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1. Is Testing of Intelligent Systems different from Testing of Non-intelligent
Systems?

Testing of performance pertains to evaluation of the potential and actual capabilities of a system to satisfy the
expectations of the designer and the users via exploration of its functioning. This includes determining how
well the system performs its declared “job,” how efficiently and effectively it does so, how robust it is, and
so forth. The "job™ and expected performance must therefore be defined at the outset. Efficiency is defined
as how well the system does things right, effectiveness is defined as how well the system does the right
thing , and robustness is defined as "the degree to which a system ... can function correctly in the presence
of invalid inputs or stressful environmental conditions.” [Finklestein, 00]

Furthermore, the tests under consideration are not meant to be broad-based general evaluations of the
system’s knowledge or the full spectrum of its capabilities. In particular, we are not striving to ascertain
whether a system has common-sense generic knowledge applicable to general-purpose problem solving. The
system being evaluated has a given sphere of responsibility and known abilities and tasks that it is able to
undertake under its specifications.

Comments regarding the testing of intelligent versus non-intelligent systems are not meant to underestimate
the difficulty of testing non-intelligent systems. Testing robustness, efficiency, and even functionality of
non-intelligent software systems is difficult enough, e.g., see [Mukherjee 97]. Since the software execution
can follow a myriad of combinations of paths through the code, it is impossible, in typical practice to
exhaustively test all the possible combinations. In non-deterministic real-time systems, the problem is
compounded by the uncertainty in the execution times of various processes, the sequence of events,
asynchronous interrupts, etc [Butler, 93].

In general, the evaluation of intelligent systems (1S’s) is broader than testing of non-intelligent systems
(NIS). A system that has intelligence should in general be able to perform under a wider range of operating
conditions than one that does not have intelligence. In fact, it should learn from its experiences and either
improve its results within the same operating conditions or extend its range of acceptable conditions. What
does this mean? Let’s look at the main elements typically found in an intelligent system: Behavior
Generation, Sensory Processing, and World Modeling (Knowledge Representation) [Meystel, 00].

2. Behavior Generation

Dealing With General and/or Incomplete Commands

An IS is given a job to do (task, mission, set of commands). The job definition for IS is expected to
be less specific than in an NIS. A system with intelligence ought to have the capability to interpret
incomplete commands, understand a higher level, more abstract commands and to supplement the given
command with additional information that helps to generate more specific plans internally. The IS should
understand the context within which the command is given. For example, instead of telling a mobile robot to
go to a specific location in world coordinates “GO_TO(X, Y),” the command could be “Go to the window
nearest to me.” The robot should understand what a window is and know that it needs to find one which is
the minimum distance away from me and move to that location. It also has a nominal proximity that it
maintains from the goal location. Notice, that the command did not determine how close the robot needs to

1 This paper is written by E. Messina, A. Meystel, and L. Reeker.



get to the window. It is expected that the robot knows where to stop the motion in similar cases, or the
distance from the window should allow for convenient performance of other, or consequent movements.

Ability to Synthesize the Alternatives of Decisions and to Choose the Best One

There was time, when the processes of decision making and planning were understood and
reproduced as choosing from the preprogrammed lists and menus. This time has passed. Now, it became clear
that most of the decisions should be synthesized on line. It becomes increasingly clear that most of the
planning procedures require searching. It was discovered that the advantages of search algorithms can be
achieved when the space is represented and search is organized in a multiresolutional fashion. (See Meystel,
98).

Ability to Adjust Plans, Reschedule, and Re-plan

All job definitions interpretable by IS should be more abstract than would be given to an NIS. The
command may encapsulate multiple individual actions, but it is the IS’s business to figure that out. A
mobile robot could be told to get the necessary signatures for a document. (This assumes that electronic
signatures on the document are not an option.). The robot would have to understand which signatures are
necessary (for example, if this is for a purchase, the purchase amount dictates what level of management
needs to sign off), locate the individuals, interact with them to ask for their signature, and perform the
intricate physical maneuvers necessary to present the document for signature. The individuals might not be in
their office, hence the robot may have to search for them in alternative locations or try to arrange to meet
them at some other time (re-scheduling). If someone is out of the office, the robot will have to decide
whether to get the signature from someone else with equivalent signature authority or wait until the original
person returns. Contrast this type of behavior with explicit instructions where the individuals and their
locations are precisely given. If one of the individuals is not available, a non-intelligent robot would have to
consult its human supervisor about how to proceed next.

The ability to adjust plans (re-plan) when the original ones are no longer valid is another crucial aspect that
must be considered. It is one thing to create very elaborate plans to carry out a task (and the plans may even
be derived from high level, abstract commands), but it is another matter to be able to deal with situations
that are not as anticipated. Therefore, the intelligent system must be tolerant of changes as it is executing its
plan and be able to react to the changes. In the bureaucratic robot introduced above, the change may occur if
the vice president refuses to sign until he is given more information. The robot would then create another
set of plans for itself to address the request, going to the originating individual to get background
information or to the web to print out the specifications of the system being purchased along with
alternatives that were not chosen. It would return to the vice president and present the information, and
proceed to reintroduce the document to be signed. Obviously, all of this requires using appropriate
architectures of knowledge representation, in particular, appropriate ontologies, as discussed in the subsequent
sections.

3. Sensory Processing

Choosing the adequate set of sensors

The system receives signals from the real world through whatever sensors it may have. Note that a
system may inhabit a software world, in which case “sensing” involves perceiving what exists external to
itself, even if that is additional pieces of software. It must determine how to interpret the sensed signals in
order to accomplish its tasks: the required actions are not prescribed in advance. Multiple sensors may be
necessary and the system must be able to fuse information from them, collecting them into a registered,
meaningful world model. Different sensors may give conflicting reports reports due to different
interpretations of the world given their sensing modalities. Sensors may fail in certain circumstances or give
insufficient information. The intelligent system should determine that it needs to utilize an additional or
different sensor or process the signals it has differently. For example, it may be using a range sensor and a
CCD camera as it navigates a house. It may hypothesize that instead of facing a wall or door, it may be
confronted with a curtain hung in a doorway. In this case, it may need to apply additional or different
processing algorithms in order to see if it can discern fabric (or something soft) from a planar, rigid surface. It
may have to utilize a tactile sensor, if one is available.



Recognizing the unexpected

A system with intelligence (IS) ultimately must understand what its sensors are discerning. It must
perform all of the requisite sensor or image processing to identify items in its environment to the level
appropriate to the task. The requirements to processing will vary, depending on the situation and task. It may
need to distinguish between certain types of tall weeds if it is an off-road vehicle, and it can drive only
through certain leafy plants (not woody ones), or it would look unintelligent if it skirts around patches of tall
grass. However, if it is a civilian car that should stay on roads, it probably doesn’t need to identify what type
of vegetation is growing on the side of the road, just that it is vegetation and not likely to jump out into the
middle of the road. It will be directed by the behaviors to look for specific objects it may need in order to
localize itself or find the object it is to act on. For example, it may look for a specific intersection as it
navigates around a city or it may try to find a specific tool. The system’s perception algorithms will have to
be tolerant of a wide variation in the location and appearance of objects. Not all chairs look alike. A wrench
may be on the floor or on a table, in a random position. Contrast this with non-intelligent systems that have
limited tolerance for variations in their surroundings or in the objects with which they interact.

Dealing with unknown phenomena

The intelligent system will have to perceive entities and objects as it encounters them. It will
classify and recognize items in its field(s) of view. It may classify a portion of the space in front of itself as a
chair, or may have to deal with this as with an unknown object that might be interpreted as an obstacle. The
sensory processing system, in conjunction with the world modeling system, must therefore know what it
doesn’t know about, and determine whether it needs to focus attention on the unknown in order to classify
and identify. This ability to recognize the functional implications of unknown objects should be one of the
major properties of IS. It is not impossible (in the future) to integrate multiple perceptions of an unknown
object in various situations and eventually label it and deal with it as with a regular “known” object.
Movements of unknown blobs can be interpreted with implication to possible planned maneuvers of the
robot under consideration.

Multiresolutional Sensory Processing

The intelligent system will have to perceive entities and objects as it encounters them. However,
sensory processing typically would require considering representation at multiple level of resolution. In all
cases it provides for efficient computing. It is possible to demonstrate that this would correspond to the
multiresolutional systems of knowledge representation (multiresolutional ontologies) and multiresolutional
systems of decision making (multiresolutional planning) [Messina, 00].

4. World Modeling

Knowledge Representation

In most intelligent systems, an internal model of the world and/or a long-term knowledge store are
utilized as a part of the overall knowledge representation system (KR). The long-term knowledge store
(repository, or knowledge base) contains fairly invariant information, such as street maps or machining rules.
An enabling aspect of the system’s intelligence is the a priori knowledge it has and knows how to use. The
internal model of the world is used to formulate a subset of KR that would allow the robot for planning
expeditiously the required responses to the environment and situation. The sensory processes (discussed
above) update and populate the current world model. The model might not be a single, monolithic one, but
should rather comprise a set containing different types of information and/or different representations of
perhaps the same information. The long-term knowledge may have to be merged with the in situ generated
knowledge. For instance, the local sensors detect a road and some landmarks, such as buildings (using the
knowledge base maps). The knowledge base supplies the name of the road, which is kept in the current world
model.

The locally sensed information is obviously more current than that in the long-term store. Therefore, it must
supercede what is in the knowledge base if there’s a conflict. If a road has been closed, the system will plan
around it and should, if appropriate, update the long-term maps. Obviously, these processes of updating our
knowledge of the world belong to different levels of granularity, require different scale for interpretation and
serve for supporting different resolutions of planning. It becomes a commonplace that most of intelligent
systems either have or can be substantially improved by using multiresolutional systems of representation
(including multiresolutional ontologies).



Multiple types of information

The intelligent system must be able to utilize a variety of types of information about the world in
which it is functioning. If it is mobile, it must understand 2D or 3D space and have an adequate
representation that enables it to move to the desired location efficiently while avoiding obstacles. It may need
to take into consideration aspects beyond simple support surface (terrain or floor) geometry and obstacles.
The type of terrain and traversability characteristics may be important as it determines which way it can go
and how difficult it will be. So, for instance, if maintaining line-of-sight with a communications station may
be necessary, the IS must be able to model the world so that it can perform the supporting computations to
plan its movements.

Commonsense knowledge

An intelligent system should be able to have generic models available that guide it as it interacts
with the world. This is as opposed to non-intelligent systems, where the environment is constrained to fit
within the system’s expectations (limited knowledge about what is possible). Although all possible
situations cannot be predicted, the system should be prepared to handle many of them by a sub-store of
commonsense knowledge. For example, the system may have to recognize and model stairs and elevators if it
needs to go between floors. Not all stairs have the same geometry or configuration. It must know how
elevators work, if that is appropriate to its job, namely, how to call an elevator, determine that one is
available going in the right direction, selecting the floor, waiting until the right floor is reached and the door
is open, etc. There is a general model of how to use an elevator, but there is tremendous variability in the
actual elevator experience. The intelligent system has to be able to map between the generic and the specific.

Knowledge Acquisition: Updating, Extrapolating, and Learning

The updating of all sub-stores is conducted as the new information arrives. This information is
frequently incomplete as far as satisfying the documents and models used by IS. An intelligent system must
also be able to fill in gaps in its knowledge. If a moving object appears behind a robotic vehicle, the vehicle
notes that it has an unknown entity that must be identified. Is it an emergency vehicle that must be given
the right of way or an aggressive driver? It has to extrapolate or interpolate based on what it knows and what
it discovers. All these knowledge acquisition activities require taking into account the uncertainty about what
it does know. When driving down a road, if it is about to crest a hill, it cannot see the road beyond the hill.
Rather than stopping, it should be able to assume that the road continues, and extrapolate based on the local
geometry to forecast where the road exists even if it can’t see it.

Related to this is the concept of predicting what will happen in the future. A machine tool that has a model
of tool wear should forecast when a particular cutter will need to be replaced. A mobile vehicle will have to
estimate its own trajectory and that of others with which it could potentially collide. The multiresolutional
planning processes use various horizons of anticipation (larger at lower resolution and smaller at higher
resolution.

The ability to anticipate will be amplified by learning new phenomena and control rules from experience. An
intelligent system should become better at performing its job as it learns from its experiences. Therefore, one
aspect that should be part of the testing or evaluation is the evolution and improvement in the system’s
functioning. The IS should have an internal measure of success as it performs its job. It can use the measure
to evaluate how well a particular approach or strategy worked. Just as humans build expertise and become
more efficient and effective at doing a certain job, the intelligent systems should have some means of
improving their performance as well.

Requirements for Testing Intelligent Systems
Based on the discussion above, there is an initial set of requirements for testing intelligent systems
that arise. The tests should therefore be designed to measure or identify at least the following abilities:
1. tointerpret high level, abstract, and vague commands and convert them into a series of actionable plans
2. to autonomously make decisions as it is carrying out its plans
3. to re-plan while executing its plans and adapt to changes in the situation
4. to register sensed information with its location in the world and with a priori data
5. to fuse data from multiple sensors, including resolution of conflicts
6. to handle imperfect data from sensors, sensor failure or sensor inadequacy for certain circumstances
7. todirect its sensors and processing algorithms at finding and identifying specific items or items within a
particular class



8. to focus resources where appropriate

9. to handle a wide variation in surroundings or objects with which it interacts

10. to deal with a dynamic environment

11. to map the environment so that it can perform its job

12. to update its models of the world, both for short-term and potentially long-term

13. to understand generic concepts about the world that are relevant to its functioning and ability to apply
them to specific situations

14. to deal with and model symbolic and situational concepts as well as geometry and attributes

15. to work with incomplete and imperfect knowledge by extrapolating, interpolating, or other means

16. to be able to predict events in the future or estimate future status

17. the ability to evaluate its own performance and improve

Most of the items on the list allow for a numerical evaluation. However, non-numerical domains play a
substantial role in evaluating intelligence and performance of IS.

5. Performance Evaluation in Non-numerical Domains

This theme focuses upon the aspects of intelligent system performance that are not directly
quantifiable, but which should be subject to meaningful comparison. An example of an analogous aspect of
human performance is the term “intelligent” itself. The notion of quantifying intelligence has always been
controversial, even though people regularly use terms that ascribe some degree of intelligence. Terms ranging
from smart, intelligent, or clever to dumb, stupid, or idiotic, with all sorts of degrees between, express
people’s judgments. But of course, these are often arbitrary judgments, without any basis for comparison or
consistency of application. The notion of 1Q, based on the widely used tests, was intended as a means of
providing some consistency and quantification, but is still controversial.

So how might we do measurements for machines of the virtues that we associate with intelligence? First, we
have to encapsulate the notion of what we mean by intelligence a little better. From the previous section one
can see that the following properties are tacitly considered to pertain to intelligent systems:

the ability to deal with general and abstract information

the ability to deduce particular cases from the general ones

the ability to deal with incomplete information and assume the lacking components

the ability to construct autonomously the alternative of decisions

the ability to compare these alternatives and choose the best one

the ability to adjust the plans in updated situation

the ability to reschedule and re-plan in updated situation

the ability to choose the set of sensors

the ability to recognize the unexpected as well as the previously unknown phenomena

the ability to cluster, classify and categorize the acquired information

the ability to update, extrapolate and learn

being equipped with storages of supportive knowledge, in particular, commonsense knowledge

Then we need to find consistent measurements of what we consider to be the characteristics for each item on
the list. We want these characteristics, like characteristics of software system performance quality in general,
to provide us with goals to strive for in developing systems.

Ideally, the characteristics of value would be even more than engineering goals. They would be theoretical
constructs in a “science of the artificial” [Simon, 69] — in this case, the science of Artificial Intelligence, or
(being more specific) in the science of knowledge representation. As with other scientific fields, the
constructs would be used in models (generally called scientific theories when they have been combined with a
means of generating hypotheses and the hypotheses have been tested enough that the models are widely
trusted). Some theoretical constructs may be easily judged from behavior of systems (“surface constructs™),
but as in natural sciences, they might also be deeply hidden from view, within very complex models (“deep
constructs” [see Reeker, 00]). In general, the depth of the construct is determined by the level of resolution
accepted in a particular representation. In a multiresolutional system of knowledge representation, each level
of resolution can be characterized by a particular “depth of the construct.” These phenomena find their
implementation in Entity-Relational Networks of words that are organized in the multiresolutional hierarchies
of ontologies [Meystel, 01].



From the standpoint of human cognition, the components of intelligence are hidden deeply in the models of
Cognitive Science (an interdisciplinary part of Psychology, which is also a developing science). This is one
reason that 1Q is still controversial: The model that backs up the measures is not complete. But it has
nevertheless been possible to endow IQ with some consistency that ad hoc descriptions do not have. This is
because there is some consistency in measurement and some predictive value in terms of future human
behavior. We would like this to be true for measures of intelligence in artificial systems, too, and it may
turn out that we have a distinct advantage over the cognitive scientists. This advantage is that we can, so to
speak “get into the heads” of intelligent artifacts more readily than we can with humans.

Ontologies and Reasons for Comparing Them in Intelligent Systems

How do we proceed to compare intelligent systems in these non-numerical areas? As a beginning, it
is suggested that we look at what is the core of an intelligent system (maybe of a human as well as an
intelligent computer program) — the way in which a system conceives of the world external to itself, the
internal representation of what is and what happens in the world. This is what has come to be called an
ontology in recent years. Ontologies are closely connected to a number of basic constructs that are highly
relevant to the performance of an intelligent system. They are clearly of importance in planning, making
decisions, learning, and communicating, as well as sensing and acting. An ontology is used in a computer
program along with a logic. The “control” or dynamic aspects of that logic may be embedded in the computer
program itself, or it may be in a special program that manipulates a knowledge base of logical formulas, or a
database manipulation system.

Whether an ontology is used within a computer program (or even the requirements statement of a planned
computer program), a database (and its associated programs), a knowledge based system, or an autonomous
artificially intelligent system, the ontology is indeed an informational core. As the architecture of the
knowledge repository, the ontology (ontologies) are multigranular (multiresolutional, multiscale) in their
essence because of multiresolutional character of the meaning of words [Rieger, 01]. In integrating systems,
the presence of a shared ontology is what will allow interoperability. The term can be applied to the world-
view of a human, too (in fact, is derived from a human study) though it may be easier to elicit it from the
machine, as remarked above. (A fact related to the “knowledge acquisition bottleneck™”.) Thus it is an aspect
of intelligent behavior that we may be able to compare from one system to another and correlate with the
more general notion of intelligence in a system.

Returning to the best attempts to date to measure human intelligence, it is worth noting that a human’s
individual ontology might be explanatory for human intelligence, so it is not surprising that there are indirect
measures of ontologies on 1Q tests and achievement tests. They may give us an idea as to how to proceed
with this aspect of an intelligent system. To measure the breadth of the person’s intelligence, is it useful to
ask if some people have “broader” ontologies than others. That is, do they cover more areas, or more
subjects, or more aspects, or more details. Should we expect that these broader ontologies will manifest
themselves in, say, a scholastic aptitude test (which in turn correlates with 1Q)? Does the “broader” ontology
testifies for the breadth of intelligence? Would that broader ontology influence the ability of the intelligent
system (including humans) to make better decisions? For people, the answers seem to be “yes”. Itis
tempting to imply that for machines, as well.

Undoubtedly some people have ontologies that make more adequate, at least more accurate distinctions
among different activities and objects that are present in the world (we can call this a “deeper” ontology”).
That makes it possible for them to reason with more precision. In other words, the breadth and the depth of
the ontology entails more powerful knowledge representation system. So the evaluation of ontologies is, to
some extent at least, not unreasonable in gauging human cognitive performance. Is it a reasonable measure
for machines? If so, how is the measure to be utilized? These are questions to be examined at
PERMIS’2001.

A Human View of Ontology
In this subsection, we would like to describe a view of a human ontology further, with the purpose
of expanding the analogy to intelligent systems.

Humans use their ontologies (ON) (and actually, the whole system of knowledge representation) to label,
categorize, characterize, and compare everything -- every object, every action. If a human learns the meaning



of some new entity, it is because a label for this thing is put into the knowledge representation (KR) system,
and eventually into a place in the ontology that relates it to the rest of the human’s knowledge. If a human
learns more about that entity, it is because more of its attributes, bounds, and relationships are specified in an
Entity-Relational Network (ERN) of the knowledge representation (KR) where the ontology resides. The
person does not have to bring all of its understanding of that same entity to conscious attention all the time,
as it would be a distraction. So, the ontology is usually accessed only as much as needed to make the
decision, or to communicate ideas and understand ideas communicated by others. Stripping off the details
allows people to note resemblances and make comparisons.

A human’s Knowledge Representation (KR) system (which the ontology provides some meaning) reflects
reality to the extent that it helps the human to deal with the world external to the human’s mind in a way
that enables good decisions and accurate predictions. If it does not, the person should be able to change it so
that it better reflects reality, by learning that enriches the ERN of KR. That is one way in which an organism
worldview must depend on its experiences. The experiences themselves depend on actions that have been
taken, sensory information that has been absorbed and communications that have been received and
understood. Each person’s ontology is therefore unique to that person, since each has different experiences,
and maybe also different ways to learn from those of another person. Each discovers new ideas and makes
new distinctions in ways that nobody fully comprehends and they become a part of my ERN-ON-KR system.

