass the Lanczos algorithm, and explic
parallelize the matrix inversions. We did not investigate t
latter possibility, here, since the routines available for t
purpose are not generally portable and tend to have la
communication overhead.

With the improved efficiency now in hand, it become
feasible to carry out XANES calculations in an entirely d
ferent manner than heretofore possible, and hence many
plications can now be treated which otherwise would be
practicable. For example, a few days of calculations on
48 processor Linux cluster can now complete a calculat
that would now take a year on a current single proces
workstation. Systems such as complex minerals, oxide c
pounds and biological structures, and other nano-scale
tems are obvious targets for this type of improved compu
tional capability. The improved speed should be very use
for example, for magnetic materials, which often have
large number of inequivalent sites of the absorbing ato
requiring many separate calculations to produce a
XANES or XMCD ~x-ray magnetic circular dichroism! spec-
trum. In addition,FEFFMPI should be more useful for routin
applications of XAS, since it allows users to test differe
models rapidly and to examine subtle variations betwe
models. Finally the availability of rapid calculations no
permits efficient closed loop fitting of XANES spectra bo
to physical and chemical properties.
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APPENDIX: LANCZOS ÕLU ALGORITHM
FOR A SYSTEM OF LINEAR EQUATIONS

In this appendix we present the details of our Lanczos/
version of the BiCG method to solve a system of linear eq
7-9
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tions Aux&5ub& for a complex, nonsymmetric matrixA. Al-
though the continued fraction expression forA1,1

21 is highly
successful in many practical applications, e.g., x-
absorption,14 electronic structure,13 and vibrational motion,23

it is limited to a single element of the inverse matrix. Th
we aim to extend the method to obtain the full column vec
An,1

21 . This is equivalent to solving a general system of line
equations. In order to keep the same result forA1,1

21 as the
continued fraction we first perform a Lanczos transformat
of A to the same tridiagonal form, and then carry out its L
decomposition. As a result we obtain recursive express
for both the iterative solution of the inverse matrix eleme
and the residual,ur &5ub&2Aux&.

The essence of the Lanczos algorithms is a three-t
recursion relation4 Eq. ~A1!, which by construction tridiago-
nalizes an arbitrary complex~not-necessarily Hermitian! ma-
trix A in a biorthonormal set of basis statesun& and ^nu, n
51,2, . . . ,N, with the same coefficientsan andbn , i.e.,

bnun11&5Aun&2anun&2bn21un21&,

bn^n11u5^nuA2an^nu2bn21^n21u. ~A1!

In this basis,^nun8&5dnn8 , and the only non zero matrix
elements are^nuAun&5an and ^n11uAun&5^nuAun11&
5bn . For Hermitian matricesA, only one of the above equa
tions is needed, and the coefficientsan andbn are real, but
we cannot take advantage of that simplification in this wo

The LU decomposition of the resulting tridiagonal matr
can be also updated on each iteration. Both theL and U
matrices are bidiagonal, and their only nonzero matrix e
ments are given by

Ln,n51,

Un,n5an5an2bn21an21 ,

Ln11,n5bn5bn /an ,

Un,n115bn . ~A2!

After n steps we find the iterative solutionuxn& of the system
of linear equationsAux&5ub&, by using the incomplete bidi
agonalL andU matrices in two steps, solving sequentially~i!
the Luy&5ub& and ~ii ! the Uuxn&5uy& problems. The inter-
mediate vectoruy&5(gnun& is found by forward substitu-
tion, and on thenth iteration onlygn changes from zero to
the calculated value, while all previous components rem
the same, i.e.,

uyn11&5uyn&1gn11un11&, ~A3!

gn1152bngn .

The componentsuxn& and the residualsur n& are found from
uyn& by backward substitution using the complimentary ve
tors uzn& and usn&,

uzn11&5un11&2~bn /an!uzn&,

usn11&5Aun11&2~bn /an!usn&. ~A4!
10410
y

r
r

n

ns
s

m

.

-

in

-

Finally the following recursion relations are obtained for t
iterative solutionuxn& and the residualur n&5ub&2Auxn&:

uxn11&5uxn&1~gn11 /an11!uzn11&,

ur n11&5ur n&2~gn11 /an11!usn11&. ~A5!

This algorithm for the solution of a general system
linear equations can be summarized in the followi
pseudocode: START Lanczos/LU: Set

ux0&50,

u1&5uz1&5ur 0&5ub&2Aux0&,

us1&5Au1&,

^1u5u1&†/^1u1&,

a15a15^1uAu1&,

g151,

ux1&5ux0&1~g1 /a1!uz1&,

ur 1&5ur 0&2~g1 /a1!us1&. ~A6!

DO n51, nitx.
~1! Perform Lanczos transformation: getbn – the dot

product of right hand sides of Eq.~A1! givesbn
2 ; new basis

vectorsun11& and ^n11u; and finallyan11.
~2! Update LU decomposition:bn , an11 andgn11 using

Eqs.~A2! and ~A3!.
~3! Use recursion relations~A4!,~A5! to update solution

uxn11& and residual vectorur n11&.
~4! STOP when all components of residual are less tha

tolerance:ur n,i u,t1.
ENDDO
This procedure tends to run out of precision typically af

about 100 iterations~with single-precision arithmetic!, and
needs to be restarted withux0&5uxn& in Eq. ~A6!.

Notice that the most time consuming part of the algorith
is the Lanczos transformation itself@Eq. ~A1!#, which re-
quires two multiplications of a vector by the matrixA per
iteration, unlessA is Hermitian, in which case only one mu
tiplication is needed. For an arbitrary matrixA, this algo-
rithm actually solves both theAux&5ub& and the ^xuA
5ub&† problems. By construction, our method gives t
same result as the continued-fraction expression forA1,1

21

when the vectorub& components arebi5d i ,1 , wherei refers
to the original basis states~i.e., u i &5uLR&, and u1& is the
chosen initial state of the Lanczos procedure. Howev
Lanczos/LU also yields an entire vector or column of t
inverse matrix,Ai ,1

21 at no additional computational cos
since it can be found from iterative solution as the comp
nent in the original basis of the approximate solutionuxn&
'ux&, i.e.,

Ai ,1
215^ i ux&. ~A7!
7-10
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Notice that the first row of the matrixA can also be found a
no additional cost if desired, since Eq.~A3!–~A5! hold for
the bra vectors as well as for ket vectors and

A1,i
215^xu i &, ~A8!

i.e., the i th component of the first row is given by thei th
component of the vector̂xnu.

The Lanczos/LU algorithm is mathematically similar
other forms of the Lanczos biorthogonal conjugate grad
~BiCG! approach, like Lanczos/Orthodir, Lanczos/Orthom
Lanczos/Orthores, and BiO algorithms.12,24 All of these
methods differ in various details, and the main distinction
our Lanczos/LU approach is that the Lanczos transforma
m

y

ys

pl

10410
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is carried out explicitly, which maintains the continue
fraction value for the componentA1,1

21 , while in other ver-
sions this equivalence is only implicit. Remarkably th
Lanczos/LU algorithm appears to be more stable numeric
than most other Lanczos type algorithms investigated h
Thus we had to restart the Lanczos/LU iterations only a
about 100 iterations~for single precision complex matrixA)
due to degraded numerical precision, while with some oth
we had to restart the iterative process about every 20 it
tions. Only the BiCGStab method was usually faster th
Lanczos/LU for our MS calculations; however, this meth
was found to lack stability for large matrix dimensions a
many other Lanczos-type methods sometimes failed to c
verge.
,
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