PHASE BEHAVIOR AND STRUCTURE OF MICROEMULSIONS

Shuzhen Chen Katie Weigandt and Javen Weston NIST Center for Neutron Research

What are Microemulsions?

Ē

Serra et al. Elsevier 2014

Objective & Motivation

Ę

- Previously, an interesting gel was found with Isopar L
 - Impure solvent
 - Mixture of various alkanes
- To reproduce the gel but with pure alkane and a similar anionic surfactant system
- To investigate the shear-induced gelation phenomenon

Sample Preparation

F

- Surfactant: Alforterra® K2-41S
 - Sodium Chloride (NaCl)
 - Oils: hexane, heptane, octane, decane, and dodecane

Ң НҢ НҢ НҢ НҢ НҢ Н ^Ң С^{, С} С^{, С}

Phase Behavior

Small Angle Neutron Scattering (SANS)

Various Alkanes

SANS of Two Phases

Middle Phase of Various Alkane at the Optimal Salinity

Ę

Teubner-Strey Model Fitting

Domain Size for the Middle Phase of Various Alkanes

Objective

- To reproduce the gel but with pure alkane and a similar anionic surfactant system
- To investigate the shear-induced gelation phenomenon

Shear-Induced Gelation

Small Angle Neutron Scattering (SANS)

Oil to Water Ratio Scan

Oil scan at 22% NaCl in Decane and D_2O and H_2O

Ę

Domain Size for the Oil Scan

Rheology

- The study of flow and deformation of materials
- Investigate the viscoelastic properties of the shear-induced gel
 - Time scale of thixotropy (change of viscosity due to stress)
 - Mechanical property strength of gel

Flow Curve

Critical Shear rate

- Below —phase separation
- Above —stable system and shear thickening

Gel decays over time

Frequency Sweep for Dodecane Emulsion

Strength of Various Alkane Gels

RheoSANS Preliminary Results

Scattering of 5% Decane at 350 s⁻¹

Conclusions

- Increase in alkane length increases the optimal salt concentration and decreases the domain size
- Alkane length does not affect the conditions where shear-induced gels form
- Heptane gel is weaker compared to that of decane and dodecane

Future Works

- RheoSANS Below and above oil:water gel ratio
- RheoSANS with different contrast points

Acknowledgement

Katie Weigandt and Javen Weston

➢ NIST and NCNR

- Center for High Resolution Neutron Scattering (CHRNS)
- Joe Dura, Julie Borchers, and Brandi Toliver
- John Pisanic