The relationship between the ontology and direct experiences of a sensory nature, coupled with activity and
what it accomplishes is a part of the property called grounding which is a part of the process of symbol
grounding [Harnad, 90]. When 1 learn language or learn the external world, this constantly extends my
symbol grounding, since information might be conveyed that affects the ontology. There may be innate
tendencies that provide symbol grounding, such as the fact that we can store information and access it and
have a sense of sequence, but it is not our specific purpose to inquire about these.

The rational interpretation of things communicated to an individual (or discovered by one) is affected by and
affects that individual’s ontology. The organism may encounter “raw” pains, perceptions, and emotions that
are not fully understood, but even these may be refined and contextualized by an existing ON. If an
organism is to successfully communicate to others, it must encode, in a shared language, things that are in
its ontology and shared to at least some degree in the ontologies of those receiving the communications.
Questions, context, and conversations help to facilitate this sharing.

Decisions that lead to a high probability of success in dealing with the external world can only be made in
the light of an individual’s KR-based understanding of the facts surrounding the decision. If that individual
does not have alternative actions characterized by information in an ontology, that individual cannot compare
thee alternatives, and therefore cannot consider them in rational decision processes. If an organism’s
ontology does not reflect reality, the organism will make irrational and perhaps unsuccessful decisions.
Complex decisions involve problem solving, and | must be able to access methods for solving problems.

The issue of such methods as part of ontologies is developed more deeply in a paper authored by
Chandrasekaran, Josephson, and Benjamins [see Chandrasekaran, 99]. There it is pointed out that a decision-
making system requires both a subject matter ontology and a problem solving method ontology. It is
possible — and may be needed - to imagine even a larger ontology of activities.

If a person is to learn, it will be guided by the person’s ontology in the learning process. Maybe natural
linking mechanisms in sensory processes can be brought to bear in certain learning tasks, so a path through
the woods or a list of words can be learned in seemingly built-in ways. This rote learning can be improved
upon by relating items within an existing ontology. If a person is to classify items, it must be do so based
on attributes, which are in the person’s ontology. To search memory, that person needs to do so based on
shared attributes, related activities, and other sorts of relationships. To learn by reinforcement, a system
needs to associate the reinforcements with actions, objects, features, bounds, and relationships. To transfer
learning from one task to another, it is necessary to use an ontology to find mappings from one action or
object to another.

Obijects in an ontology can be composed of other objects. An action may involve many objects (with their
attributes, bounds and relationships) and other actions that somehow get “hooked together”. An object may
be defined by attributes that include defining actions.



Measuring Non-Numerical Aspects of Intelligent Systems Related to Ontologies

Can we exploit the idea of the human ontology above as a “core” of intelligence to characterize and
compare intelligent behavior is machines based on a machine’s ontology, built-in or acquired? Like a
human, a machine may have sensors connected to subsystems of sensory processing. The machine may be
able to take certain actions that provide grounding for the ontology. If it can learn, perhaps it can extend its
ontology. How can we characterize that ontology in a way that will allow us to characterize the machine’s
capabilities? How can we characterize its ability to change the ontology? If it has an ability to communicate
to other machines or people, how does this ability add to its capabilities (and to its ontology)? These are
some of the ideas to be explored in PERMIS’2001.

6. Evaluation: Mathematical and Computational Premises

Consider a general situation: there is a set of goals (G,..., Gn) and a set of IS (or intelligent agents)
to achieve these goals. Different intelligent systems, or agents might have different goals, or they might put
different weights on the various goals. Further, they might be better or poorer at pursuing those goals in
differing contexts. That is, they might have different components of intelligence (I, I2,..1s) and these would
be more or less important in the different contexts (Cs, ..., Cq) that should also be known.

This dependence on the context determines that agents might be good at one set of matters, but bad in others.
The agent might be good at trying and learning about recognizing new objects in the surrounding world, but
poor at doing anything risky. It is typical for humans to have a portfolio of "intelligences" as well as
“goals.” It would give some value to all the different goals, and would have some value to each dimension
of intelligence. One agent might be characterized as an explorer, while another is very good in performing
repetitive routines. Which agent should be evaluated as a preferable one? Obviously, this would depend on
the goal and the context. An unequivocal answer might be impossible at a single level of resolution because
the true result depends on the distribution of the types of agents and the contexts that the groups of agents
find themselves in. Thus, the “intelligences” as well as “goals” might require representing them as a
multiresolutional system.

A brief summary of the notation described then is

{Gy,..., Gn }- set of goals, i=1, ... , n

{ISn} - set of intelligent agents to achieve these goals, p=1,...,m

{3, I,,..1s } - different components of the vector of intelligence, j=1, ..., s
{Ci,..., Cg} - different contexts, k=1, ..., q.

VI - vector of intelligence

where i are indices for goals and
j are indices for the components of the vector of intelligence

Multiresolutional Vector of Intelligence (MV1)

What should be measured to evaluate intelligence? The Multiresolutional Vector of Intelligence
(MV1), and the level of success of the system functioning when this success is attributed to the intelligence
of the system. The need to construct a MVI and determine their success emerges in many areas. It is not clear
whether “success” is (or should be) correlated with “reward” and “punishment.”

What constitutes the appropriate scope and levels of details in an ontology is practically driven by the
purpose of the ontology. The ability to dynamically assume one level of detail among many possible details
is important for an intelligent system. It might depend on the purpose of a system. In that sense the long
term purpose of the system is different from its short term or middle term goals. Clearly, the long term
purpose and the multiple term goals are goals belonging to different levels of resolution and should be treated
in this way. This brings us back to the measures of intelligence through success: is intelligence to be
measured by the ability of a system to succeed in carrying out its goals? Can the highly successful
functioning at one level of resolution co-exist with the lack of success at another? Are the “successes “nested”
or independent one from another?

Evaluation of intelligence requires our ability to judge the degree of successin a multiresolutional system of
multiple intelligences working under multiple goals. This means that if success is defined as producing a
summary of the situation (a generalized representation of it), the latter can be computed in a very non-



intelligent manner especially if one is dealing with a relatively simple situation. Indeed, in primitive cases,
the user might be satisfied by composing a summary defined as “list the objects and relationships among
them” i.e. a subset of an entity-relational network (ERN). On the other hand, the summary can be produced
intelligently by generalizing the list of objects and relationships to the required degree of quantitative
compression with the required level of the context related coherence. Thus, success characterizes the level of
intelligence if the notion of success s clearly defined.

The need in determining levels or gradations of intelligence is obvious: we must understand why the
probability of success increases because somebody is supposed to provide for this increase, and somebody is
supposed to pay for it. This is the primary goal of our effort in developing the metrics for intelligence. The
problem is that we do not know yet is the basis for these gradations and are not too active in fighting this
ignorance. What are these gradations, how should they be organized, what are their parameters that should be
taken in account? We can introduce parameters such that each of the parameters affects the process of problem
solving and serves to characterize the faculty of intelligence at the same time.

Multiresolutional Architecture of Ontology is a part of the Multiresolutional Vector of Intelligence. The
following list of 25 items should be considered an example of the set of coordinates for a possible
Multiresolutional Vector of Intelligence (MVI):

(@ memory temporal depth

(b) number of objects that can be stored (number of information units that can be handled)

() number of levels of granularity in the system of representation

(d) the vicinity of associative links taken in account during reasoning of a situation, or

(e) the density of associative links that can be measured by the average number of ER-links related to a
particular object, or

(f) the vicinity of the object in which the linkages are assigned and stored (associative depth)

(9) the diameter of associations ball (circle)

The association depth does not necessarily work positively, to the advantage of the system. It can be
detrimental for the system because if the number of associative links is excessively large the speed of
problem solving can be substantially reduced. Thus, a new parameter can be introduced

(h) the ability to assign the optimum depth of associations

This is one more example of recognition that should be performed, in this case, within the knowledge
representation system. Obviously, the ability “h” is tightly linked with the ability of IS to deal with
incomplete commands and descriptions (see Section 1).

Functioning of the behavior generation module, for example, evokes additional parameters, properties and
features:

(i) the horizon of extrapolation, and the horizon of planning at each level of resolution

(j) the response time
(This factor should not be confused with a horizon of prediction, or forecasting which should
combine both planning and extrapolation of recognized tendencies).

(k) the size of the spatial scope of attention

(This corresponds to the vicinity of the associative links pertinent to the situation in the system of

knowledge representation)

() properties and limitations of the aggregation and decomposition of conceptual units.

The latter would characterize the ability to synthesize alternatives of decisions and choosing one of them (see
Section 1).

The following parameters of interest can be tentatively listed for the sensory processing module:
(m) the depth of details taken in account during the processes of recognition at a single level of
resolution
(n) the number of levels of resolution that should be taken into account during the processes of
recognition



(o) the ratio between the scales of adjacent and consecutive levels of resolution
(p) the size of the scope in the most rough scale and the minimum distinguishable unit in the most
accurate (high resolution) scale

It might happen that recognition at a single level of resolution is more efficient computationally than if
several levels of resolution are involved. A more fine system of inner multiple levels of resolution can be
introduced at a particular level of resolution assigned for the overall system. The latter case is similar to the
case of unnecessarily increasing the number of associative links during the organization of knowledge.

Spatio-temporal horizons in knowledge organization as well as behavior generation are supposed to be linked
with spatio-temporal scopes admitted for running algorithms of generalization (e.g. clustering). Indeed, we do
not cluster the whole world but only the subset of it which falls within our scope. This joint dependence of
clustering on both spatial relations and the expectation of their temporal existence can lead to non-trivial
results.

One should not forget that generalization (the ability to come up with a “gestalt” concept) is conducted by
recognizing an object within the chaos of available spatio-temporal information, or a more general object
within the multiplicity of less general ones. The system has to recognize such a representative object, event,
or action if they are entities. If the scope of attention is too small, the system might not be able to recognize
the entity that has boundaries beyond the scope of attention. However, if the scope is excessively large, then
the system will perform a substantial and unnecessary job (of searching and tentatively grouping units of
information with weak links to the units of importance).

Thus, any system should choose the value of the horizon of generalization (that is the scope of the procedure
of focusing of attention) at each level of resolution (granularity, or scale).

All of these parameters characterize the realities of the world and the mechanisms of modeling that we apply
to this world. These parameters do not affect the user’s specifications of the problem to be solved in this
system. The problem is usually formulated in the terms of hereditary modeling that might not coincide with
the optimum modeling, or with the parameters of modeling accepted in the standard toolbox of a decision-
maker.

The problem formulated by a user often presumes a particular history of the evolution of variables available
for the needs of the intelligent system. Simultaneously, the user requests a particular spatio-temporal zone
within which the solution of the problem is desirable. However, the input specifications often do not require
a particular decomposition of the system into resolution levels and the intelligent system of CSA is free to
select it in an “optimal” way. In other cases, the user comes up with already existing decomposition of the
system that appeared historically and must not be changed (like the organizational hierarchy of a company
and/or an Army unit). Sometimes, it is beneficial to combine both existing realistic resolution levels and the
“optimal” resolution levels implied by the optimum problem solving processes.

The discrepancy between these decompositions requires a new parameter of intelligence

(9) an ability of problem solving intelligence to adjust its multi-scale organization to the hereditary
hierarchy of the system, this property can be called “a flexibility of intelligence”; this property
characterizes the ability of the system focus its resources around proper domains of information.

In the list of specifications of the problem the important parameters are

(r) dimensionality of the problem (the number of variables to be taken in account)

(s) accuracy of the variables

(t) coherence of the representation constructed upon these variables

For the part of the problem related to maintenance of the symbolic system, it is important to

watch the

(u) limit on the quantity of texts available for the problem solver for extracting description of the
system
and this is equally applicable for the cases where the problem is supposed to be solved either by a
system developer, or by the intelligent system during its functioning.



(v) frequency of sampling and the dimensionality of the vector of sampling.

Most of the input knowledge arrives in the form of stories about the situation. These stories are organized as
a narrative and can be considered texts. In engineering practice, the significance of the narrative is frequently
(traditionally) discarded. Problem solvers use knowledge that has been already extracted from the text. How?
Typically, this issue is never addressed. Now, the existing tools of text processing allow us to address this
issue systematically and with a help of the computer tools of text processing

Finally, the user might have its vision of the cost-functions of his interest. This vision can be different from
the vision of the problem solver. Usually, the problem solver will add to the user’s cost-function of the
system an additional cost-function that would characterize the time and/or complexity of computations, and
eventually the cost of solving the problem. Thus, additional parameters:

(w) cost-functions (cost-functionals)
(x) constraints upon all parameters
(y) cost-function of solving the problem

This contains many structural measures. We need to trace back from an externally perceived measure of
“success” or intelligence to a structural requirement. E.g, the construction codes specify thickness of
structural members, but these dimensions are related to the amount of weight to support — the performance
goal is the lack of building collapse.

Important properties of the Intelligent Systems are their ability to learn from the available information about
the system to be analyzed. This ability is determined by the ability to recognize regularities and irregularities
within the available information. Both regularities and irregularities are transformed afterwards into the new
units of information. The spatio-temporal horizons of Intelligent Systems turn out to be critical for these
processes of recognition and learning.

Metrics for intelligence are expected to integrate all of these parameters of intelligence in a comprehensive and
quantitatively applicable form. Now, the set {VI;} would allow us even to require a particular target vector of
intelligence {VI+} and find the mapping {VI-}-> {VI;} and eventually, to raise an issue of design: how to
construct an intelligent machine that will provide for a minimum cost (C) mapping.

[{Ver}=> {VI}]2minC

where
{VI;} - vector of intelligence
{VIer} —a particular target vector of intelligence (vector of intelligence that we are trying to
develop within a system)

By the way, has this ever been done for the systems that are genuinely intelligent? Of course, this question is
not related to design, just to measurement.

The Tools of Mathematics
The following areas of mathematics should be considered belonging
The following tools are known from the literature as proven theoretical and practical carriers of the properties
of intelligence:
Using Automata as a Generalized Model for Analysis, Design, and Control
Applying Multiresolutional (Multiscale, Multigranular) Approach
1. Resolution, Scale, Granulation: Methods of Interval Mathematics
2. Grouping: Classification, Clustering, Aggregation
3. Focusing of Attention
4. Combinatorial Search
5. Generalization
6. Instantiation
Reducing Computational Complexity
Dealing with Uncertainty by



1. Implanted compensation at a level (feedback controller)
2. Using Nested Fuzzy Models with multiscale error representation
Equipping the System with Knowledge Representation
Learning and Reasoning Upon Representation
Using bio-neuro-morphic methodologies
General Properties of Reasoning
—~Quantitative as well as qualitative reasoning
—Generation of limited suggestions, as well as temporal reasoning
—Construction both direct and indirect chaining tautologies (inferences)
—Employing non-monotonic as well as monotonic reasoning
—Inferencing both from direct experiences as well as by analogy, and
—Utilizing both certain as well as plausible reasoning in the form of
1. Qualitative Reasoning
2. Theorem Proving
3. Temporal Reasoning
4. Nonmonotonic Reasoning
5. Probabilistic Inference
6. Possibilistic Inference
7. Analogical Inference
8. Plausible Reasoning: Abduction, Evidential Reasoning
9. Neural, Fuzzy, and Neuro-Fuzzy Inferences
10. Embedded Functions of an Agent: Comparison and Selection

Each of the tools mentioned in the list allows for a number of comprehensive embodiments by using
standard or advanced software and hardware modules. Thus a possibility of constructing a language of
architectural modules can be considered for future efforts in this direction.

The Tools of Computational Intelligence

Proper testing procedures should be associated with the model of intelligence presumed in the
particular case of intelligence evaluation. It seems to be meaningful to compare systems of intelligence that
are equipped with similar tools. In this section we introduce the list of the tools that are known from the
common industrial and research practice of running the systems with elements of autonomy and intelligence.
It is also expected that these tools can be used as components of the intelligent systems architectures. Thus,
they might help in developing and applying types of architectures that will be used for comparing
intelligence of systems.

Learning.

We have separated this into an independent sub-section because of the synthetic nature of the matter.
Learning is the underlying essence of all phenomena linked with functioning of an intelligent system. It uses
all mathematical and computational tools outlined for all other subsystems. In the machine learning
community, the attention is paid to three metrics: the ability to generalize, the performance level in the
specific task being learned, and the speed of learning. From the intelligence point of view, the ability to
generalize is the most important since the other two capabilities dwell on the ability to generalize. Systems
can do rote learning, but without generalization, it is impossible, or at least very difficult to apply what has
been learned to future situations. Of course, if two systems were equivalent in their ability to generalize,
with the same resulting level of performance, then the one which could do this faster would be better.
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Abstract

Inthistutorial, an outline of the theory of intelligent systemsis presented as a sequence of the

following issues. The term “ Intelligent Systems’

has a meaning implied by our usage of it

within the domain related to the formidable phenomenon of Life and functioning of Living
Creatures. However, neither for living creatures not for engineering devices this term cannot
be presented through the list of functional properties and/or design specifications. Our theory
is based upon two phenomena that should be considered in their interconnection: a) the
existence of an Elementary Loop of Functioning (ELF) in all cases of systems with
intelligence, and b) formation of Multiple Levels of Resolution (MR) as soon as ELF emerges.
MR levels devel op because of the mechanisms of joint Generalization and Instantiation due to
the processes of grouping, focusing attention and combinatorial search (GFACS). The latter
are explanatory for the subsystems of Lear ning/Imagining/Planning that are characteristic of
all intelligent systems. This paper introduces the variety of mechanisms of disambiguation
that pertain to functioning of intelligent systems.On the other hand, MR and ELF together
lead to the development of Heterarchical Architectures. The above concepts are explanatory
of the kinds of intelligence that are observed in reality and suggest how to test the
performance of intelligent systems and what are the metrics that could be recommended.

1. Intelligent Systems: Invoking
the Design Specifications

Multiple characterizations of intelligence and
intelligent systems have been collected in [1, 2].
The meaning of the terms are instilled by our
associations with human beings, or even with
living creature in general. The desire to create
similar properties in constructed systems has
determined the tendency to anthropomorphize
both faculties and functions gadgets and systems
belonging to various domains of application.
This starts with categorizing objects into
ACTORS, or agents that produce changes in the
state of the world by developing ACTIONS, and
the OBJECTS OF ACTIONS, i. e. the objects
upon which the ACTIONS are applied.
ACTIONS are the descriptions of activities
developed by the ACTORS.

Yet, this does not give an opportunity to
exhaustively, or even simply adequately describe
intelligent systems in the terms of design
specifications. One reason for this is that
specifications are never complete. They are
never fully appreciated and understood either.

Example 1: Spot Welding Robot. These are the
features that are frequently claimed for it:

It has Basic Intelligence. The meaning of this
assertion does not extend beyond simple
salesman decorative phrase. Even in the
universities, courses on binary logic and
circuits with switches are called “ Introduction
to Intelligent Systems’. Even a wall switch
can be characterized as a carrier of
intelligence of making the light “on” or “off”.
Programmed for specific task. Certainly the
number of programmed functions is very
limited in arobot. Yet, probably, any number
of functions being pre-programmed is an
evidence of intelligence (the one of the
designer, the ability of the system to store
information (“memorize things”).
Memorization what should be done in a
response to a particular command is
considered a certan level of animal
intelligence.

No operator is needed. When you see this
statement in the list of welding robot
specifications, you should raise a question
what is the quality of the results of welding
comparing with welding by a human
operator. Even now, the feedback system are



limited in their ability to eliminate the need in
agood professiona welder.

* Can only perform repetitive tasks without
deviation from programmed parameters. No
doubt about it: one should realize that this
statement is rather a disclaimer than aclaim
of intelligent functioning.

Example 2: Mars Sojourner. The word “Mars’
evokes associations of the machines of the
future. However, no real faculties of intelligence
could be listed (the welding robot was
substantially “smarter”).

* Remote Control — should not be considered a
property of intelligence because by
extending the distance between the operator
and the machine we do not make the machine
smarter, or more sophisticated, or capable of
dealing with unexpected situations, or
interpret illegible commands, etc.

* Light elements of autonomy. The
specifications do not expand on this concept
(“autonomy”). Probably, the ahility to
provide a feedback control can be (arguably)
interpreted as elements of autonomy.

* Can Perform a variety of maneuvers
(limited). This property seemsto be similar to
having preprogrammed functions.

e A paticular maneuver is performed
independently. All available maneuvers
should be discussed and evaluated separately.
Indeed, the maneuver of “turning right” and
the maneuver “make a K-turn in a particular
tight space” require different level of
intelligence: from zero up to the substantial
degree of perception-based autonomy.

* Not capable of deciding what to do next (no
planning). Absence of “planning” in most
cases means no intelligence.

® Problem:10 minute communication Lag
Between earth and Mars (and probably, the
guy does not know what to do next and does
not dare to think about it!)

Example 3: Bomb Disposal Robot. This is
another case of the device for remote
performance (extention of capabilities of a
human operator). These robots are called
“intelligent” because of the importance of their
mission, and also because the should be able to
reproduce human movements with absolutely no
mistakes.

® Remote Operation with high accuracy create
the aura of respect. If the “increase in
accuracy” could be claimed, this would be a
very conspicuous demonstration of an
intelligence.

® Requiresvery skilled operator. Thisisaclaim
of intelligence of the operator. However, it is
an important assertion that this remote control
device cannot substantially detriment the
skills of the operator.

