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Overview 

• Rationale 
• Background on the FRGC 
• Testing humans 
• Results 
• Conclusions and implications 



     

         

Problem 

• Are face recognition algorithms ready for 
applications? 
– enormous improvements over last decade 
– accuracy of algorithms tested intensively 

• How accurate do they have to be to be useful? 
– meet or exceed human performance 



   
    

  

 
 
 

Why? 

• Humans are the competition! 
– Human-machine comparisons virtually never done 

• Putting algorithms in the field 
– Impact on security? 

• Relative level of performance 
– “Easy” images 
– “Hard” images 



   

     

Face Recognition Grand Challenge 

Phillips, Flynn, Scruggs, Bowyer, Worek 2006 



     

  

    

 

Independent Technology Independent 
Evaluation Development Evaluation 

July 2002 Jan 2006 – 

Dec 2006 

May 2004 – 
Mar 2006 



FRGC Objective 

• The primary objective of the FRGC is to: 

Develop  still and  3D  algorithms  to  improve 
performance  an  order  of  magnitude  over 

FRVT  2002 

       

 



   

   

Select Point to Measure 

• Verification rate at : 
– False accept rate = 0.1% 

• Current: 
– 20% error rate (80% verification rate) 

• Goal: 
– 2% error rate (98% verification rate) 



  FRGC Modes Examined 

Single Still 
Outdoor/ 

Uncontrolled 

3D Full Face 

Multiple Stills 3D Single 
view 



 

 

   

 

FRGC Experiments 

+ = 

Exp 1: Controlled indoor still versus indoor still 

Exp 2: Multiple still versus multiple still 

Exp 3: 3d versus 3D 
3t - Texture only 
3s - Shape only 

Exp 4: Uncontrolled still versus indoor still 



  

      

Size of Experiments 

Exp. Target set size Query set size No. Sim Scores 
(million) 

1 16,028 16,028 257 

2 4,007 4,007 16 

3 4,007 4,007 16 

4 16,028 8,014 128 



FRGC Progress 
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Human-Computer Comparison 

O’Toole, Phillips, Jiang, Penard, Ayyad, Abdi 2005 



 

     

  

Human-Machine Comparisons 

• Same image pairs from Exp. 4 

• Seven state-of-the-art algorithms 
– 4 from industry 
– 3 from academic institutions 

• Comparisons 
– 120 difficult face pairs 
– 120 easy face pairs 



 

  

Sampling 

• homogeneous 
– caucasian males/females 20-30 yrs 
– comparisons made on identity not 

• age, race, sex 



   

  

Comparing Humans and Algorithms 

• problem 
– 128 million face pairs? 

• sample face pairs 
– most difficult 
– easiest 



  

  

Easy and Difficult 

• PCA Baseline Algorithm 
– scaled and aligned images (SAIC) 
– available and widely used since the 90’s 
– but not state-of-the-art 



  

  
 

          

  

          
  

           

  
 

          

Selecting Easy/Difficult Pairs 

• “easy” match pairs 
– 2 “similar” images of same person 

• similarity scores > 2 sd above mean similarity of match pairs 

• “difficult” match pairs 
– 2 “dissimilar” images of same person 

• similarity scores < 2 sd below mean similarity of match pairs 
• “easy” no-match pairs 

– 2 “dissimilar” images of different people 
• similarity scores < 2 sd below mean similarity of no-match pairs 

• “difficult” no-match pairs 
– 2 “similar” images of different person 

• similarity scores < 2 sd above mean similarity of no-match pairs 



  

  

Methods 

• Stimuli 
– 240 pairs of faces 

• 120 male pairs 
– 60 easy 
– 60 difficult 

• 120 female pairs 
– 60 easy 
– 60 difficult 
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Procedure 

• Human subject raters respond… 
– . sure they are the same person 
– . think they are the same person 
– . not sure 
– . think they are not the same person 
– . sure they are not the same person 



Identity Matching for Difficult Face Pairs
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Results Summary 

• 3 algorithms surpass humans! 
– NJIT (Liu, IEEE: PAMI, in press) 
– CMU (Xie et al., 2005) (In three talks) 
– Viisage (Husken et al., 2005) 

• 4 less accurate than humans 



Identity Matching for Easy Face Pairs
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Conclusions 

• Algorithms compete favorably with humans on the
difficult task of matching faces across changes in
illumination 

– some algorithms are better than humans on “difficult” face pairs 
– nearly all are better than humans on “easy” face pairs 



  We Have Quality 
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