® Incapable of acting on its own (does not have
any intelligence at al). Thisisrelated to most
of the remote controlled devices.

Example 4. Intelligent Network. An example of
the communication system with intelligent
systems as the nodes of the network is shown in
Figures 6 and 7 of [3]. The description of the
communication network containing intelligent
systems demonstrates that a) the concepts of
closure within the intelligent node, b)
multiresolutional distribution of information, and
¢) heterarchical networks are characteristic for
this example. This was not observed in the
Examples 1 through 3. Thus, one might assume
that our dissatisfaction with Examples 1 through
3 was based upon an existing difference between
classes of systems as far as the level of their
intelligenceis concerned.

In our further discussion, we will call all objects
including ACTORS and OBJECTS OF ACTION
by the term entity. The ACTION can be
characterized and represented as a Discrete
Event (DE). The concrete choice of the
phenomena and objects as actors, DE and objects
of action is determined by a combination of
temporal and spatial resolution characteristic for
aparticular level. The structure of the object at a
particular level of resolution is shown in Figure
1. The structure of the DE for a level of
resolution can be introduced in a similar way.
The structure is a recursive one because each
“part” can be substituted by a similar structure,
and the representation of objects will evolve into
the high resolution domain. Similar evolution is
possibleinto the low resolution domain: Figure 1
should be used for representing each of the
parents.

Thinking about constructed intelligent systems
brings the researcher to the ideas of autonomous
robots that are capable of understanding
incomplete assignments (commands), apply the
general intention of the command to the



particular situation at hand, etc. How about
telling the robot: “ Go to the window and aert me
if something unexpected appears in the street?..”
Apparently, this is the performance of an
intelligent system that is justifiably expected in a
market of intelligent systems soon enough. This

popular demand is not far from its possible
satisfaction. The designer’s options include on-
line or off-line learning from experience and
using multiple tabulated alternatives together
with efficient decision making procedures.

attributes
actions actions
it it
can be
cando its descendants subjected
(parts)
to

Figure 1. Structure of the Object

2. E L F. Elementary Loop of
Functioning

The Law of Closure. Closure is the foremost

property of Intelligent Systems (IS) and should
be satisfied at all levels of its Architectures. The
Elementary Loop of Functioning (ELF) of IS can
be defined at each level of the IS and should be
consistently closed in each communication link
between the subsystems of ELF as described in
[1, 2, 4]. Unlike the classical “feedback loop,”
the loop of ELF is not focused upon the
deviation from the goal: it is focused upon the
goal. As soon as we can explain for a particular
scene and/or for a particular situation who are
the ACTORS, what ACTIONS do they develop,
and upon which OBJECTS OF ACTION their
actions are applied — the Elementary Loop of
Functioning has been found. In Figure 2. The
subsystems of this loop determine basic
properties of the intelligent system.

SENSORS (S) are characterized by their ultimate
resolution and their scope of the information
acquisition per unit of time. In SENSORY

PROCESSING (SP), the primary clustering is
performed (together with organization and
bringing all available data to the total
correspondence), and the resolution of clustered
entitiesis evaluated. The WORLD MODEL ,WM
(or Knowledge Representation Repository,
KRR) unifies the recently arrived and the earlier
stored information within one model of
representation that determines values of
resolution for its subsets. Mapping the couples
[goa, world model] into the sets of output
commands is performed by BEHAVIOR
GENERATION (BG) for the multiplicity of
available ACTUATORS (A), actually maps the
resolutions of the WORLD MODEL into the
resolutions of output trajectory.

Closure of al these units

(.. D2WD2SD>2SPD2WMDBGCIADIW=D ..) is

determined by the design of the system and the

learning process of defining the languages of the

ELF subsystems.

» The First Fundamental Property of Intelligent
Systems Architectures (the property of the
existence of intelligence), can be visualized
inthelaw of formingtheloop of closure.
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Figure 2. Design of amilitary situation (source:
DARPA)

Closureissatisfied and the consistency of ELF

holds when the unity of language (vocabulary

and grammar) holds for each communication
link between every pair of ELF subsystems.

* No matter what is the nature of the intelligent
system, no matter what is the object-oriented
domain under consideration, the structure of
closureisalwaysthe same.

Statistical Closure. Functioning of the ELF
cannot be impeccable because of noise and
disturbances arriving from the external world
and because of the errors of computations within
ELF. Thus, as aresult of mistakes, the property
of closure is not satisfied impeccably. Thus, we
should expect that only statistical closure can be
satisfied reliably. The phenomenon of the time
span between the “cause” and the “effect” is
observed for both the closure of “in-level”
functioning and the closure that is demonstrated
for reduction of resolution when the information
is integrated bottom-up. The following
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observations are important for interpreting
reported information on the eventsin a system:

® The existence of closure at the lower
(generalized) levels of resolution was
considered a surprise and was even given a
special term: “statistical closure” [5].

Now, it would not be difficult to understand that
every closure is a statistical closure including
closure reflected by the “in-level” functioning as
well as closure obtained as a result of
generalization of information tp the lower level
of resolution.

® Obviously, there are no cause-effect events
that happen simultaneously: if absence of the
time span was reported, there is no basis for
considering particular events of having
“cause~>effect” relationships.

® The time of any event is an integration of
realistic or statistical results of the potential
multiple experiments.  This should be
realized while determining whether the
events are separated by atime span.

These observations can often protect us from a
misinterpretation, but not in all cases. Even
consistent ELFs are capable of  generating



misinterpretations related to causality. Example:
it is known that 80% of patients with hip fracture
die within a year not because of hip fracture
complications but because they had another
condition that brought them to fall (they had it
prior to the hip fracture). Obviously, many of
these misinterpretations ascend to the formation
of the languages for the subsystems of an ELF.
The purpose may not aways be explicitly
represented but it can always be explicated as the
analysis of causes. Although, etiological analysis
(contemplation of causes) is always presumed, it
is seldom performed.

3. Levels of Resolution and
Intentionality: Multiresolutional
Analysis

We need to reduce the complexity of
computations by grouping similar units (entities)
into the larger formation that can satisfy the
definition of an entity, too. The words “we need”
are italicized because the issue of “need” is a
criticak one in the very emergence of this
phenomenon: multiple levels of resolution. The
needed entity is a “lower resolution” entity: the
details of high resolution are unified together
under a specific objective (representing the
intentionality). The totality of lower resolution
entities forms a “lower resolution world” of
representation, or the “lower resolution level.”
Within the “scope of the world” considered at
the higher resolution, we will have much smaller
total number of entities, and for the same
computational power, the scope of the world or
the efficiency of computation can be
substantially increased. This is why we are
searching for the lower resolution entities and
producing generalizations. Thus: the limitations
in processing speed, memory size, and sensor
resolution spur our creativity up.

There are numerous ways of representing
information at a level of resolution. The most
wide spread method presumes performing a
sequence of the following steps as the Algorithm
of Information Organization:

Step 1 (S1). Hypothesizing the entities within
particular boundaries separating them from the
background and other hypothesized entities.
More than one hypothesis for an entity is
expected to beintroduced (alist of hypothesesis
supposed to be formed and maintai ned)

Step 2. Searching for confirmation of the
hypotheses { H} of Step 1 (HS1) and evaluation
of current probabilitiesof HS1 being the “truth,”
Step 3. Hypothesizing a meanings of the
hypothesized entities [HSL=M]; cal this
couple “a meaningful entity.” More than one
hypothesis for the meaning is expected to be
introduced (alist of hypothesesis supposed to be
formed and maintained).

Step 4. For each hypothesized meaningful entity
[HSL=>M;] determine its plausible goal
(objective)

{[HSL=>M;] under the goa G}. This is
associated with the ability to hypothesize (and
verify) the “cause>effect” couples and
hypothesize a purpose of events (etiological
analysis).

Step 5. For each {[HS1,=»M;] under the goa G}
determine its rel ationships with other meaningful
entities of the “scene,” going back to Steps 1 and
2; considering different hypotheses; converging
to the maximum vaues of probabilities
evaluation.

Step 6. Constructing the entity-relationship
network for the scene (ERN;)

Step 7. Search within ERN for islands-
candidates for generalization into the entities of
lower resolution. As the candidates has been
determined consider them hypotheses of entities
with particular boundaries similar to those
mentioned in Step 1 and GO to Step 2 If no
new islands emerged, EXIT from the recursive
search from entities and GO to Step 8.

Step 8. Submit the hierarchy of ERNs to World
Model.

This sequence of steps can be applied to any type
of information representation including visual,
audio, verbal, etc. The sequence can be
illustrated by using a set of multiresolutional
images, for example, from [6].

One can see that some Logic is presumed to be
introduced for dealing with the multiresolutional
information a hand. Unlike the standard
propositional and predicate calculi, this logic has
to predicate various situations and related sub-
situations by their goals (purposes, objectives)
being important factors in the process of
inference. We believe that the Intensional Logic
of Entities (Objects) can be proposed for using in
the system with multiresolutional ELFs. An
important role is here allocated with the concept
of aternative worlds (possible situations or
possible worlds). This can be considered an
extension of the known notion of the “world
model”. Thisallowslooking for alternativesto
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the actual course of events in the world. On the
other hand, adding the hypothesized purposes
makes all statementsintentional aswell.

Intensional logic with explicated intentionality
should become a basis for the introductory
Multiresolutional Analysis (MA). The latter can
be defined as constructing the representation and
using it for the purposes of decision making.
Using computational algorithms leads to taking
advantage of representing the World as a set of
sub-Worlds each with its individual scope and
the level of detail.

The possihility and the need for MA is looming

as can be seen from D. Dennett's

Multiresolutional Stance where the property of

considering many levels of resolution is being

associated withintentionality:
“To explain the intentionality of a system,
we simply have to decompose the system
into many, dlightly less intelligent,
subsystems. These subsystems can also be
broken down into many more less intelligent
subsystems. We can continue to break up
these larger systems until eventually we
find ourselves looking at individual
neurons’ [7].

Multiresolutional analysis boils down to

purposeful development of multiresolutional

heterarchies which

~protects us from paradoxes [e.g. of the pitfalls

of self-referencing]

~alowsfor interlevel disambiguation

«determines true ontologies and definitions
~outlines symbol grounding activities

4. GFACS and GFACS™:
Generalization and Instantiation
by Using GFACS Operator

Both GFACS and GFACS-1 consist of the
simpler procedures that are called “grouping”,
“focusing attention”, and “combinatorial search”.
Most of the procedures that are being applied for
computer vision and intelligent control systems
are based upon the GFACS set of procedures.
Examples: “Windowing” broadly aplied for
selection of the representative part of the
infformation  set, is actually searching
(combinatorially), CS. Masking irrelevant sub-
entities is actually focusing attention, FA. On
the other hand, the same “Windowing” contains
a substantial component of “masking” and thus,
can be interpreted as “focusing attention”, FA in
additional to searching combinatorially, CS. All
algorithms of “clustering” can justifiably be
interpreted as “grouping”, G. Algorithms of
“filtering” are “focusing attention”, FA.
Hypothesizing the entity in an image aways
includes al of the above: G, FA, CS.

4.1 Level-to-level Transformation:
Generalizing by GFACS

The Algorithm of Information Organization
presented above (see Section 3) contains the
operator of generalization in its Step 7. It can be
further decomposed into the following sub-steps:

7.1 Search within ERN for islands-
candidates for generalization into the entities of
lower resolution. This search will include
forming tentative combinations of high
resolution entities into sub-entities that allow for
a consistent interpretation. Logic of this
“combinatorial  search” includes “focusing
attention” upon the results of tentative
“grouping” and determine properties of these
tentative groups and their relations with each
other.

7.2 As the candidates has been
determined, finalize “grouping” and label the
groups.

7.3 Consider these groups to be
hypotheses of entities and analyze the
corresponding ELFs.

Generalization is finished after the
newly synthesized entity became a part of
corresponding ERNs and ELFs.



4.2 Instantiations: GFACS™

In the inverse procedure, the system is searching
for the plausible decomposition of a legitimate
entity (that received a status of “group” as a
result of prior “generalization”). Usualy, this

(i.e. are arriving from “above”) and should be
verified by repeating the procedure of
“grouping” at the level of higher resolution (i.e.
“below”). In Figure 3, the richness of procedural
capabilities is illustrated that is achieved in a

single ELF as a result of GFACS/CFACS®
functioning. From Figure 3, one can see that the
generalization/instantiation couple can be
considered a core of unsupervised learning [1].
This determines the need is a special logic of

requires for performing several re-hypothesizing
the components of entities and grouping them
again to check whether they retain the meaning
declared earlier. This features the following
steps of instantiation: the hypotheses of

instantiations are arriving from the adjacent inference.
level of lower resolution after hypothesizing
STAGES rutes formimng forming | [ grouping [Synthesis |

selection [combinations || new rules| | the rules |o’r thé states| of the paradigm

| of the contexq
ICAPABILITIESl
a _______________ X ____________________________________________________________________________________
b------mmm - X=mmmmmmmm e D e s R
[ D S —— P —— i Ee e
o [ — D G P — P —— P CI— S s E e
Y D P G —— R ——— P — G 7 R
fe - X=mmmmmmmmmmmeee X----mm---- O X--------- X-=-------- X---mmm---- Vo
vg --------------- ) G y C— p G ) ) Cra— ! C——— X---

Figure 4. Logical Properties Acquired at Different Stages of the Intelligence Development

4.3 Advanced Logic Induced by demonstrated that the introduction of logical

Generalization/Instantiation

Indeed, the standard set of the inference tools
taken from the arsenal of Propositional Calculus
and Predicate Calculus of the 1% Order builds the
inference processes primarily based on the
undeniable conclusions that can be made from
having a set of properties known for a particular
class (ergo: belonging to this class), or
conclusions that can be made from the fact of
belonging to a particular class (ergo: having
properties characteristic for this class). Forming
new objects and/or new classes, growth of object
and events hierarchies are new phenomenain the
domain of inference. Even more powerful are the
capabilities linked with new abilities to infer the
purpose, construct hierarchies of goals, imply
cause-effect relationships. In Figure 4, it is

capabilities and the enhancement of the ability to
infer emerges as a result of incorporation of
computational capabilities based upon equipping
the system gradually by the new computational
tools: including rule selection, forming
combinations of rules, forming new rules (as a
result of learning), grouping the ryles, forming
combinations of the states and the context.

Unlike the symbolic logic that is supposed to be
precise, free of ambiguity and clear in structure,
the logic of multiresolutional system of ERN is
limited in precision by the demands for
associative disambiguation (see Section 7) that
spreadsinto the adjacent levels of resolution (no
“logical atomism” is presumed).



4.4 Learning, Imagining, and Planning:
The Tools and Skills of Anticipation

Since the etiology enters the discussion, it would
not be an exaggeration to state that the
GFACS/CFACS* couples induce the knowledge
of a Future, give the intelligent system the skill
of anticipation. Thus, learning invokes

imagining “what if” and various alternatives are
being simulated to exercise the aternatives for
estimating the Future and planning the Future as
it was described and illustrated in [8] (see Figure
5). Actually, all types of intelligent processing of
information are about the Future.

Number of computations x10

N=37 Complexity
with
Overhead

OPTIMAL ZONE
N=17
N=3 Net complexity
Number of TeT‘ds
1 2 3 4

Figure 5. Computational complexity isreduced by introduction of additional levels of resolution

5. Intelligent Architectures and Kinds of Intelligence They Embody

5.1 More About Multiresolutional Combinatorial Search

Complexity in Multiscale Decision Support
System depends on the number of levels of
resolution. In Figure 5 the linkage between
computational complexity and the number of
resolution bottom up fits within the hierarchy of
command, increase of the planning horizon and
re-planning interval helps to bring the best
properties of the system to a realization. The
following are 4-D/RCS specifications for the
planning horizon, re-planning interval, and
reaction latency at all seven levels (see the
table).

5.2 Existing Architectures

Multiresolutional processing is one of the
important features of the reference architectures
promulgated by NIST for application in

levels of resolution is shown for a problem of
path planning. The Example with DEMOIII
would clarify how the levels of resolution differ
in their parameters. Actualy, lowering the
intelligent systems. It is easily recognizable that
heterarchies similar to shown in Figure 6 fit
within the paradigm of large complex systems
including intelligent autonomous  robots,
unmanned power plants, smart buildings,
intelligent transportation systems including large
automated bridges. It fits perfectly aso to the
DOD systems of command, control,
communication and intelligence. It s
characteristic of heterarchies that while having
top-down and bottom-up hierarchical
components, they are not hierarchies:



Table of specifications for parameters of multiresolutional planning in DEMOIII [1]

Level Planning horizon Replan interval Reaction latency
1 Servo 50 milliseconds 50 milliseconds 20 milliseconds
2 Primitive 500 milliseconds 50 milliseconds 50 milliseconds
3 Subsystem 5 seconds 500 milliseconds 200 milliseconds
4 Vehicle 50 seconds 5 seconds 500 milliseconds
5 Section 10 minutes 1 minute 2 seconds

6 Platoon 2 hours 10 minutes 5 seconds

7 Battalion 24 hours 2 hours 20 seconds

i

o
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Figure 6. A Community of Interacting Heterarchies

heterarchies are not tree architectures. However,
in each heterarchy, a multiplicity of hierarchies
can be discovered and employed including
heterarchies of Top/Down-Bottom/Up
Processing heterarchies  of “In-Level”
Processing, and others. Similar relationships and
transformations are characteristic of Entity-
Relational Networks (ERN) that are obtained
from semantic networks for usingin Knowledge
Representation Repositories.

5.3 Kinds of Intelligence

General Intelligence

Many and equally unclear definitions are known
from the literature. We refer here to two
definitions that seem to be both applicable and
instrumental ones.

Definition 1 (Internal)

“An intelligent system has the ability to act
appropriately in an uncertain environment, where
an appropriate action is that which increase the
probability of success, and success is the
achievement of behavioral subgoals that support
the system’ s ultimate goal” [9].

Definition 2 (External)

“Intelligence is a property of the system that
emerges when the procedures of direct and
inverse

generalization (including focusing attention,
combinatorial search, and grouping) transform
the available information in order to produce the
process of successful system functioning.” [8].

These definitions should be supplemented by a
description of the trade-off to be achieved by any



intelligent systems no matter whether they are
oriented @) toward the goa achievement
(articulation), b) toward sustaining oneself

[realization of self], or c) toward “feeling better”
(avoiding paradoxes, antinomies, contradictions).
The trade-off isillustrated in the diagram 7.

Intelligence of Systems

— T,

Provides maximum
informational
redundancy

for synthesizing

choices,
comparing them,
and choosing one

Ultimately reduces
informational
combinatorics
[complexity]

to ensure
the efficiency of
functioning

Figure 7. Trade-off achieved by intelligence of systems

Proprioceptive Intelligence

A special kind of intelligence presumes blending
the carriers of elements of ELF into an
inseparable construction. Proprioceptive
intelligence presumes blending sensing devices
with actuators of a system. This gives additional
properties:

® An ability to modify behavior to maintain
feeling comfortable

® An ability to use the working part of a system
asacarrier of information

Contemplative Intelligence

All architectures of intelligence considered
above are oriented toward pursuing clearly
discernible objectives. In some situations this is
not the case. The following activities are
characteristic for a contemplkative intelligence:
it ponders [thoroughly], theorises, cogitates,
inquires, ruminates [repetitively], speculates,
conjectures, deliberates [in the latter case, the
intentionality isaprimary issue].

6. Testing the Performance and
Intelligence

The general lessons of the existing experience in
testing performance of systems can be
formulated as follows.

®performance can be different for IS and non-
IS. Breaches in communication that are taken
care by human operators in non-1S, are covered
by automated sub-systems in |IS. However, all

expected cases might not be reflected in the pre-
programmed menu. Thus, learning is the only
way to compensate for the inadequate pre-
programming.  Nevertheless, the failures in
representation are expected to endanger the
quality of operation even in the most intelligent
systems. Another cause of the inevitable failures
is the incomplete or inadequate goal
specifications.

® We already discussed the fact that the main
advantage of the intelligence is giving the ability
to deal with unexpected predicaments. Because
of this, the main advantages power that
intelligence brings to the system is unspecified
(and probably, unspecifiable). It should not be
forgotten that many hings are NOT and
frequently CANNOT be specified.

6.1 Testing Generic Capabilities of

Intelligent Systems

The following capabilities can be checked and

statistically validated via experimental testing in

afunctioning system on-line.

* All terms from the assignment are supposed
to be supported by the high resolution, low
resol ution and associative knowledge.

» Each level must demonstrate its ELF
consistency. Standard testing scenario can be
constructed and exercised.

» Functioning is presumed the ability to work
under incomplete assignment (including
incomplete statement of what should be
minimized or maximized).



* Functioning should be possible under not
totally understandabl e assignment.

* Functioning should be possible under not
totally interpretabl e situation.

6.2 Skills that can be checked off-line

Off-line testing alows for enabling better

preparedness of the system for critical situations.

e Multiple channels of enabling functions
(allows working under a condition that a part
of the capabilitiesis disabled).

» The existence of the internal model of the
world that is capable of planning and
developing “the best” responses to the
changing environment and dynamic situation
by using simulated system.

* The ability to learn from experience of
functioning: learning can be verified prior to
the future situations of functioning..

* The ability to judge the richness of the MR
ontologies. Indeed, the vocabularies and
grammars of all levels allow for shaping and
refining them prior to real operation.

» The ability to re-plan and/or adjust plans in
important when the original ones are no
longer valid; thisis another crucial aspect that
must be eval uated.

6.3 Understanding “Commander’s Intent”
One of the important functions of intelligence is
restoring of the intent of the node that is the
source of the goal. In other words, a system with
intelligence ought to have the capability to
understand its higher level, i.e. the lower
resolution level (where the “supervisor” or
“commander” is situated). The incoming “goal”
is frequently presented rather as an abstract
combination of terms. The system should be
capable of supplementing the submitted
command  with additional information
(sometimes, contextual) that helps to generate
more specific plans internally. This is almost
equivalent to creating the goals for itself: the
elements of future autonomy emerge in the
intelligent systems as tools of performance
improvement.

7. Conducting Disambiguation

We have addressed the need to verify the
consistency of statements generated at a level by
their compatibility with the adjacent levels above
and below. Clearly, they should not violate
generalizations creating objects and events of the
level above, and the results of decomposition of

the entities and events at alevel of consideration
should not violate consistency of the higher
resolution representation and decision making.

Thefollowing capabilities are expected from the
system of disambiguation.

® 1. Hypotheses should be formulated of
generalizations for the upper level and
instantiations for the lower level. These
hypotheses are obtained by GFACS and
CFACS! within the context of the situation
represented by the ELFs of three adjacent
level under consideration.

® 2. When the hypotheses generation is
completed (a ranked list of hypotheses is
constructed) the consistency of the
hypotheses should be verified an the i-th,
[i+1]-th and [i-1]-th levels. Verification is
done by checking whether the closure of each
ELF still holds. This operation is an example
of creating the “Tarsky’s Hierarchy” that
should eliminate the possible contradictions
that are expected because of Godel’s theorem
of incompleteness.

® 3. The other hypotheses on the lists should be
checked, too. We should observe what is the
changein the situation when the hypothesisis
changed, are the ELFs closures violated, what
is the relative compatibility of other
hypotheses to the BG sol utions contempl ated.

In Figure 8, an example of ambiguous situation
is presented. The right alternatives are
hypothesized, and the disambiguation is easily
performed by the human viewers even not
familiar with the original phenomenon (see
http://www.ournet.md/~mythorm/L ochNess.htm)

One can easily check that the activities
for disambiguation performed in a natural way
are similar to those presented in the above list
(hypothesize the connectivity of all segments of
the expected body of a living creature (H1),
hypothesize the radius of the “underwater” part
(H2), verify the H1 with available information of
possible living creatures, verify H2 by
comparing it woth the visible radius of the part
above the surface of “water”, etc.

8. Multiresolutional Metrics

The concept of value judgement introduced in [9]
and expanded in [1, 2] is expected to be a useful
component of the measuring performance of
systems, in particular, intelligent systems.
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Figure 8. Ceramics “Loch Ness Monster” on a
poliched wooden surface

Although this concept seems to be almost trivial,
coinciding with the concepts of cost/reward
applied in one set of research results, and
repeating the premises of utility function from
another set of research results, it has more
obscurities than can be allowed for applying this
concept in practical cases. In this paper, the
issues are listed that should be clarified, properly
stated and resolved before using the concept of
value judgment would be scientifically justified.

We have some light problem with the issues of
VALUE and VALUE JUDGMENT. Indeed,
value judgment system can evaluate what is
good and bad, important and trivial, and can
estimate cost, benefit, and risk of potential future
actions. However, it is difficult to find objective
evaluators. Indeed, scalar evaluators need atool
for assigning weights to various components of
VJ. Vector evaluators intend to escape the the
need for dealing with the idea of relative
importance of the components of the vector.
Actually, neither is achieved in practical cases.
There
* are many factors of preferences that cannot
be easily transformed into physical values or
money.
* Preferability that is delivered by emotions is
still a subject of discussion. It is unclear how
to assign anumerical value to the degree of

preferability brought by one’ sloyalty. Why
does one care that the team of his/her school
winsthe game even if this gameis beyond
his/her interest and even simple curiosity?
Even if the problem of computing the value
judgment is resolved at a particular level of
resolution, one cannot present any
meaningful techniques of consolidating all
measures into a single numerical value.

The previous problem might be considered
easier if at least we knew where to cut-off
building representations of the next level of
resolution from above and from below. These
are silly but “fundamental” considerations:
the limit of generalization from above is
achieved when we stop blurring particular
details since it affects the interpretation, the
limit of instantiation below is considered to
be achieved when we do not know how to
make further decomposition of the
representation.

One of the areas containing multiresolutional
analysis related results and intuitions is not
sufficiently analyzed by scientists in
multiresolutional representation and behavior
generation: the on-standard analysis [10]. A.
Robinson stops decimating space at the
indistinguishability zone level (the limit of
tessellation from below).



It is possible to expect that Heisenberg's
Uncertainty Principle is not bound by sub-
atomic particles and quantum mechanics and
can be applied for any level of resolution in
the MR structures.
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Abstract— The more complex the problem, the more com-
plex the system necessary for solving this problem. For
very complex problems, it is no longer possible to design
the corresponding system on a single resolution level, it be-
comes necessary to have multiresolutional systems. When
analyzing such systems — e.g., when estimating their per-
formance and/or their intelligence — it is reasonable to use
the multiresolutional character of these systems: first, we
analyze the system on the low-resolution level, and then we
sharpen the results of the low-resolution analysis by con-
sidering higher-resolution representations of the analyzed
system. The analysis of the low-resolution level provides us
with an approximate value of the desired performance char-
acteristic. In order to make a definite conclusion, we need
to know the accuracy of this approximation. In this paper,
we describe interval mathematics — a methodology for es-
timating such accuracy. The resulting interval approach is
also extremely important for tessellating the space of search
when searching for optimal control. We overview the corre-
sponding theoretical results, and present several case stud-
ies.

I. MULTIRESOLUTIONAL METHODS ARE NECESSARY: A
BRIEF REMINDER

The more complex the problem, the more complex the
system necessary for solving this problem. For very com-
plex problems, it is no longer possible to design the cor-
responding system on a single resolution level, it becomes
necessary to have multiresolutional systems.

The methodology of multiresolutional search for the op-
timum solution of a control problem was first presented by
A. Meystel in [40], [41]. These papers contributed to the
broad interest in and dissemination of the multiresolutional
approach to solving problems of the areas of intelligent con-
trol and intelligent systems.

Many algorithms based on this methodology were de-
veloped since then. The successful practical applications
of these algorithms shows that multiresolutional approach
are indeed necessary.

This empirical conclusion has been supported by many
mathematical results; let us name a few recent ones:

« It has been proven that for general complex (NP-hard)
problems, i.e., problems, for which no general feasible algo-
rithm is possible, there always exists an appropriate “gran-
ulation” after which the problem becomes easy to solve.
The fact that the problem is NP-hard means that there is
no general algorithm for automatically finding such a gran-
ulation, this granulation requires an expert familiar with
the particular problem that we are trying to solve [11].

« For noisy images I(z) in which we do not know the ex-
act statistical characteristics of the noise, only the upper
bound on the noise, the optimal image processing requires
representing this image as a linear combination of so-called
Haar wavelets e;(x), i.e., functions which only take values
1 or 0. Such a wavelet representation is a known particular
case of a multiresolutional representation [5], [6].

¢ In particular, when detecting a known pattern in a given
image, it is provably better to use lower-resolution type
techniques that look for the whole pattern as opposed to
higher-resolution techniques which look for pieces of this
pattern and then try to match found pieces together [64].
 Similarly to noisy images, for signal multiplexing under
noise, the use of Walsh functions (similar to Haar wavelets)
can be proven to be the optimal choice [2].

¢ In general, in function interpolation, clustering tech-
niques — in which we combine the values into clusters before
extrapolation — turn out to be optimal [34]. Such an inter-
polation is very useful in intelligent control, when we train
a system by providing it with examples of control values
used by expert human controllers in different situations.

o In general, in intelligent control, hierarchical fuzzy con-
trol is better in the sense that it requires fewer rules to
describe the same quality control [35], [36], [77].

« Finally, it can be shown that for many systems, the opti-
mal control is of “bang-bang” type, when there are finitely
many preferred control values (or preferred fixed control
trajectories), and the optimal control consists of optimally
switching between these values (trajectories). This general
result explains different empirical phenomena ranging from
the empirical fact of discrete speed levels in traffic control
to the phenomenon of sleep when it seems to be biologi-
cally optimal to always switch between several fixed levels
of activity [29].

II. INTERVAL MATHEMATICS: A METHODOLOGY FOR
VALIDATED ANALYSIS OF MULTIRESOLUTIONAL
SYSTEMS

A. Validated Analysis of Multiresolutional Systems Natu-
rally Leads to Interval Computations

When analyzing multiresolutional systems — e.g., when
estimating their performance and/or their intelligence — it
is reasonable to use the multiresolutional character of these
systems: first, we analyze the system on the low-resolution
level, and then we sharpen the results of the low-resolution



analysis by considering higher-resolution representations of
the analyzed system.

For example, instead of the original image with its nu-
merous pixel-by-pixel brightness values, we consider a low-
resolution image in which there is a small finite number of
zones, and each zone is characterized by a single brightness
value. After analyzing this image, we increase resolution,
thus adding more details (more zones), etc.

The analysis of the low-resolution level provides us with
an approximate value of the desired performance charac-
teristic. In order to make a definite conclusion, we need
to know the accuracy of this approximation. How can we
estimate this accuracy?

In order to solve this problem, let us reformulate it in
general mathematical terms. Instead of considering the
exact system, we consider its approzrimation, analyze this
approximation, and then we want to make a conclusion
about the original system based on this analysis. The orig-
inal system is characterized by the values of different pa-
rameters Iy, ...,T,; €.g., for the image, these parameters
are the brightness values at different pixels. We want to es-
timate some characteristic ¢ = f(x1, - .., x,) of the original
system.

A low-resolution approximation can be usually described
by fewer parameters ys, .. ., Ym, m <K n; e.g., for the image,
these parameters are the brightnesses of different zones.
FEach parameter x; is approximated by one of the new pa-
rameters y;; let us denote the corresponding parameter by
Yji)- When each z; is exactly equal to the corresponding
value y;, we get a simplified expression for ¢ which only

depends on m < m values: § = f(y1,...,Yn). In real-
ity, the values z; are somewhat different from y;, and as
a result, the estimate ¢ is different from the actual value
q of the desired characteristic. How can we estimate the
corresponding approximation error g — g7

In addition to the approximate model itself, we usually
know, for each j, the upper bound on the error with which
the value y; approximates the corresponding values z;. In
other words, we know that the actual value of z; belongs
to the interval y; = [y; — Aj,y; + A;]. Since each value z;
belongs to the interval y;(; , the actual value of the desired
characteristic belongs to the range

def
q= f(yi(l)a"'3Yi(n)) = {f(@1,-.,zn) |2 € Yj(z')}

of the function f on these intervals. Thus, in order to
estimate the accuracy of the lower-resolution estimate g,
we can estimate the above range.

The problem of estimating the range of the function
f(z1,...,2,) when we know the intervals x; of possible
values of x; is a known problem in areas where the inputs
are not known precisely, be it numerical methods or data
processing. This problem is called the problem of interval
computations, and methods for solving this problem are
called interval mathematics [1], [16], [17], [19], [20], [44],
[75].

B. Interval Computations are Difficult

In general, the interval computation problem is NP-hard
even for quadratic functions f(z1,...,z,); see, e.g., [26].
In plain English, this means that it is highly unprovable
that we will be able to find a general feasible algorithm
that computes the exact range for all functions f and all
intervals x; in reasonable time. Since we cannot compute
the exact range, what can we do instead?

We wanted to compute the exact range q because we
wanted to get an interval that is guaranteed to contain the
desired value ¢, and the range definitely contains this value.
If we cannot compute the eract range in reasonable time,
we can compute the approximate interval Q for the range.
The only way to guarantee that the new interval still con-
tains ¢ is to make sure that this new intervals contains the
entire range q C Q, i.e., that this interval is an enclosure
for the desired range.

In these terms, interval mathematics is an art of comput-
ing good narrow enclosures for the range of a given function
f(z1,...,2,) on given intervals x1,...,X,.

C. Methods of Interval Mathematics: A Very Brief Intro-
duction

Interval mathematics started, in the 1950s, with the ob-
servation that for simple arithmetic operations f(z1,x2) =
1+ X2, 1 — T2, etc., the range can be computed explicitly;

e.g.:

[e7, 2]+ [25, 23] = [z + 25,21 +25);

ot 2l ] = [e2, 23] = [oy — 2,2 — a3 );
[$177$1+] [.’E;,.Z’;] = [mln(m‘f Ty, Ty 1E2+,.CL'1+ $57$1+ $2+)7
— o= o= gt ot e— ot at
max(x] -5 ,&] T3, Ty ,x] -x3)]

The corresponding expressions are called formulas of inter-
val arithmetic.

It turns out that we can use these expressions to get rea-
sonable enclosures for arbitrary functions f. Indeed, when
the computer computes the function f, it parses the func-
tion, i.e., it represents the computation as a sequence of
elementary arithmetic operations. It can proven, by in-
duction, that if we start with intervals and replace each
arithmetic operation with the corresponding operation of
interval arithmetic, at the end, we get an enclosure for f.
For example, if f(z) = z-(1 —z), represent f as a sequence
of two elementary operations:

e 7 :=1— 1z (r denotes the 1st intermediate result);

o Yi=x-T.

In the interval version, perform the following computations:
er:=1-x;

e Yy =X-T.

In particular, when x = [0, 1], compute the intervals r :=
[1,1] —[0,1] = [0,1], and

y :=[0,1]-[0,1] = [min(0-0,0-1,1-0,1- 1),
max(0-0,0-1,1-0,1-1)] = [0,1].

The interval [0, 1] is indeed an enclosure of the actual range
[0,0.25].



D. Modern Methods of Interval Mathematics and Their
Potential Use in Tessellating the Search Space

D.1 Methods Based on Mean Value Theorem

The enclosure obtained by using the above simple idea
is often too wide. One of the main objectives of interval
computations is to make this enclosure narrower. One way
to do that is to use the mean value theorem, according
to which f(z) = f(zo) + f'(§) - (x — z¢) for some value &
between zg and x. Thus, if we take, as xg, the midpoint
of the interval x of width w, we will have |z — z¢| < w/2,
£'(€) € £'(x), and thus, £(x) C f(wo) + f'(X)-[~w/2,w/2].
If we do not know the exact range f'(x), we can use the
enclosure for this range. Similar formulas can be easily
written for the case of several variables.

D.2 Methods Based on Division into Subboxes and Their
Relation with Multiresolutional Approach

In many cases, the above idea leads to a reasonable en-
closure. If the enclosure is still too wide, we can divide the
original box x; X ... X x,, into sub-boxes, compute the en-
closure for each of these subboxes, and then take the union
of the resulting enclosures.

It is worth mentioning that this idea is completely
in line with the general multiresolutional approach: in-
stead of considering the individual values of the function
f(z1,...,2,) for all possible inputs z1,...,z,, we divide
the range of this function into a small number of zones, and
consider the enclosure for each zone. In multiresolutional
terms, we are thus considering a low-resolution approxima-
tion to the original function. If we want better results, we
have to consider smaller zones, i.e., we have to consider
higher-resolution approximations.

In other words, not only the formulation of the main
problem of interval mathematics naturally comes from mul-
tiresolutional approach, but also the methods of interval
mathematics are completely in line with this approach.

D.3 Interval Mathematics as a Method for Tessellating
Search Space

The resulting interval approach is also extremely impor-
tant for tessellating the space of search when searching for
optimal control [19], [20]. The simplest way of using inter-
val computations in to locate a maximum of the objective
function f(z) is as follows:

First, we compute the values of f(z) in several points

¢ .. z®); we then now that max f(z) > M def

max(f(z(?)). Then, we divide the original range into sev-
eral zones Z;, use interval computations to get an enclosure
F; = [F,, F;*] of the range of f(z) on each zone Z;, and
dismiss the zones for which FZ-Jr < M —because they cannot
contain the global maxima.

Then, we subdivide the remaining zones into sub-zones,
and repeat this procedure again — until we locate the global
maxima. This idea leads to a reasonably efficient algo-
rithms for global optimization, with can be further en-
hanced by using interval versions of gradient-based opti-
mization methods.

Numerous similar methods exist for computing enclo-
sures and optimization. Most of these methods are imple-
mented in easily available software packages; see, e.g., [19],
[20], [75].

D.4 Conclusion: Interval Mathematics Is Very Useful for
Multiresolutional Approach

Based on the above, we can conclude that interval math-
ematics is a good candidate for being “the” mathematics of
multiresolutional systems.

D.5 We Will Present Examples of Applying Interval Com-
putations

In the following sections, we will describe two applica-
tions of interval mathematics in some detail. Before we go
into the descriptions, we should mention that the above is
the description of a “vanilla” situation. In many real-life
cases, the situation is even more complex, because, in addi-
tion to a quantitative conclusion (about the value of some
quantity ¢), we need to make a qualitative conclusion: e.g.,
in the following example, a conclusion on whether a plate
has a hidden fault or not.

E. Case Study: Non-Destructive Testing

This case study is described, in detail, in [65], [72], [73],
[74].

In many areas, e.g., in aerospace industry, in medicine,
it is desirable to detect mechanical faults without damag-
ing or reassembling the original system. For testing, we
send a signal and measure the resulting signal. The input
signal can be described by its intensity ri,...,7, at dif-
ferent moments of time. The intensities sy, ..., s,, of the
resulting signal depend on r;: s; = f;j(r1,...,r,), where
the functions f; depend on the tested structure.

Usually, we do not know the exact analytical expression
for the dependency f;, so we can use the fact that an arbi-
trary continuous function can be approximated by a poly-
nomial (of a sufficiently large order). Thus, we can take
a structure, try a general linear dependency first, then, if
necessary, general quadratic, etc., until we find the depen-
dency that fits the desired data.

If a structure has no faults, then the surface is usually
smooth. As a result, the dependency f; is also smooth;
we can expand it in Taylor series. Since we are sending
relatively weak signals r; (strong signals can damage the
plane), we can neglect quadratic terms and only consider
linear terms in these series; thus, the dependency will be
linear.

A fault is, usually, a violation of smoothness (e.g., a
crack). Thus, if there is a fault, the structure stops be-
ing smooth; hence, the function f; stops being smooth,
and therefore, linear terms are no longer sufficient. Thus,
in the absence of fault, the dependence is linear, but with
the faults, the dependence is non-linear. So, we can detect
the fault by checking whether the dependency between s;
and r; is linear. So, we send several different inputs, mea-
sure the values rz(k) and sg-k) corresponding to these inputs,
and check whether the dependence is linear. In this case,



the values rgk) and sg-k) are the inputs x1, ..., %,, but the

desired ¢ is a qualitative (yes-no) variable: we simply want
to know whether there is a fault or not. If there is a fault,
then we would also like to make a quantitative conclusion
of its size, location, etc., but the most important part of
the analysis is to check whether there is any fault at all.

If the measurements were ideal, all we had to do was to
check whether there are values aj; for which, for all j and
for all measurements k, we have:

ajo + aj1 -r%k) + ...+ aj, -rg“) = sg.k).

Solvability of a system of linear equations is easy to check.

In reality, the situation is more complicated. Measure-
ment are usually imprecise: the result Z of measuring the
actual value z is somewhat different from the actual value
z. In many real-life situations, we do not know the proba-
bilities of different values of measurement error Az = 7 —x,
we only know the upper bound A of the corresponding mea-
surement error. As a result, the only information that we
have about the actual value x of the measured quantity
is that it belongs to the interval x = [z — A,z + A]. So,

(k) (k)

in practice, instead of the exact values of r;”’ and s;
(k) (k)

i J
we have intervals r;"”’ and s ; of possible values of these
quantities. The question becomes: are these intervals con-
sistent with the linearity, i.e., are there values rgk) € rgk)
and sg-k) € sg.k) for which, for some values a;;, the above
linearity formulas hold.

In general, the solvability of the corresponding system of
interval linear equations is an NP-hard problem [26], but
for some cases, efficient algorithms have been developed.
For example, when we have only one (non-negative) in-
put and only one output, with non-intersecting intervals
r) < r® < ... the solvability of the corresponding sys-
tem of linear equations can be proven to be equivalent to
the following inequality:

sO— — gk)+ o s+ gk

S R U R
We tested this method on the dependence of the energy E
of the ultrasound response on the voltage V that causes
the original ultrasound signal. The results show that non-
linearity is indeed an indication of a fault:
o For faultless plates, the above inequality is indeed true,
meaning that the measurement results are consistent with
linearity.
e For plates with faults, this inequality is not satisfied,
meaning that the dependence is non-linear.

F. Case Study: Reliable Sub-Division of Geological Areas

This case study is described, in detail, in [7], [8].

In geophysics, appropriate subdivision of an area into
segments is extremely important, because it enables us to
extrapolate the results obtained in some locations within
the segment (where extensive research was done) to other
locations within the same segment, and thus, get a good
understanding of the locations which weren’t that thor-
oughly analyzed. The subdivision of a geological zone into

segments is often a controversial issue, with different evi-
dence and different experts’ intuition supporting different
subdivisions.

For example, in our area — Rio Grande rift zone — there
is some geochemical evidence that this zone is divided into
three segments [39]:

o the southern segment which is located, approximately,
between the latitudes y = 29° and y = 34°;

o the central segment — from y = 34.5° to y = 38°; and

o the northern segment — from y = 38° to y = 41°.
However, in the viewpoint of many researchers, this evi-
dence is not yet sufficiently convincing.

It is therefore desirable to develop new techniques for
zone sub-division, techniques which would be in the least
possible way dependent on the (subjective) expert opin-
ion and would, thus, be maximally reliable. To make this
conclusion more reliable, we use, instead of the more rare
geological samples, a more abundant topographical informa-
tion (this information, e.g., comes from satellite photos).
We can characterize each part of the divided zone by its
topography.

In topographical analysis, we face a new problem: of
too much data, most of which is geophysically irrelevant.
To eliminate some of this irrelevant data, we can use the
Fourier transform; indeed, it is known that while (at least
some) absolute values of the map (forming a so-called spec-
trum) are geophysically meaningful, the phases usually are
random and can be therefore ignored. So, we should only
use the spectrum.

Since we are interested only in the large-scale classifica-
tion, it makes sense to only use the spectrum values corre-
sponding to relatively large spatial wavelengths, i.e., wave-
lengths L for which L > Ly for some appropriate value L.
In particular, for the sub-division of the Rio Grande rift, it
makes sense to use only wavelengths of Lo = 1000 km or
larger.

Also, for the Rio Grande Rift, we are interested in the
classification of horizontal zones, so it makes sense to di-
vide the Rio Grande Rift into 1° zones [y~,y"] (with y
from y~ =30 to yT™ =31, fromy~ =31 toyt =32, ...,
from y~ = 40 to yT = 41). For each of these zones, we take
the topographic data, i.e., the height h(z,y) described as a
function of longitude z and latitude y, compute the Fourier
transform H(w,y) with respect to x, combine all the spec-
tral values which correspond to large wavelength (i.e., for
which w < 1/Ly), and compute the resulting spectral value

yt 1/Lo
S(y™) =/ / |H(w,y)|? dw dy.
y=y~ Jw=0

Since we are interested in comparing the spectral values
S(y) corresponding to different latitudes y, so we are not
interested in the absolute values of S(y), only in relative
values. Thus, to simplify the data, we can normalize them
by, e.g., dividing each value S(y~) by the largest Smax of
these values. In particular, for the Rio Grande rift, the
resulting values of y~ = y1,¥2,... and s; = S(¥;)/Smax are
as follows:



TABLE 1

| i |20 |30 | 31| 32|33 34|

| s 028024021 016]0.20]0.29 |

| 35 | 36 | 37| 38 | 30 | 40 | 41 |

| 031 0.35] 0.46 | 1.00 | 0.80 | 0.96 | 0.74 |

Based only on these spectral values s;, we will try to classify
locations into several clusters (“segments”).

From the geophysical viewpoint, the desired zones cor-
respond to “monotonicity regions”: in the first zone, the
values s; are (approximately) decreasing, in the next zone,
they are (approximately) increasing, etc. So, we must
look for the monotonicity regions of the (unknown) func-
tion s(y).

The problem is that the values s; are only approximately
known, so we cannot simply compare the values to de-
termine whether a function increases or decreases. The
heights are measured pretty accurately, so the only er-
rors in the values s; come from discretization. In other
words, we would like to know the values of the function
s(y) = S(y)/Smax for all y, but we only know the values
s1 =8(1), --., Sn = $(yn) of this function for the points
Y1,---,Yn- For each y which is different from y;, it is rea-
sonable to estimate s(y) as the value s; = s(y;) at the point
y; which is the closest to y (and, ideally, which belongs to
the same segment as y;). For each point y;, what is the
largest possible error A; of the corresponding approxima-
tion?

When y > y;, the point y; is still the closest until we
reach the midpoint ymia = (¥; + yi+1)/2 between y; and
Yi+1- It is reasonable to assume that the largest possible
approximation error |s(y) — s;| for such points is attained
when the distance between y and y; is the largest, i.e., when
y is this midpoint; in this case, the approximation error is
equal to |$(Yymid) — Sil-

If the points y; and y;; belong to the same segment,
then the dependence of s(y) on y should be reasonably
smooth for y € [y;,4it+1]- Therefore, on a narrow in-
terval [y;,yi+1], we can, with reasonable accuracy, ignore
quadratic and higher terms in the expansion of s(y; + Ay)
and thus, approximate s(y) by a linear function. For a
linear function s(y), the difference s(ymiq) — s(y:) is equal
to the half of the difference s(yit+1) — s(yi) = Sit1 — 84
thus, for y > y;, the approximation error is bounded by
0.5- |S,’+1 — Sil-

If the points y; and y;41 belong to different seg-
ments, then the dependence s(y) should exhibit some non-
smoothness, and it is reasonable to expect that the dif-
ference |s;+1 — s;| is much higher than the approximation
€rror.

In both cases, the approximation error is bounded by

0.5- |3i+1 - Sz'|.

Similarly, for y < y;, the approximation error is bounded
by 0.5 - |s; — s;—1] if the points y; and y;_1 belong to the
same segment, and is much smaller if they don’t. In both
cases, the approximation error is bounded by

0.5 - |Sz - Si,1|.

We have two bounds on the approximation error and we
can therefore conclude that the approximation error cannot
exceed the smallest A; of these two bounds, i.e., the value

Az’ =0.5- min(|s,- - 81'1', |Sz'+1 - 8,|)

As aresult, instead of the ezact values s;, for each i, we get
the interval s; = [s],s]] of possible values of s(y), where
s; =8 —A; and sf = s; + A;. In particular, for the Rio

Grande rift, we get:
s1 = [0.26,0.30], s = [0.225,0.255],s3 = [0.195, 0.225],
s4 = [0.14,0.18],s5 = [0.18,0.22],s6 = [0.28,0.30],
s7 = [0.30,0.32],sg = [0.33,0.37],s9 = [0.405,0.515],
s10 = [0.80,1.10],s1; = [0.72,0.88],s12 = [0.88,1.04],
s13 = [0.63,0.85].

We want to find regions of uncertainty of a function s(y),
but we do not know the exact form of this function; all we
know is that for every i, s(y;) € s; for known intervals s;.
How can we find the monotonicity regions in the situation
with such interval uncertainty? Of course, since we only
know the values of the function s(y) in finitely many points
Yy;, this function can have as many monotonicity regions be-
tween y; and y;+1 as possible. What we are interested in
is funding the subdivision into monotonicity regions which
can be deduced from the data. The first natural question is:
can we explain the data by assuming that the dependence
s(y) is monotonic? If not, then we can ask for the possibil-
ity of having a function s(y) with exactly two monotonicity
regions:

o if such a function is possible, then we are interested in
possible locations of such regions;

o if such a function is not possible, then we will try to find
a function s(y) which is consisted with our interval data
and which has three monotonicity regions, etc.

This problem was first formalized and solved in [68], [69],
where we developed a linear-time algorithm for solving this
problem. By applying this algorithm, we find three mono-
tonicity regions: [29,34], [31,41], and [37,41] — in good
accordance with the geochemical data from [39].

G. Other Applications: A Brief Overview

Other successful applications of interval techniques in-
clude:
o telemanipulation [9], [25], [65];
« robot navigation [65];
« analysis of multi-spectral satellite images [63], [65].
Since a fuzzy set can be naturally represented as a nested
family of intervals (corresponding to different levels of cer-
tainty), methods of fuzzy data processing actively use inter-
val computations and be considered as natural applications
of interval techniques [22], [50], [54], [65].



III. MuLTI-D GENERALIZATIONS OF INTERVAL
MATHEMATICS AND SYMMETRY APPROACH

A. General Idea

In addition to the upper bound on the approximation er-
ror for each quantity z;, we often have an additional infor-
mation. For example, in some cases, in addition to the up-
per bounds A; for the differences T; — x;, we also know the
upper bound on their distance between the vectors T and =,
i.e., the upper bound on \/(Z1 — 21)? + ...+ (Tn — )2
In this case, we know that the actual values of zy,...,x,
belongs to the intersection of a box x3 X...Xxx, and a ball.
We may have more complex shapes. Processing complex
shapes is computationally difficult (see, e.g., [32]), so we
must find good approximations for such shapes. Ideally,
we should find approximations which are optimal in some
reasonable sense.

A similar problem of finding the optimal shapes arises
in the selection of “clusters” (zones) corresponding to the
low-resolution approximation. Here also, it is desirable to
find the optimal zones.

Let us show, on the example of selecting zones on the
plane, how this problem can be solved (a more general case
is described in [47]).

Of course, the more parameters we allow, the better the
approximation. So, the question can be reformulated as
follows: for a given number of parameters (i.e., for a given
dimension of approximating family), which is the best fam-
ily?

For simplicity, we will restrict ourselves to families of
sets have analytical (or piece-wise analytical) boundaries,
i.e., boundaries that can be described by an equation
F(z,y) = 0 for some analytical function F(z,y) = a +
br + cy + dz? + exy + fy? + ... Since we are interested
in finite-dimensional families of sets, it is natural to con-
sider finite-dimensional families of functions, i.e., families
of the type {Cy - Fi(z,y) + ...+ Cyq- Fy(x,y)}, where F;(2)
are given analytical functions, and C1, ..., Cy are arbitrary
(real) constants. So, the question is: which of such families
is the best?

When we say “the best”, we mean that on the set of all
such families, there must be a relation > describing which
family is better or equal in quality. This relation must be
transitive (if A is better than B, and B is better than C,
then A is better than C). This relation is not necessarily
asymmetric, because we can have two approximating fam-
ilies of the same quality. However, we would like to require
that this relation be final in the sense that it should define
a unique best family A, (i-e., the unique family for which
VB (Aopt > B). Indeed:

e If none of the families is the best, then this criterion is
of no use, so there should be at least one optimal family.

o If several different families are equally best, then we can
use this ambiguity to optimize something else: e.g., if we
have two families with the same approximating quality,
then we choose the one which is easier to compute. As
a result, the original criterion was not final: we get a new
criterion (A >,ew B if either A gives a better approxima-

tion, or if A ~gq B and A is easier to compute), for which
the class of optimal families is narrower. We can repeat
this procedure until we get a final criterion for which there
is only one optimal family.

It is reasonable to require that the relation A > B should
be invariance relative to natural geometric symmetries, i.e.,
shift-, rotation- and scale-invariant.

Now, we are ready for the formal definitions.

Definition 1. Let d > 0 be an integer. By a d-dimensional
family, we mean a family A of all functions of the type
{C1-Fi(z,y) + ...+ Cq - Fy(z,y)}, where F;(z) are given
analytical functions, and Cy,...,Cy are arbitrary (real)
constants. We say that a set is defined by this family
A if its border consists of pieces described by equations
F(z,y) =0, with F € A.

Definition 2. By an optimality criterion, we mean a tran-
sitive relation > on the set of all d-dimensional families. We
say that a criterion is final if there exists one and only one
optimal family, i.e., a family Aqpy for which VB (Agpy > B).
We say that a criterion > is shift- (corr., rotation- and scale-
invariant) if for every two families A and B, A > B implies
TA > TB, where TA is a shift (rotation, scaling) of the
family A.

Theorem [33], [71]. (d < 4) Let > be a final optimality
criterion which is shift-, rotation-, and scale-invariant, and
let Agpe be the corresponding optimal family. Then, the
border of every set defined by this family Aop consists of
straight line intervals and circular arcs.

For d = 5 and d = 6, we also get hyperbolas, parabolas,
and ellipses [55].

A similar symmetry-based optimization technique can be
used to find the optimal technique for subdividing boxes in
interval range estimation and interval optimization; see,
e.g., [21].

B. Case Studies: Brief Overview
B.1 Analyzing Cotton Images

The above approach has been very helpful in the auto-
matic analysis of cotton images [55], [61]. Specifically, the
above symmetry-based approach helps in classifying trash
(bark, leaves, etc.) in ginned cotton and in classifying in-
sects by their shapes. The symmetry approach enables us
not only to find the optimal shapes, but also to find the op-
timal geometric characteristics for distinguishing between
different shapes and different sizes of the same size. The
same symmetry approach leads to the conclusion that the
optimal approximations to sizes form a geometric progres-
sion; this conclusion is in good accordance with the actual
insect sizes.

B.2 Half-Orders of Magnitude

A similar geometric progression result explains why,
when people make crude estimates, they feel comfortable
choosing between alternatives which differ by a half-order
of magnitude (e.g., were there 100, 300, or 1,000 people
in the crowd), and less comfortable making a choice on a



more detailed scale, with finer granules, or on a coarser
scale (like 100 or 1,000) [18]. This empirical fact is diffi-
cult to explain within standard uncertainty formalisms like
fuzzy logic; see, e.g., [31].

B.3 Analyzing Geospatial Data II

Computer processing can drastically improve the quality
of an image and the reliability and accuracy of a spatial
database. A large image (database) does not easily fit into
the computer memory, so we process it by downloading
pieces of the image. Each downloading takes a lot of time,
S0, to speed up the entire processing, we must use as few
pieces as possible.

Many algorithms for processing images and spatial
databases consist of comparing the value at a certain spa-
tial location with values at nearby locations. For such algo-
rithms, we must select (possibly overlapping) sub-images in
such a way that for each point, its neighborhood (of given
radius) belongs to a single sub-image. In [3], we formulate
the corresponding optimization problem in precise terms,
and show (in good accordance with the above optimization
result) that the optimal sub-images should be bounded by
straight lines or circular arcs.

B.4 Analyzing Geospatial Data III

Geospatial databases often contain erroneous measure-
ments. For some such databases such as gravity databases,
the known methods of detecting erroneous measurements
— based on regression analysis — do not work well. As a
result, to clean such databases, experts use manual meth-
ods which are very time-consuming. In [70], we propose a
(natural) multiresolutional (localized) version of regression
analysis as a technique for automatic cleaning. Specifically,
we subdivide the original image into zones, and apply re-
gression analysis separately within each zone (on the high-
resolution level) and between different zones (on a low-
resolution level).

In this physical problem, natural requirements lead to
the following optimality criterion for selecting zones: min-
imizing the zone’s diameter (that describes the variance
within the zone) under given area (that describes the num-
ber of measurements within the zones). The efficiency of
the resulting optimal zones is shown on the example of the
gravity database, where our algorithm not only detected all
erroneous measurements found manually by the experts;,
but it also uncovered several suspicious points that the ex-
perts overlooked.

B.5 Non-Destructive Testing IT

A standard way of detecting faults is to measure a certain
quantity = at different points on the analyzed plate, and
to classify the point as faulty is when the value x of the
measured quantity at this point differs from the average a
of measurement results by more than two or three o.

Based on the results of measuring a single quantity (e.g.,
ultrasonic signal), we often miss some faults. To improve
the quality of fault detection, it is necessary to measure sev-
eral different quantities, and combine the results of these

measurements. A natural idea is to classify the point as
faulty is one of the measurement detects a fault. How-
ever, one of the measurements may be erroneous, we would
rather consider a point a fault location if at least one other
measured quantity at this or nearby point indicates a fault.

In other words, to improve the quality of fault detection,
we replace the original point-by-point analysis by a new
method which involves high-resolution clustering. When
the corresponding neighborhoods are selected in an optimal
way, this replacement indeed improves the quality of fault
detection [58], [59].

A further improvement in fault detections comes when
we treat the physically different points near the plate’s edge
as a different zone, and classify a point as faulty only if the
corresponding value z differs from the average a, within
this zone by more than two or three standard deviations
0, measured within this zone z. In other words, a fur-
ther improvement in fault detection comes when we sup-
plement the above high-resolution technique by additional
low-resolution subdivision into zones.

B.6 Why Two Sigma

In the above example, and in statistics in general, a two-
sigma criterion is used. The normal justification for this
criterion is that for & ~ 2, the dependence of the probabil-
ity to be outside the k- o interval [a— k- 0,a + k- o] on the
(unknown) probability distribution is the smallest. In [52],
[53], we provide a theoretical explanation for this empirical
fact, and thus, for the “2¢” criterion.

For that, we take into consideration the fact that an arbi-
trary probability distribution can be represented as f(n),
where 7 is normally distributed, so the choice of a dis-
tribution is equivalent to the choice of a function f(z).
An symmetry-based approach similar to the one presented
above leads to the family f(z) = z%, and for this family,
in the vicinity of normal distribution (when a = 1), the
smallest dependence on « is indeed attained for k = 2.

B.7 Acupuncture Points

The above approach to describing optimal shapes can
be successfully applied to finding a good approximation
for the location of the acupuncture points, i.e., points in
which acupuncture treatment is the most efficient [46].

B.8 Towards Optimal Image Compression

In the above image processing problems, we process the
image as it appears. In many situations, we must store the
image for future use, and there is not enough storage space
to store all the images, so we need to compress the image.
In other situations, there is not enough bandwidth to send
the entire image, so again, compression is needed.

It is proven that finding the optimal compression of a
given image, be it an optimal lossless compression or an
optimal lossy compression with a given bound on allowable
loss of information, is a computationally difficult problem
[66]. Since we cannot find the optimal compression, a nat-
ural idea is to consider several compression techniques and
find the best one. The problem is to quantify what “the



best” means, especially in the situations when we may have
several possible applications of the compressed image, and
since we do not know where exactly this image will be used,
it is difficult to quantify the quality of the compression. In
[23], [49], we consider the optimal choice of quality met-
ric most appropriate for a given problem. First, we use
a similar-based optimization approach to find the optimal
family of possible quality metrics (which turns out to be
LP-metrics), and then, we find p based on a specific prob-
lem.

B.9 Pattern Matching

In many real-life situations, we are interested in finding
the known pattern in a given image. For example, in the
analysis of geospatial data, we may be looking for certain
geophysical patterns indicative of, say, presence of water.
In [10], [12], [13], [14], [62], [78], a similar symmetry-based
optimality approach is used to develop optimal FFT-based
techniques for such matching.

B.10 Guaranteed Quality Estimation for Approximately
Given Systems

Our final example bring us back to the original problem
— of quality estimation for an approximately given system.
Symmetry-based approach can help in designing optimal
methods for such quality estimation for the situations when
the system is treated as a “black box”, a low-resolution ap-
proximation to the original system in which we are not al-
lowed to use the high-resolution details [24], [67]. In partic-
ular, in [24], [67], we describe modified Monte-Carlo tech-
niques which provide us with validated results even when
we do not know the exact values of the statistical charac-
teristics of the system — only intervals of possible values of
such characteristics.

IV. MULTIRESOLUTIONAL APPROACH TO REASONING
AND Locic: A BRIEF OVERVIEW

A. Reasoning and Logic: Successes and Problems

Multiresolutional approach can be applied not only to
the systems themselves, but also to the way we reason
about these systems, i.e., to the logic of human reasoning.
Specifically, in many areas (medicine, geophysics, military
decision-making, etc.), top quality experts make good deci-
sions, but they cannot handle all situations. It is therefore
desirable to incorporate their knowledge into a decision-
making computer system.

Experts describe their knowledge by statements
S1,...,5, (e.g., by if-then rules). Experts are often not
100% sure about these statements S;; this uncertainty is
described by the subjective probabilities p; (degrees of be-
lief, etc.) which experts assign to their statements. The
conclusion C' of an expert system normally depends on
several statements S;. For example, if we can deduce C
either from Sy and S3, or from S, then the validity of
C is equivalent to the validity of a Boolean combination
(S2 & S3) V S4. So, to estimate the reliability p(C) of the
conclusion, we must estimate the probability of Boolean

combinations. In this paper, we consider the simplest pos-
sible Boolean combinations are S; & S and S; V Ss.

In general, the probability p(S; & S2) of a Boolean com-
bination can take different values depending on whether Sy
and Ss are independent or correlated. So, to get the pre-
cise estimates of probabilities of all possible conclusions,
we must know not only the probabilities p(S;) of individ-
ual statements, but also the probabilities of all possible
Boolean combinations. To get all such probabilities, it
is sufficient to describe 2™ probabilities of the combina-
tions S{' & ... & St where &; € {+,—}, ST means S,
and S~ means —S. The only condition on these proba-
bilities is that their sum should add up to 1, so we need
to describe 2" — 1 different values. A typical knowledge
base may contain hundreds of statements; in this case, the
value 2™ — 1 is astronomically large. We cannot ask ex-
perts about all 2" such combinations, so in many cases,
we must estimate p(S; & Sz) or p(S; V S2) based only on
the values py = p(S1) and p» = p(S2). There exist many
possible “and”-operations fg : [0,1] x [0,1] — [0,1] which
transform the degrees p; and p, into an estimate fg (p1,p2)
for p(S1 & S). Similarly, there exist many “or”-operations
which transform degrees the p; and po into an estimate
fv(p1,p2) for p(S1V S2).

Many such operations have been successfully used in
fuzzy logic and intelligent control; see, e.g., [22], [56]. In
spite of the successes, there are still major problems with
these operations:

o First, these operations are not perfect. Indeed, some of
these operations, although very natural and useful at first
glance, seem to violate natural commonsense requirements;
we will give an example later).

o Second, there are so many different possible “and”- and
“or”-operations that it is difficult to meaningfully select one
of them. Any guidance for decreasing the class of possible
operations is very welcome.

B. Reasoning and Logic: Multiresolutional Approach

In our viewpoint, the above problems of the existing log-
ical methodologies come, to a large extent, from the fact
that researchers often combine different degrees of certainty
together. In reality, the degrees have a clear multiresolu-
tional character, and if we fully take this character into
consideration, we can make a large progress in solving the
above problems.

Let us explain why expert degrees of uncertainty are mul-
tiresolutional. An expert rarely provides us with numbers
describing his or her degrees of uncertainty. A more nat-
ural way for an expert to describe his/her degree of belief
in a certain statement is to use a word from natural lan-
guage such as “most probably” or “possibly”, and then we
translate this word into a number. There are only few such
words, and these words form the lowest-resolution level of
the uncertainty description. On this level, several differ-
ent statements with slightly different degrees of uncertainty
may be described by the same word and thus, lumped into
a single cluster. To avoid this lumping, we may ask an
expert to provide us with a more detailed description of



the expert’s degree, e.g., by using hedged combinations of
words like “slightly less certain but still reasonably cer-
tain”. The more details we ask, the more higher-resolution
description we get.

Another possibility to describe the expert’s degrees in
numerical terms is to ask the expert to describe his/her
degrees on a scale from, say, 0 to 10. We can start with
a low-resolution scale, e.g., with a scale consisting of only
two values “yes” and “no” that corresponds to the use of
the classical (two-valued) logic. As we increase the num-
ber of elements on the scale, we get a higher- and higher-
resolution description. Eventually, we get real numbers
describing uncertainty.

In both cases, we get numbers as a result, but these num-
bers appear as a result of a multiresolutional procedure. It
is therefore natural, when resolving the above problems — of
seeming inconsistency with common sense and of too many
options — to consider not only the resulting assignments of
numbers, but also the multiresolutional approximations to
these assignments. This consideration indeed helps in solv-
ing the above problems.

C. Multiresolutional Character of Uncertainty Reasoning
Resolves the Inconsistency Between Uncertainty Oper-
ations and Common Sense

Let us give one example of such inconsistency and show
how the multiresolutional character of human reasoning
can help with this particular example. It is known that
for given p; = p(S1) and p2 = p(S2), possible values of
p(S1 & S2) form an interval p = [p~,p*], where p~ =
max(p; + p2 — 1,0) and p™ = min(py,ps); and possible
values of p(S; V S2) form an interval p = [p~,p*], where
p~ = max(p1,p2) and pT = min(p; +ps, 1) (see, e.g., a sur-
vey [48] and references therein). So, in principle, we can use
such interval estimates and get an interval p(C) of possible
values of p(C). Sometimes, this idea leads to meaningful
estimates, but often, it leads to a useless p(C) = [0, 1] [47],
[57]. In such situations, it is reasonable, instead of using
the entire interval p, to select a point within this interval as
a reasonable estimate for p(S; & S») (or, correspondingly,
for p(Sy V S2)).

Since the only information we have, say, about the un-
known probability p(S; & S2) is that it belongs to the inter-
val [p~,pt], it is natural to select a midpoint of this interval
as the desired estimate:

£ 1 1 .
fe(pr,p2) € 5 - max(p +p2 —1,0) + 5 - min(pr, p2);
def 1 1.
p1,p2) = 2 -max(p1, p2) + B -min(p; + p2,1).

This midpoint selection is not only natural from a common
sense viewpoint; it also has a deeper justification. Namely,
in accordance of our above discussion, for n = 2 state-
ments S; and Ss, to describe the probabilities of all possible
Boolean combinations, we need to describe 22 = 4 probabil-
ities Iy = p(Sl & SQ), o = p(Sl & _|S2), I3 = p(—|51 & Sz),
and x4 = p(—S1 & —S2); these probabilities should add up

to 1: 21 + 22 + 23 + x4 = 1. Thus, each probability distri-
bution can be represented as a point (z1,...,24) in a 3-D
simplex § = {(z1,%2,23,24) |2; > 0& z1 + ... + 24 = 1}.
We know the values of p;1 = p(S1) = z1 + 22 and py =
p(S2) = z1 + z3, and we are interested in the values of
p(S1 & S2) = z1 and p(S1VS2) = x1 + 2 + x3. It is natural
to assume that a priori, all probability distributions (i.e.,
all points in a simplex S) are “equally possible”, i.e., that
there is a uniform distribution (“second-order probability”)
on this set of probability distributions. Then, as a natu-
ral estimate for the probability p(S; & S2) of S; & Sa, we
can take the conditional mathematical expectation of this
probability under the condition that the values p(S1) = p1
and p(S3) = po:

E(p(S1 & S2) | p(S1) = p1 & p(S2) = p2) =
P(zi|z1 + 22 = p1 &1 + 23 = pa).

The problem is that these operations are non-associative.
Why is this a problem? If we are interested in estimat-
ing the degree of belief in a conjunction of three state-
ments S; & Sz & S3, then we can either apply the “and”
operation to p; and ps and get an estimate fg (p1,p2) for
the probability of S; & S> and then, we apply the “and”
operation to this estimate and p3, and get an estimate
fe(fe(p1,p2), p3) for the probability of (S; & S3) & S3. Al-
ternatively, we can get start by combining S, and Ss,
and get an estimate fg(p1,fe(p2,p3)). Intuitively, we
would expect these two estimates to coincide, but, e.g.,
(0.4&0.6) & 0.8 =0.2& 0.8 = 0.1, while 0.4 & (0.6 & 0.8) =
0.4&0.5=0.2#0.1.

How can we solve this problem? Since we know that
the numerical values are only an approximation, we can
analyze how non-associative the above operations can be.
If the difference is below the natural resolution level, then,
from the practical point of view, the above operations are
as good as associative ones. The following is true:

Theorem [15], [38].

?

ml?x|f&(f&(a7 b),C) - f&(a7 f&(b7 C))' =

a,b,c

Ol o~

InbaDC{|fv(fv(a; b),C) - f\/(aaf\/(b: C))| =

20y

Each word describing a degree of belief is a “granule”
covering the entire sub-interval of values. Thus, non-
associativity is negligible if the corresponding realistic
“granular” degree of belief have granules of width > 1/9.
One can fit no more than 9 granules of such width in the
interval [0,1]. This may explain why humans are most
comfortable with < 9 items to choose from — the famous
“7 plus minus 2”7 law; see, e.g., [42], [43].

D. Multiresolutional Character of Uncertainty Reasoning
Helps to Drastically Narrow Down the Class of Possible
Logics

These results cover both the logics in which the set of
different degrees is an interval [0, 1], and more complex
logics.



D.1 [0,1]-Based Logics

For numerical operations, if we interpret the degree of
belief in a statement S as (proportional to) the number
of arguments in favor of S, then we arrive at a natural
choice of “and”- and “or” operations: fg(a,b) = a - b,
fv(a,b) = a+b, and fy(a,b) = b*. As one of the unex-
pected consequences, we get a surprising relation with the
entropy techniques, well known in probabilistic approach
to uncertainty [60].

A similar conclusion can be made if we require that the
operations be consistent with their multiresolutional struc-
ture: namely, for a discrete low-resolution level, we define
“derivatives” of these operations as finite differences, and
then require that the corresponding continuous limit oper-
ations have exactly the same expressions for the derivatives
[4].

The multiresolutional character of human reasoning also
explains why in logic, only unary and binary operations
are normally used: because although in principle, there
exist ternary operations on [0, 1] (in the limit case) which
cannot be represented as compositions of natural unary
and binary ones, but on each resolution level, when we
have only finitely many degrees, every operation can be
naturally represented as such a composition [51].

D.2 More General Logics

The need for more general logics comes from the fact that
just like experts are not sure about the statement S, they
are also not sure about their own degrees of belief d(S).
Thus, instead of a single number d(S), we can consider
several possible numbers d, with degrees da(d) describing
to what extent these numbers are adequate descriptions
of the original expert’s uncertainty. This “second-order”
approach has several successful applications. In principle,
it is possible to go further and consider the fact that the
degrees ds(d) are also not given precisely, so we seem to
need the third-, fourth-order etc, approaches. However, in
practice, such theoretically possible approaches turned out
to be not useful. This fact can be explained if we take the
multiresolutional character of reasoning into consideration:
o On the one hand, every “first-order” and “second-order”
logic, in which the set of degree of belief is an ordered set,
can be naturally described as a limit of an interval-related
multiresolutional procedure [27], [28], [45], [76].

e On the other hand, if degrees come from words, then the
third order is no longer necessary [30].

It is natural to select a continuous approach which best
reflects the multiresolutional character of human reason-
ing, i.e., in which there is a qualitative difference between
different pairs of degrees. A natural way to describe this
difference in continuous case is to use the approach of non-
standard analysis, with the actual infinitesimal elements
(= lexicographic ordering). The optimal selection of such
logics is described in [37], [54].

Conclusion

Interval mathematics is very helpful in the analysis of
multiresolutional systems.
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Abstract.

A means of measuring machine intelligence is presented. The technique is

based on geometric procedures and works best on relative comparisons across different
entities, rather than absolute comparisons of intelligence.
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. INTRODUCTION

Defining, evaluating, and obtaining viable
metrics for the measurement of autonomy,
machine intelligence quotient (M1Q), or
intelligence, in generd, is a nontrivial task [1-
9]. Itisgeneraly agreed that intelligence
must be a high dimensional vector involving
multiple attributes of a human or machine
(Meystel [1]). Defining the relevant
dimensionsis also not atrivial task and much
controversy exists. Even the discussion on
how testing on intelligence is performed with
humans creates controversy on which mental
abilities congtitute intelligence. The relevant
issues include whether the 1Q obtained, e.g.
by the Stanford-Binet Intelligence Scale or
the Wechdler Scales, are fair measures.
Additional controversy also exists that certain
less privileged racial, ethnic, or socia groups
do not have fair representations on the test
guestions pertinent to their living
environments.

Albus [2] defines intelligence as having
many dimensions. He also recognizes degrees
or levels of intelligence. Some of the
influencing parameters in describing features
of intelligence for unmanned ground vehicles
include, but are not limited to:

(1) The computational power and memory
capacity of the system’ s brain (or computer),
(2)  The sophistication of the processes
the system employs for sensory processing,
world modeling, behavior generation, value
judgment, communication, and,

(3) Thequality and quantity of

information and values the system has

stored in its memory.
The measure of intelligence is also predicated
on the success in solving problems,
anticipating the future, and acting so asto
maximize the likelihood of achieving goals.
Obvioudly intelligence is goal oriented and
related to success. The presumption is that
different levels of intelligence produce
dissimilar probabilities of successin the
accomplishment of specific missions.

In studying autonomous systems [3], there
are numerous (analogous) systems that can be
examined for attributes both within and across
processes that relate to autonomy. Some of
these systems include living things (birds,
fish, insects), intelligent highway vehicle
systems, mobile robots, control of satellites
in orbit, underwater vehicles systems,
helicopters, tanks, human-machine interfaces,
unmanned air vehicles, swarms of robots, and
ahost of other processes. In studying
unmanned air vehicle systems (UAVs) [8,10]
autonomy is desired since the goal isto
maximize theratio of UAVs/operators for a
number of important reasons. The advantages
include the significant reduction in cost, the
elimination of the need to include alife
support system (significantly reducing fuel
and weight requirements), decreased
vulnerability if the UAV is shot down or
captured, enhancing reliability and robustness
with multiple opportunities to achieve a
mission, as well as other important traits.
Again, inthe design of UAVS, it isdesired to



have a metric to compare within and across
different systems on the level of autonomy or
intelligence designed in the aircraft.

It was pointed out in [4] that, at best, a
measure of machine intelligence (MIQ) isa
relative metric and it is difficult to have an
absolute measure. This paper will discuss a
relative means of determining how to
contrast across different machines for
comparative intelligence or autonomy. The
goal is to have an objective measure to
demonstrate that one machine has higher or
lower degrees of intelligence or autonomy in
comparison to another machine. Thus the
designer can rate different machines in terms
of their relative M1Q and investigate trade-
offs between gain in MIQ versus cost and the
benefits derived. It is cautioned that MIQ is
very mission specific, and unless the mission
can be accomplished with the appropriate
level of success, then the machine may still
not be appropriate. In other words, the
appropriate tool has to be able to perform the
given task. Success in amission is the final
measure that demonstrates that a machine has
the appropriate M1Q for a given application.
To understand the metric introduced here,
some basics need to be reviewed and
discussed to better grasp how the measure of
MIQ was constructed herein.

II. Some Basic Definitions

To understand the ensuing definition of
MIQ, some basic concepts need to be
reviewed. We present the fundamental
nomenclature via key definitions.

Definition 1 — Convexity:

A subset A of R" is convex if, for any vectors
xandy in A and scalarsr and swithr3 Oand
s3 0,r+s=1,thenevery pointr x +sy
remainsin A. In other words, if we have a
convex set (2 dimensions) A with two points x
andy, then if we draw a line from the point x
toy, every point on the line remains inside the

Figure 1— The Convex Set A of aCircle

surface A. Figure 1illustratesacirclein
which the points x and y lie inside the circle.
Drawing a line from the point x to the point y
still remains inside the circle A. Also, every
point along the linejoining x to y also lies
within the set A and no point on the lineis
outsidethe set A. Other examples of convex
spaces in 3 dimensions include a cube, a
sphere, etc. A cubeis defined as follows:
éxl u
Cube= A={gxi: KIEL I EL IED (1)
8x:H

It is aso worthwhile to look at a surface
which is not convex. Example 1 describes a
set of points, which is not convex.

Example 1-A set of pointsin a nonconvex set
The set A of pointsin R defined by:

2 3

A= {e %3%0%°%0" (><13+><23)2 £1 (9

eXz u
Figure 2 isaplot of the nonconvex surface A.
It is easily seen that aline cannot be drawn
between any two pointsx andy in A and
have every point on the line joining the points
dill liein A. Thus the surface A in figure 2 is
anonconvex surface. Sometimesiit is
necessary to prove a surface is convex by the
definition of its constituent elements. The



following alternative definition is useful for
this purpose.

0

Figure 2— A Nonconvex Set A

Alter native Definition of Convexity:
A function f(x) is convex if for al x, y and |
suchthat: 0 £1 £1,

fl x+@-D)y) £1 fx)+@-1)f(y) (3)

The next three definitions will prepare for the
appropriate definition of MIQ. Definition 2
refers to the outer surface (Convex Hull) that
encloses the convex set.

Definition 2 — Convex Hull:

The convex cover (Convex Hull) of a
convex set is what bounds the outside of the
convex set. For figure 1, it is the
circumference of the circle. For the cube of
equation (1), the Convex Hull is the six
surfaces of the cube. To define the Convex
Hull more formally:

Let B be any subset of R" and CH(B) isthe
convex hull of Bif it contains all the convex
combinations of the elements of B, i.e.

CH(B) ={ x : there are elements X1, X2, ...,
Xn in B such that x is a convex combination of
al of the x; elements considered}

Hence the Convex Hull is the outside
bounding surface of the convex set. The next
definition generalizes this concept to multiple
dimensions. Polytopes have many definitions,

e.g. with respect to classes of polynomials
[11], with respect to matrices [12], and aso
with reference to general convex-compact sets
[13]. Here the choice is made to use the term
polytope with respect to geometric figures.
For aset of pointsin R" wheren 3 2, the
concept of convexity is now extended to
multiple dimensions.

Definition 3 — Polytope:

Given the subset A of R" which is a
polytope if, for any vectors x and y in A and
scalarsr and swithr 3 Oands® O, r +s=1,
then every point r x + sy dtill remainsin A.
This generalizes for n 3 2 and all points can
be connected in A. Figure 3 illustrates a
triangle as a 2 dimensional convex set and
figure 4 generdizes this result to 3
dimensions. The goal is to increase n to any
number greater than 2 and triangles or
geometric figures with vertices will be used in
each dimension.

Figure 3— A Triangle asa2-dimensional Polytope




Figure 4— A Triangle Extended as a 3-dimensional Polytope

Definition 4 — MIQ as a Polytope:

The prior definitions have provided some
valuable tools to help in the definition of a
measure of MIQ in multiaxes, as is necessary
since intelligence is such a multidimensional
process. There is a 3 step process in
developing this methodology.

Step 1: Consider a minimum of 3 attributes
for a2 dimensional definition of MI1Q.

Step 2: Generalize this result to 4 or more
attributes in this 2-dimensional (planar space).
In the two dimensiona space, the map now
extrapolates with any number of features
necessary to complete the mission.

Step 3: The last step takes the generalization
to a third or higher dimension. In all cases al
the figures constructed are Convex Hulls or
polytopes. Thus comparisons can aways be
made within any dimension involving two or
more machines to be considered. To explain
this better, figure 5 illustrates the Step 1
process with the 3 attributes of intelligence
[2] being defined as. goas achieved (task
performance), uncertainty in the environment,
and sensors available. Figure 6 now

GoalsAchieved

Sensors
Available

Uncertainty in the Environment

Figure 5 —First Definition of MI1Q with 3 Axes (Intelligence Attributes)

extrapolates the previous figure to include a
total of 5 attributes in the planar dimension
with the addition of two more attributes of
intelligence selected including: actuators
controlled and a priori knowledge. Finally
figure 7 generalizes to 3 dimensions with the
addition of three additional intelligence
attributes in the third dimension, including:
accuracy level, time efficiency, and energy

GoalsAchieved
Apriori
Sensors Knowledge
Available
Actuators Uncertainty in
Controlled

The Environment

Figure 6 —Generalization of Figure 5 to now Include 5 Attributes



Aprio’l"rm
Knowledge

Energy Time
Efficiency

Actuators
Controlled

Efficiency
The Environment

Figure 7 — Generalization of Figure 6 to 3 Dimensions With 8 Attributes.

efficiency [9]. To this point, the process has
been an abstraction; in the next section a
comparison is made of relative examples to
illustrate how to use this methodology.

M ethodology to Compar e Across Machines

To illustrate how to use the methodology,
four examples are considered with (presumed)
increasing levels of intelligence (machine or
nonmachine). They include:

(1) A toaster.
(2) A washing machine with fuzzy logic
to detect quality of cleaning.

(3) Aninsect (ant).

(4) A human operator.
Due to the complexity of representation,
figure 8 portrays a comparison of the washing
machine with fuzzy logic to the toaster using
the ssimplified planar representation

GoalsAchieved

Sensors
Available

Uncertainty in the Environment

Figure 8— Comparison of a Toaster and Clothes Washer With Fuzzy Logic

GoalsAchieved

\

Uncertainty in the Environment

Figure 9— Comparison of aHuman, Ant and Toaster

introduced in figure 5. Obvioudly the more
intelligent machine is further displaced from
the origin and due to the convexity of the
polytope, it is seen that, in general, the fuzzy
logic system appears to have greater machine
intelligence (area measure). In  figure 9, the
evauation of MIQ is now made between the
mixture of living things and machines. The
comparison involves a human, an ant, and a
toaster. Here the relative hierarchy is
specified by the amount of area or volume
contained in each polytope.  Thus the
intelligence measure is very relative (not
absolute) to compare across living things and
machines. To summarize the results so far, the
following paradigm is suggested on how to
synthesize this MI1Q metric:

Stepsin Synthesizing the M1Q Paradigm:
(i) For the specific mission, define the axes of
the polytope to be relevant to the performance
of the mission under consideration (e.g. a
toaster cannot clean a rug, nor can a washing
machine toast a piece of bread).

(i) Define the scales of each axes of the
polytope relevant to the mission of interest.
(ili) Plot aternative machines on the same
axes.

(iv) The hypervolume resulting will provide a
relative (not absolute) comparison of the
efficacy of a particular machine to perform
certain missions.

Recall there is no absolute standard
(however, an existing machine could be a



baseline for comparison purposes) and, at
best, the relevance of each machine to
perform a specific mission can be better
understood via this procedure.

I1l. Summary and Conclusions

Using properties such as convexity and
relative measures of machine intelligence, the
effectiveness to perform specific missions
under various conditions can be determined.
It is difficult to obtain an absolute measure of
MIQ but by comparison to baseline or
existing machines in use, there is some value
in the relative comparison. The results can be
extended to any level of complexity by
considering convex polytopes in a multiple
dimensional space.
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Abstract. A study on learning and decision-making methods was conducted by
comparing an orthogonal methodology of manipulating data versus that of a majority-
voting procedure. The latter method has recently become popular in the literature
involving applications such as pattern recognition. To evaluate the differences between
the proposed methods, data from a multidimensional paradigm involving decision-
making and learning are analyzed. A number of basic concepts from estimation and
information theory are first discussed to understand both the motivation and the

underlining issues involved in conducting this study.
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I. INTRODUCTION

Learning and decision-making are processes
that adapt and are highly multidimensional
[1]. Also when devel oping autonomous
systems, there is considerable interest in
adaptability as an intelligent means of
modifying behavior as new data are acquired.
Much like learning, decision-making to
improve the quality of information has similar
and related issues to designing intelligence in
autonomous systems[1,2,3,4]. In arecent
study [5], it has been demonstrated that it is
possible to build a decision-making scheme
from a “bottoms up” approach starting with a
vector of orthogonal classifiers. Alternatively,
adifferent approach involving classification
and learning procedures occurs in pattern
recognition schemes [6] where ascalar
measure (majority-voting) can be compared to
the hyperplane method as discussed in [5].
This paper will cover the basics of a decision-
making process and how it can be generalized
to learning by extrapolation of the techniques
presented here. Both methods are highly
adaptable, which is of interest in a number of
special applications, and, in particular, for
intelligent control methods involving the
design of autonomy. First it isimportant to
discuss some well-known results from

estimation and information theory which
motivate the orthogonal approach discussed
here.

In estimation theory (e.g. in Kalman
filtering) the concept of orthogonal
projection is well-known. An optimal
estimator is recognized as having its error
vector orthogonal to the direction of the
measurement signal. Another interpretation
of thisresult is that the residuals (difference
between the data and the estimator) should
contain zero information (the residuals are
random) and are not correlated with the state
estimate [7]. Hence one can view learning as
a process of making the residuals white
(containing no information) and the error of a
state vector remaining orthogonal to the
measurement set. Thus learning can proceed,
as new data are received, by updating the
estimator, accordingly, so that the resulting
residuals still contain minimal information.
Thisis aso consistent with information
theory concepts in which the greatest
information is contained in the most unlikely
event and there is little new information in an
expected event [8].

When multiple channels of datatell the
observer their potential classification of a
particular object, the decision can be
predicated on the orthogonal approach or



possibly on the mgjority vote of scalar
classifiers. There are two distinct points of
view:

(1) The first and traditional method (vector) is
that an optimal estimator can be built which
employs an orthogona method described
above. As new data arrive, the estimator is
adapted so that the resulting error vector
remains orthogonal to the measurement set.
This methodology is not necessarily a scalar
process and hyperplanes can describe the
estimator when any number (n) of channels of
data are available.

(2) The second possibility (scalar) isthat a
majority-voting scheme could be employed.
This differs from the method (1) because of n
(initially assumed to be odd) channels of data
could each individually select (binary
decision rule) their choice of a decision on the
classification of an object. The overall

decision is then based on the mgjority of the
decisions. This second method is a scalar
mapping; the first method involves a
hyperplane or vector methodology. It has
been shown mathematically [6] that the
second method can be as effective or better
than the first method in certain situations.

This paper will examine the relevant details
why learning or decision-making may benefit
from a mgjority viewpoint in contrast to an
orthogonal perspective. First the basics of
each of these processes are reviewed.

II. Examples Considered

To better understand the relevant issues, the
basics are reviewed utilizing well-known
results involving information theory, Kalman
Filtering, and orthogonal pattern recognition
procedures. The goa is to compare both
across and within different methodologies to
see similarities and differences on why certain
methods may help adapt in learning and why
a mgority-voting scheme has some merit. The

first example arises from the basc
mathematical  discussion of orthogonal
projection.

2.1 Optimality and Orthogonal Projection
To provide the background to this
approach, it is first instructive to show the
fundamental relationship between optimality
and orthogonal projection. Given alinear
space X with inner product <x, y> defined
for any two elements usi n9 the L, norm:
x|l =< xx>2 (D)
A fundamental theorem is borrowed from the
classical literature in this area [9].
Theorem 1. || x - § || isaminimum for al

y e M (the measurement set) , i.e.

Ix-yll* Ix-yl " yeM (2
if andonly if (x - ¥)isorthogona toadl ye
M, i.e.:

<x-9y,y>=0
Proof:
First assume equation (3) is valid, then for
anyyeM,
Ix-y F=1(x- N+ -NE @
=|Ix- §IP+2<(x- 9), 9- y>+119- I (5)
whereeach (y - ¥) e M. But from equation
(3), the middle term of (5) vanishes yielding:
Ix -y IF=10x - NIF+ICT - Y)IIE ©)
> (x- NI (7)
with equality if andonly if 'y = §. To
complete the proof, (assume (3) is not valid)
andthat § minimizes| x - y | fordl ye
M, hencethere existssomey; e M such that:
<x-yyn>=ato (8
Then: [ x - §- by, |F =
I(x- 9)IF -2ab +b? |y, 9)
Thus it appears that by appropriate choice of
b itispossibleto make the combined tota
of the last two terms of (9) negative, thus
contradicting the minimality of § . Hence
such an element y; of M cannot exist and this
shows the optimality criterion.
Remark:
The relationship between optimality and
orthogonality isimmediately evident. The

orthogonal component y clearly minimizes
the function:

‘yeM ©)



J=min||x—-z]| (20)
over the set of vectors zin M asillustrated in
the proof of thistheorem. Thus if the god is
optimality (in the sense of minimum
distance), then the orthogonal projection
provides a viable solution. Next, this concept
is described in terms of the well-known
Kaman filter and the principle of orthogonal
projection.

2.2 An Example from Estimation Theory
(Kalman Filter):

The well-known Kaman filter was
derived using the concept of orthogonal
projection [7,9,10]. For brevity, only the
basic details are presented here. Let X
denote the estimate of the state vector x asthe
solution of the optimal linear filtering
problem. Theerror is X = x - X. Using the
expectation operator notation, the optimal
estimator at timet;, provided by
measurements z(t) up to timet, satisfiesthe
following two important properties:

@ E{ X (tu]t)} =E{ x(t) }

(b) min E{ || X (taft) |*}& isachieved.
The matrix B is a positive definite matrix.
The orthogonal projection lemma relates to
the above conditions as follows:
Orthogonal Projection Lemma for the
Optimal Linear Estimator

The optimal estimator satisfying conditions
(a,b) above aso satisfies the following
orthogonality condition [7,9,10]:

E{ (X(talt)) (z(t1)) } = O (11)
Remark: The Optimal Linear Estimator can
also be derived from Theorem 2 [10]:
Theorem 2:

A necessary and sufficient condition for the
linear estimator X to be the least squares
(minimum variance) estimate is that

E{ X (taft)} =E{x(t2)} (12)

E{ (X(tat) (z(t)) } =0 (13)
In other words, if the estimator is unbiased
(12) and orthogonal (13) to the measurement
set, thisis sufficient to minimize the least
sguares deviations. Hence orthogonality,
linearity, and being unbiased are sufficient to

guarantee optimality. We represent this
concept in Figure 1 which portrays the error
signal (X (t1]t) ), the measurement vector
Z(t;), and their orthogonal relationship. There
IS an interesting geometric interpretation in
Figure 1 which elucidates the concept
considered in this paper.

Z(t) = Measurement Vector

X
Figure 1 - Orthogonality Relationship between z(t) and

Geometriclnterpretation of Figure 1:

In Figure 1, one can view optimality in
terms of a distance measure. Starting at point
A as acenter, aradius is drawn with length
X (t1]t) as indicated by the arc. It has been
known since the time of early Greece that the
shortest distance from point A to the
measurement vector z(t) (line) occursif the
radius is perpendicular to z(t). Hence from a
geometric perspective, the orthogonal
projection is the minimum distance from a
point to aline and the relationship between
optimality and orthogonality is easily
understood.

The next example is gleaned from
information theory and insight is gained on
how to relate this prior work on estimation
theory to the information theory methods.

2.3 An Example from Information Theory
The approach here will be to synthesize a
very complete model of an information
channel to account for an assortment of
possible losses and gains of information
through a variety of processes [11]. The
definition of the information I(x ; y) given by



an observed event y about a hypothesis x can
be specified in a probability sense as follows:

1(x:y) = log, P2 g (14)
P(x)

Theinput set of x's is defined as the discrete
and finite set X, and the output set of y’s,
correspondingly, is defined as Y. In figure 2,
a flow graph (the information channd is
inside the dashed box) is constructed with the
following variables defined, accordingly:

H(x]y) = Equivocation

= Entropy or Lost Information

S {7 T oupasay
HEo= i+, Information 4~ L o=
Input + | Output

Information E Information

H(y]x) = Noise

= Spurious Information

Figure 2 - The Flow of Information Through A Channel

H(X) = Input information in the set X (the
information content of the set X).

H(y) = Output information in the set Y (the
information content of the set Y).

H(y|xX) = The noise added to the information
channel (spurious information).

H(x|y) = The equivocation (entropy) which is
the information about the input set X that
might have been transmitted but was not.
T(X,y) = The transmitted information.

Some other interpretations of these key
guantities can be stated. For example, H(x) is
the input information provided in the source
and H(y) is the output information received.
The equivocation can be viewed as the
average information still needed to specify an
x exactly after the evidence y has been taken
into account. The term average or expected
value of information is derived from the
fundamental definition of H(2) which is in the
form of an expected value operation on
information specified via

H@ O & p(z) log, —— (it (15)
i p(z)

Figure 2 displays the following equation
representations of these different types of
information measures:

H()- H(x|y) =T(x,y) =H(y)- H(y|%) (16)
From figure 2, for a given information
channel, the input information H(x) and the
spurious information H(y|x) are generadly
fixed and specified. The best the designer can
hope to accomplish is to reduce the
uncertainty (H(x|]y) = entropy or equivocation)
by the choice of some design parameter or
procedure. Two productive results occur if
H(x|y) is reduced:

(& The transmitted information T(X,y) is

increased.

(b) The received or output information

H(y) increases.

Hence reducing entropy or uncertainty, by
any means possible, can only help to improve
the quality of the decision-making or learning.
For an autonomous or intelligent system, this
can surely expand one dimension of
intelligence by the means in which a decision
is made. It will be shown in the sequel that the
orthogonal procedure can also be viewed as
an entropy reduction procedure.

To illustrate how decision-making can be
realized from only an orthogonal approach, an
example from pattern recognition is now
introduced. Two approaches will be utilized
to solve this problem. The first approach will
be the construction of an orthogonal,
hyperplane methodology. The second line of
attack will introduce the procedure termed
“majority-voting”.

2.4 An Example from Pattern Recognition
(Orthogonal Method)

A system is described which provides a
means for improving the quality of
information derived from a decision-making
process by weighing certain multiple and
aternative information channels. The method
is applied to data estimating the cognitive



workload state of a human operator dealing
with a complex task using noninvasive
sources of physiological data as a basis.

In recent years, as the proliferation of data
becomes more and more persuasive, the
challenge increases in designing systems that
can process information in an innovative and
efficient manner. The first system discussed
in this paper has as a goal the improvement of
the quality of information for making a
decision from aternative (and multiple)
sources of data. The potential data sources are
first rank ordered in terms of their efficacy for
making a binary decision. The next step isto
combine two alternative data sourcesin a
productive manner so as to glean out the
highest quality information. By induction, the
process then generalizes to multiple,
alternative, data sources with the end goal of
continuing to improve the decision-making
process through the intelligent use of data. To
illustrate the applicability of the approach,
data relevant to the estimation of the state of
an operator (human controlling an automated
system) through the selection of certain, key,
physiological signals provides a platform to
test the efficacy of such a methodology [12].

As humans dea with highly automated and
complex systems, it is sometimes desired to
obtain estimates of elevated demands of
cognitive workload as manifested by
physiological signals that may be gleaned in a
noninvasive manner. Once an identification of
the operator in a high workload state is
verified, the automation level of the system
may be adjusted to maintain effectiveness of
the mission [2,11]. Figure 3 illustrates the
operator in a human-machine interaction
system with physiological data being
monitored. Figure 4 depicts the basis of the
decision rule (low or high workload state) that
will be investigated in this study with the goal
of improving decision-making by using
multiple channels of datain a productive
sense. In Figure 4, the data displayed may be
from as many as 43 possible physiological

Physiological
Signals

Decision

: Detector Algorithm

———

Figure 3- Physiologica Signalsto Detect Workload

signals, which are obtained in anoninvasive

manner.

High Workload Low Workload

Figure 4 The Basisfor The Decision Rule

2.5 The Statistical Decision Rule
Figure 5 portrays the ROC (relative

operating characteristic) curve for data

representative of figures 4 and 6.

Remaining Measure of Uncertainty

P(hit)

A XN

e

&8

0

P(faseaarm)= b

Figure5 - TheROC Curve

The ROC was originally derived in signd
detection theory, but has found widespread
usein other areas. Theplotin Figure5 has
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Figure 6 — Interbeat Heart Rate Data

as the dependent variable the term 1-a versus
the independent variable b as derived from
Figure 4. This may be viewed as the plot of
the probability of a hit versus the probability
of afase alarm in abinary decision rule
[2,11,13] and can be shown to be the
depiction of the two cumulative distribution
functions of the densities of Figure 4. Inan
ideal decision-making process, the ROC
curves moves upward to the left most
diagonal (a measure of uncertainty, cf. Figure
5). Performance measures of such systems
may be the minimum diagonal distance
proximal to the upper left diagona or the area
under the ROC curve. An application to test
the algorithm presented here is next
described.

2.6 Testing the State of the Human

Operator

From [12] there exist 43 possible data
channels including physiological variables
such as interbreath, interheart beat, and
various electrode signals obtained as an
operator performs a difficult task. Figure 6
illustrates the interbeat data for the two-
workload conditions (high and low) and
Figure 7 is the resulting cumulative
distribution functions. Figure 8 is the
corresponding ROC curve. Since the ROC
curve is above the diagona (random guess),
this data variable is useful for predicting the
state of the operator. The challenging
problem discussed here is how to use two or

o9F  HighWorkload

~

' Figure ; —CDFs forlloii gure 6 Dat;5 -
more alternative data channels to improve
upon the decision-making capability. After
this procedure is illustrated for two channels,
by induction, the process then generalizesto n
channels.

1

0.9}

0.8}

0.7}

0.6 |

Figure 8 — Resulting ROC Curve for Figure 6 Data

2.7 The Orthogonal Algorithm

The algorithm to develop the decision rule
has two steps:
Step 1: Rank order all data variables using the
ROC curve.
Step 2: Select two or more data variables that
yield a productive ROC curve, and then
develop cross plots of the distributions. The
decision rule is the hyperplane that separates
the two distributions in an appropriate
manner. Appropriate is based on an
orthogonal projection between the centroids
of the candidate distributions [14].

2.8 Implementation
Step 1 was implemented by plotting 43
ROC curves for al the data variables of



interest. The efficacy (objective metric) was
the minimum distance along the diagonal
from the upper left corner to the ROC curve
(cf. Figure 5). Thus all 43 data channels could
be rank ordered, according to their ability to
improve on the binary decision rule.

Step 2 was implemented by developing cross
plots of two candidate distributions. The
centroids were then calculated for each
distribution. A line was drawn between the
centroids. A perpendicular line was then
constructed to separate the two distributions
at apoint determined by aratio involving the
distance of the respective ROC curves from
their upper left corner on the diagonal in
Figure 5. This decision rule then generalizes
to a hyperplane as more variables are
included. The overal decision rule (cf.
Figures 9 and 10, for example) is that the

Figure 9 — Separating The Workload Data

Figure 10 — Construction of A Decision Hyperplane

selection is made of the high workload
condition if the points fall below the
hyperplane. Above the hyperplane is
considered the low workload condition. The
results then generalize to multiple channels of
data and the decision ruleis a vector based on
ROC curves and hyperplane surfaces as
shown in Figure 10 for any number of data
channels. Also this method can be viewed as a
means of reducing entropy by expanding the
dimension set. In multiple dimensions, the
entropy (lost information) is constantly
reduced when the hyperplane includes more
discriminate pointsin an n dimensional space.

2.9 An Example from Pattern Recognition
(Majority-Voting Procedure)

It has been shown mathematically [6] that a
highly simple (scalar) algorithm can perform
as well or better than an orthogonal scheme
just described. Figure 11 displays a bank of
classifiers (n is assumed to be an odd
number). Each classifier makes an individual

——-! Classifier 1|—— Dedsiondl ——

Datq‘ ——-| Classifier 2|~ Decisond2——/

Scdlar

Decision
s
~
1
|

\/\r/

~.

——— Classifier nf——+ Decisondh ——-

Figure 11 — Mgjority-Voting — A Scalar DecisonMaking Process

decison on the binary decison rule. The
overall decision is simply the mgjority vote of
these n classfiers. The advantages and
disadvantages of this procedure are briefly
described:



2.10 Advantages of the Majority-Voting
Procedure
Obvioudly, simplicity and the scalar nature
of the process described in figure 11 is
attractive, since computationally this process
is much easier. Simplicity usually includes the
attributes of reliability and robustness.

2.11 Disadvantages of the M ajority-Voting
Procedure

The disadvantage of the configuration
in figure 11 occurs if the number of classifiers
is smal or does not fully represent the
probability space concerning the important
variables required in making a decision. If
the number of classfierls n ® ¥, then it is
obvious that the appropriate variables will be
considered. This is analogous to the problem
of “persistence excitation” in adaptive control
theory. If, however, the system does not
fully exploit the entire information set, then
erroneous results may occur. Hence incorrect
outcomes will occur if n is sufficiently small
or does not include relevant information for
making a key decision. We study the results
with the application discussed previously.

[11. Application to Experimental Data

Using data from [12] workload estimation
of the human operator, the orthogonal method
will be compared to a majority-voting
scheme.

3.1 Comparison of the Orthogonal

Approach to Majority-Voting

The comparison between these two sets of
classifiers was conducted by studying three
classifiers with a different data set as input to
each classifier. This system was tested in an
orthogona sense as well as with the mgjority-
voting scheme. The three  selected
physiological data sets from the 43 possible
included: (1) interbeat (heart rate data), (2)
electrode zero- dpha (the apha brain wave
from an electrode denoted as zero), and (3)
electrode one- delta (the delta brain wave

from the electrode denoted as number 1). Itis
noted that there were three nonelectrode data
channels (interbest, interbreath, and eyeblink)
and 8 electrodes with 5 channels each of
brain-wave data recorded. This gave atota of
43 channels of data possible to detect whether
the operator was in a state of high or low
workload. As these data were collected, the
operator performed tasks, which were known
to elicit a state of high or low workload by the
task’'s relative complexity and subjective
comments collected.

The ROC curves of figure 5 were
determined for all three data sets. The
variable s will be used to measure the
distance from the diagonal to the upper left
hand corner of the ROC curve adong the
vertica axis. Note 0.5 > s > 0 because a
random guess line is described by the
diagonal that goes from the (0,0) point to the
(1, 1) in figure 5 and the efficacy of the
estimator is the proximity of the ROC curve
intersecting the diagonal going from (0,1) to
(1,0). Four tests were performed. The
classifiers were rank ordered by their s vaues
(the smaller s is a better estimator). The
orthogonal method and the majority voting
method were both utilized to classify 210
points (106 in the high workload case and 104
in the low workload case). Table 1 shows the
efficacy of the classifiers, done. It lists the
data utilized and the s vaue for each
classifier.

Tablel—Efficacy of A Classifier Acting Alone

Classifier Data Variable|s from the

Number Utilized ROC Curve

Classifier-1 | Interbeat 0.15
(heartrate) data

Classifier -2 | Electrode  1- 0.27
delta wave

Classifier -3 | Electrode—0 — 0.32
alphawave




Thus as the classifier number increases, its
ability to perform accurate decision-making
degrades accordingly. The performance of
these classifiers is now evaluated in both an
orthogonal sense as well as in a mgority-
voting scheme. In Table 2, the errors e;
represent the data points that were high
workload but were wrongly classified as low
workload. The errors e represent the data
points that were low workload but were
wrongly classified as high workload. The
errors e were the errors the maority voting
scheme wrongly classified in either case. The
overal performance results are displayed in
Table 2. For two classifiers, the majority-
voting scheme was considered inaccurate if
both classifiers did not reach the same
conclusion.

Table 2 — Performance of The
Orthogona Method versus Mgjority-Voting

Tests and e & erors | s erors
Classifiers errors

Test1: C1+C3 | 12 24 30
Test2:C1+C2 | 14 21 28
Test3:C2+C3 [ 8 0 8

Test 4: 4 0 6
C1+C2+C3

V. Discussion of Results

From Table 2, some interesting results
appear. When two classifiers are considered,
the magjority-voting scheme performs as well
or better than the orthogonal method. As we
go to higher dimensions, however, (Test 4),
the combined effect of e and & errors is less
for the orthogona method as compared to the
majority scheme. Also the Test 3 results are
interesting because this is a poor estimator,
yet the orthogonal projection scheme seems to
include the relevant aspects of the decision-
making space. The benefits of increasing the
dimension of the orthogonal classifier seem to
outweigh the benefits derived from the

majority-voting scheme. As n gets larger, it
appears this effect is more pronounced.
Studies on ongoing to further investigate the
dimensionality effect both within and across
these candidate classifiers.
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A TOP DOWN THEORY OF LOGICAL MODELING
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INTRODUCTION

Scientists, logicians, mathematicians, and
linguists are among those who employ
models. Yet, there are various views of
models. For example, Quine has defined
models as "a sequence of sets”"' and van
Fraassen sees them as "specific structures, in
which all relevant parameters have specific
values."> Harré argues that they can be either
theoretical, as in a "set of sentences which
can be matched with sentences in which the
theory is expressed" or iconic, "some real or
imagined thing, or process, which behaves
similarly to some other thing or process, or in
some other way than in its behaviour is
similar to it The variation in these
definitions reflects the many uses of models.
The common ground between these
definitions is that a model is an analogy, or a
"relationship between two entities, processes,
or what you will, which allows inferences to
be made about one of the ‘[hings...”4

Traditional models share a mapping function

in which the model and the system it
compares stand in an analogical relationship,
inviting horizontal comparisons and analysis.
Models have been important in the
development of logic, especially modal
logics.” In science, they are "the 'very basis

of scientific 'chinking."6

Yet, the dangers of such "bottom up"
analogical approaches are well known and
lurking in the background of any serious
discussion about the appropriate use of
modeling. The analogy of the system under
examination is always an artificial construct.
Various competitors rival the model, with
success based on the best analogy. Hence,
analogy becomes the primary task, and
problem. A model is developed through a
theory-laden  process  that  involves
assumptions about initial conditions and
applicable laws. It is hard to separate out
those positive areas of the model that are

similar to the system under analysis from the




negative areas that do not correspond to the
system. Comparing the properties of the two
systems is not enough. Analogical reasoning
does not occur in a vacuum. Also, trivial and
non-trivial modeling invites difficulties
because structural isomorphism is not enough
to account for similarity. There many be an
endless number of systems that exhibit
similarity.  Then, of major concern, the

appearance of possible counterfactuals may

doom the modeling enterprise.7

But modeling is vital, often indispensable.

Modeling can help provide knowledge not
directly accessible in the real world. For
instance, some models may provide a
powerful even superior, substitute for reality.
Theordoric of Freibourg's famous use of
glass globes to simulate the role of raindrops
in the formation of a rainbow show that
models may provide the only possible means
of studying an otherwise unresearchable

process.®
TYPE THEORY MODELING
In this short paper I will argue for a top down

theory of modeling, as presented by Aronson,

Harré, and Way. In this view, "theories are

not thought of in terms of the hypothetico-
deductive structure. Instead...theories are
thought of as essentially involving chunks of
type-hierarchies..."9 If this is so, then theory-
laden models already have types imbedded
within the theoretic framework. Often, the
type provides the direction, cohesion, and
focus of the theoretical construct. So the

types are already there within the theory.
They simply have to be identified and used.

In the traditional comparison theory of
bottom up modeling, a potential model is
examined against the actual world, whether
the real world 1is viewed logically,
linguistically, or scientifically. The model
functions to emulate or duplicate aspects of
the real world, if not completely picture it.

Because the bottom up model is not the actual
world, but merely a representation, it may be
locked into a deductive structure that is less
elastic than the real world. This allows for
avoidable difficulties in discussing possible
worlds. The bottom up model also may
generate counterfactuals that are known not to

be true in the real world.

However, for Aronson, Harré, and Way,

theories are descriptions of families of models



that are metaphysical devices for expressing
the ontology of our world. Our
understanding of the real world is theory-
laden, and therefore bottom up modeling
invites comparisons which are problematic
from the beginning, inherently damaged by a
search for similarity that may tell us little
about the actual world. Rather, they argue
that the theoretic nature of our ontology must
be recognized and accepted. If so, then we
must look at what theories share in common.
Often, a model and the system it attempts to
emulate are sub-types of a larger type. The
larger type is a concept that is the genesis of
many ways of looking at the world. This
larger type can function as a source from

which hierarchies may be generated.

On this top down view, type theory becomes
crucial for modeling. Type identification and
analysis are prior to any comparison of
models. By correctly identifying the larger
type or class for examination, models are
generated from the type itself. For example,
if one wanted to ask if the solar system is
"like an atom," one must recognize that the
type under discussion is a notion of a
complex system. Therefore, if a solar
system is a complex system and an atom is a
complex system, then the question is
answered, not by comparison of the two, but
through an inherited relationship that is
found in any complex system. The following

diagram illustrates the inheritance of

relationships from the type at the top”

LIVING SYSTEM
LIVING SYSTEM CENTRAL FORCE FIELD ECO-SYSTEM
GRAVITATIONAL FIELD COULOMB FIELD
SOLAR SYSTEM ATOM




The structure of the hierarchy generates the
similarity, which is the answer to the question
about the atom and the solar system. Given
the view that both are complex systems, then
the solar system is like an atom. The
inheritance of the relationship is the vital
factor in answering the question. The top
down theory presents a modeling system and
a system being modeled as "the lowest
subtypes in a hierarchy."11 The explaining
theory incorporates them both.

Of course, the weakness of this top
down view is the difficulty in identifying the
proper type for discussion. The focus of
modeling would shift to this issue. But the
type-hierarchy model is a recognition of
advances in the generation of appropriate
paradigms for scientific research and a
sophisticated use of modal logic.12 The use
of a type-hierarchy model can help to filter
positive from negative analogies in a non-
arbitrary manner. Similarity is a derived
relationship. Counterfactuals based on
analogy are side-stepped, thereby becoming
benign. Analysis is primarily a function of

. . 13
classification.

CROSS-DISCIPLINARY DISCOURSE

The top down theory was extensively

analyzed in two conferences on cross-
disciplinary discourse in 2001 and 2002.

Sponsored by the Physical Science
Laboratory at New Mexico State University,
these conferences brought together scholars
from a variety of disciplines, from literature,
history of science, mathematics, biology,
philosophy, robotics, computer sciences,
psychology, logic, and linguistics. = Each
speaker discussed current issues and uses of
methodology within a discipline, and then
attempted to visualize cross-disciplinary
applications of other methodologies. For
example, Stuart Kauffman from Bios Group
discussed the application of complex systems
in biology and logical consistency. Dan
Rothbart from George Mason University
examined various uses of scientific
instrumentation in the development of new
methodologies. Michael Apter of
Goergetown University presented his findings
in reversal theory as relevant to both
psychology and decision theory. Luis Arata
of Quinnipiac University outlined a cross-
disciplinary approach between literature and
philosophy. A total of 44 papers were
presented at these two conferences. A third
conference will be held in January, 2003. A

new journal, the Journal of Models and



Modeling, will showcase papers from these
conferences.

Based on discussions at these
conferences, there seem to be many ways to
visualize cross-disciplinary modeling. One
possible way to construct cross-disciplinary
models is on the second-order level. This is
where a top down theory could be most
helpful. Consider the case of someone trying
to forge a common model from sociology and
physics. The search for similarity is the basis
of most modeling. A category could be
selected as the starting point of a top down
approach, allowing for the construction of a
type hierarchy. Second order levels and
higher levels are accommodated by such an
approach, as the hierarchy simply expands
downward. On the meta-level, a top down

theory demands attention to such concepts as

"category", "type", ‘"similarity", and
"inheritance". = The philosophical debate
about these concepts will actually add to the
discussion, showing new ways to find
commonality or to pass down inheritance.
Logic and mathematics emerge as even
stronger candidates for the structure and

language of models.

CONCLUSIONS

1. In a top down view of modeling
horizontal analogical comparisons are
eliminated.

2. Commonalities between type-hierarchies
are inherited relationships.

3. The relevant focus for discussion of
models becomes the shared or unshared
type that generates or fails to generate two

or more models.
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Performance Evaluation of Network Centric
Warfare Oriented Intelligent Systems

Edward Dawidowicz, Member, IEEE

Abstract

The concepts of Network Centric Warfare [Alberts et. al 1999]
and its sibling Knowledge' Centric Warfare are critical elements
in achieving so-called Information Superiority. Both of these
concepts are not limited to military applications only, but are also
suitable in the areas of business or daily life. For the latter
however, we should remove the term “warfare" to suggest more
appealing applications. The Knowledge Centric aspect is critical
in achieving effective Information Superiority "To transfer
knowledge, the receiver's context and experience must be taken
into account. The intended resuit is information is transferred in
context instead of with no context.[Harris, D.B. 1996]

The main question remains not only what Network Centric (NC)
and Knowledge Centric (KC) are but also how these concepts can
effectively be used to pragmatically achieve Information
Superiority. The purpose of this paper is to discuss the NC and KC
aspects including network configuration, functions of different
nodes of the network, the intelligence required to facilitate KC by
providing contextual information dissemination. The discussion
of the key infrastructure elements will provide the foundation for
exploring the performance evaluation of NCW oriented intelligent
systems.

The warfighter desires the ‘right’ information at the ‘right’ time.
Such information can be defined as contextual. The solution for
contextual information dissemination requires intelligent
information processing within the nodes of the communication
network. The architecture required to support such intelligent
nodes is described in this paper.

Edward Dawidowicz U.S. Army Communications-
Electronic Command (CECOM), Research,
Development and Engineering Center (RDEC) Fort
Monmouth, NJ Tel (732) 427 - 4122,

edward.dawidowicz@maill.monmouth.army.mil

! Knowledge 1 obsolete: COGNIZANCE 2 a (1) : the fact or condition of
knowing something with familiarity gained through experience or
association (2) : acquaintance with or understanding of a science, art, or
technique b (1) : the fact or condition of being aware of something (2) : the
range of one's information or understanding <answered to the best of my
knowledge> ¢ : the circumstance or condition of apprehending truth or fact
through reasoning : COGNITION d : the fact or condition of having
information or of being learned <a man of unusual knowledge>. From

I. INTRODUCTION

The definition of the problem space must be declared
before evolving a solution to a particular problem within
the scope of Knowledge Centric Warfare. For the purpose
of this discussion the problem space can be decomposed
into four main components:
1. The battlespace — the topology of the physical
space where the action is taking place, the physical
laws, the involved equipment and the entities'

physical attributes
2. The doctrine, rules of engagement, and policies,
3. The communication networks — where

information to support coordination of effort and
execution of moves is transported,

4. And finally, contextual information packaging
and dissemination.

A. The World,
Decomposition

Battlespace, and  Battlespace

The battlespace is a model consisting of the geography of
the region, the position and capability of friendly, neutral
and opposing units or entities. The entities are expressed as
sets of physical and cognizant properties including models
of maneuver, tactics, and combat capability. Based on
physical and cognizant properties and commander's goals,
these entities may assume either combat or combat support
postures.  These entities are the players within the
battlespace. The battlespace problem is a collection of
issues, which the players must overcome to achieve mission
successes or to win a war.

The battlespace is partitioned into domains. The domains
are decomposed to reflect functional responsibility of a
particular entity. The entities responsible for these domains
are dispersed throughout the battlespace and have a need to
communicate and collaborate. The battlefield problem
space is complex and subject to constant change due to
various factors such as weather, new threats, new tasks, and
unavailability of planned resources. These entities need an
information environment, which facilitates a capability for
dynamic configuration/reconfiguration in order to meet
their need to rapidly form different mission—specific teams,
to be aware of their changing environment, and to have
contextually pertinent information temporally reflecting the
fluidity of the battlespace.



B.  Network Centric and Knowledge Centric

Metcalfe's Law” suggests the power of information
dissemination contained within a fully connected network,
however it says nothing about the quality and contextual
relevance of the information such network can provide.
This power manifests itself in the large amount of
potentially available information accessible at the nodes of
a network. The question we must ask ourselves is what is
more desirable, a large volume of information, what ever it
might be, or a short but contextually relevant extraction
from that large volume.

Large volumes of redundant or irrelevant information will
overburden the communication channel rendering the NC
aspect less effective or useless. Prioritizing and
disseminating information based on the need to know and
as recipient's task critical requirement can further save the
communication bandwidth. Determining information
pertinence and packaging the information within a specific
level of granularity, required by the recipients, becomes
therefore paramount in implementing the paradigm.

To analyze the NCW and KCW approaches we have to
consider current and evolving topological architectures of
tactical networks. However, the topology of the network is
a "parcel delivery infrastructure" and while it erroneously
seems to have no bearing on the actual context it is
important for multilevel modeling. The success of KCW
specifically depends on the contextual information
dissemination. To achieve contextual information
dissemination requires intelligent information processing at
every node of the network, except routers or similar
functioning devices, where information is received and
sent.

C. Communication Network of the Battlespace

Shown below in Figure 1 are representations of possible
network configurations. Fig.(b) is best suited to depict a
typical military network, which represents for example,
communication between ground force companies,
battalions, or navy ships at sea. The hubs of the network,
shaded gray in Figure 1 b, may also represent unit clusters
consisting purely of sensors, robots, and people or a
heterogeneous composition. For example, an M1A1 tank
can be viewed as a hybrid of sensors, weapons, and people
and can also represent one node in an armor company
network.

? Metcalfe's Law, which states that the usefulness, or utility, of a
network equals the square of the number of users. Named after
Robert Metcalfe, the founder of 3Com Corporation and designer
the Ethernet protocol.

The NC paradigm suggests the topology of Figure 1 (c),

however such topology is very difficult to achieve for

several reasons;

¢  Unavailability of required electromagnetic bandwidth,

e Line of sight limitations

o Doctrinal, echelon dependent communication
requirements.

The topology of a network for brigade and below is shown

in Figure 2. Additional battalions were omitted for

simplicity.

(@) ®) (©

Figure 1. Network configurations
(a) Simple star, (b) Cluster of stars,
(¢) Fully connected

The topology of Figure 2 lacks connectivity between
battalions and companies of adjacent brigades. The
elements of battalions are highly mobile and frequently
come within weapons range of each other and must be
aware of each other presence to avoid fratricide. The
problem is further exacerbated when these elements also
belong to different brigades. The situation awareness
information, of units belonging to this brigade, must travel
up to the level of the first brigade, must later be transmitted
to the second brigade, and finally must be disseminated to
the lower echelons. Whether the network topology remains
the same or changes, the need for intelligent processing at
the nodes is critical to contextually evaluate the
information about who done what and who needs to
know about that first.

D. Knowledge Centric Network

Understanding the information requirements for individual
recipients is essential to achieve effective contextual
information dissemination within the KC network. It is
outside the scope of this paper to explore all the
requirements for all potential individual recipients on the
battlefield, however a general architecture must be defined.
In order to be effective, the architecture must answer the
following questions:

1. What is the echelon of the recipient

2. What duties does the recipient have at a specific
instance of time

3.  What is the state of battlefield variables

4. What information must be sent first
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Figure 2. Communications network for brigade and below

S. What is the level of granularity of the information
required

6. 'When must the information be sent

7. 'What does the recipient already knows

The major elements of the KC architecture are based on
knowledge about the area of responsibility or the duties and
tasks assigned and the echelon level of the individual. Such
profiling is doctrinally driven and available in field
manuals. The content of the information set is modeled on
those attributes. The required information profile is not a
template, or a table to be filled out to meet the information
requirements, but is a mapping function, which transforms
raw information and data into the information requirements
for individual recipients (Figure 3).

Recipient’s profile requires Information could be

dynamic representation contextual

Information must be contextual

—— A} ~
Knowledge Representation must
TO RECIPIENT be dynamic

Figure 3. Simple Information Processing based on
Knowledge Representation

The information profile contains attributes to answer
questions such as what echelon is the recipient, what
duties does the recipient have at that instance in time,
where is the recipient, what information must be sent,
and what is the level of granularity. To answer the
question what is the state of battlefield variables requires
an updated world model, a multilevel knowledge

representation of the environment. The multilevel
knowledge representation of the environment will provide
the required inference to answer the question of when to
send the information. The question what does the
recipient already know can be answered by maintaining a
repository of previous transactions local to the information
source.

II. INTELLIGENT NODE ARCHITECTURE

Intelligent agent architecture, defined in earlier work
[Dawidowicz E, 1999], is also applicable to the intelligent
node architecture, but requires modification and
improvement to qualify as an intelligent node described
here. The improvement is required specifically in the area
of adaptation of the intelligent node to the changing
battlespace environment. A likely candidate for such
improvement is the application of an intelligent controller
as described in semiotic modeling [Meystel A, 1995]. This
model is applicable to both individual intelligent nodes As
well as to a cluster or clusters of collaborating intelligent
nodes. The analogy to intelligent automatic control is
evident and emphasized.

The think-before-act or the actuation simulation loop is the
foundation of the proposed architecture and is shown in
Figure 4. The Elementary Loop of Functioning is a goal
driven process. Before selecting a possible response for a
specific goal it generates, using the World Model, several
potential actions (this is not a complete sentence). The
best- actions are selected and used to stimulate the
simulated world (or environment). The simulated sensory
response is collected, processed and fed back into the world
model. This constitutes the contemplation of think-before-
leap process and is analogous to imagination.

A. Knowledge Representation Repository
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Figure 4. The Elementary Loop of Functioning (ELF)

(Actuators or Executors)

The Knowledge Representation Repository (KRR) in

general, is a description of the world. The KRR contains

the model of the anticipated and learned environment or the
battlespace. Specifically KRR? is a set consisting of, but not
limited to models of:

a) Representations of terrain, in the sphere of interest,
with elevation data and features,

b) Physical geographical data of the terrain such as soil
properties, water levels, variations due to tide or
precipitation,

c) Physical objects that are known to appear in that
environment,

d) Object properties,

e) Objects which were detected in the environment,

f) Geo-spatial location of the physical objects,

g) Associative relationships between objects,

h) Rules and procedures associated with certain
conditions of relevant battlespace,

i) Specific activities the objects which are in the modeled
environment,

j)  Meteorological data,

k) Profiles and information requirements of the users,

1) Ontology for textual discourse

The KRR is both, a process and a repository of information
subject to a phenomenon called reflection [Meystel A.
1995, p68]. The KRR will contain knowledge extracted
from doctrine, pollicies, operational requirements, mission
plans, maps, map features, equipment capability, and
situational awareness.

The KRR is updated by exchange of information between
KRRs on the network. The rules of information exchange
depend on the geographic proximity between the nodes and
their functional interdependence. The rules within the KRR
are also updated using the Elementary Loop of Functioning
process discussed later and in [Meystel A. 1995, p67].

To be valuable within the KCW paradigm the KRR must
contain the representations of the information interchange

* The modeling properties reflect a specific KRR level of
representation and hence employ a particular resolution or
granularity appropriate to such level.

on at least three different levels; on its own level, on an
equivalent level of functionally equal or functionally
different, and on one level above and one level below.
These levels are synonymous with echelons, while the
functionality is derived from the service these echelons are
expected to perform and are critical in heterogeneous
KCw. For example this diversity in functional
representation will be instrumental in determining the
context of the message interchange, in close air support
mission, between the Army and Marine warfighters on the
ground and the Navy and Air Force pilots who provide the
air support to them.

B. Decision Making

The Decision-making process (DM) is initiated by a goal,
either given by a decision-maker from a level above or in
response to critical changes detected within the KRR. The
detected changes within the KR become critical when the
DM can detect or anticipate possible deviations from the
plan. The goal of the DM is to provide tasking to the
external actuators to correct the deviation from the plan
under execution.

The DM within the intelligent node compares a current
situational picture to the picture anticipated based on a plan
in execution. The DM also prioritizes, required to be
performed tasks, based on a particular situation, or a
particular set of states. The rules of KRR are used to
determine the priority of a particular task. The
prioritization can be illustrated in a scenario when a
particular intelligent node is involved in a CAS mission and
the planes are a few minutes from delivering their
munitions on the enemy positions. The first priority of that
particular node is to prevent a potential fratricide situation,
by providing the pilots with the latest positions of the
friendly forces in the proximity of the anticipated kill zone.
The second priority is to notify the pilots of where the
enemy is. However, when an enemy antiaircraft threat is
detected, an intelligent node must make the threat
notification to the pilots first and then provide CAS critical
information.

C. Elementary Loop of Functioning

The DM is more complex than a typical follow-the-rules
process. It can ‘reason’ by invoking the Elementary Loop
of Functioning (ELF) [Messina E, Meystel A. 2000] Figure
5*. By using the information in KRR it forms a hypothesis
as to what needs to be done. To test the hypothesis a

* Please note that Figure 5 is significantly different from
Figure4. The significant different is in another ELF which
runs from DM and another ELF within KRR. This
architecture allows the intelligent nodes to "correct" its
models on different levels of resolution based on
knowledge representation shared and received.



command or a set of commands is sent to the Actuator
block. The Actuator block is a set of simulated actuators or
a set of processes expected to simulate task actuation.

contemplation cycle. Usually one level above and one level
below are sufficient, but rarely may require several levels
down. The execution of different levels of ELFs, within
each individual block, is dictated by a requirement for
higher or lower granularity models. The DM, KRR, and SE

Figure S. Elementary Loop of Functioning with multi-resolution ELFs

D. Simulated Environment

The simulated environment (SE) is a subset of KRR. Only
the elements of KRR, pertinent to the immediate domain
within which the simulation is to occur, are incorporated in
the simulated environment. The simulated actuators are
activated within the SE. The Sensors Suite (SS) detects the
resulting changes, from actuation, within the environment
caused by the simulators.

E. Sensory Processing

Sensory Processing (SP) processes the changes in the SE,
detected by the SS. The SP block fuses and correlates
information as it would to in the real environment. The
processed sensory information is sent to the KRR.

F. Completing Contemplation Loop

The results of the simulation are compared to expected
values. When the simulated results are acceptable the DM
will perform a required action by sending an appropriate
message to the outside world, or to another node on the
network. Please note that during all processes within the
large ELF, smaller ELF process run within the larger loop
elements. The number of nested loops depends on the
required level of granularity or resolution for a particular

blocks specifically require multi-resolution modeling.

III. INTELLIGENT NODE AS AN INTELLIGENT
CONTROLLER

The intelligent node is an intelligent controller, which
continually adapts itself to the environment. If allowed, it
initiates situational awareness information exchange
between other intelligent nodes based on established
relations. The relations are determined by homogeneous or
heterogeneous combat cells, which are formed into
task/mission teams. Such teams can also be called habitats.
The habitats are not bound to a single geography, they may
be globally distributed, and can consisting of humans,
intelligent agents and robots.

The purpose of the intelligent node, in the KCW intent, is to
contextually process and disseminate information. To
achieve the KC aspect, the intelligent node should have the
knowledge representation of the receiving node. This does
not mean that that it must contain all of the KRR of the
receiving node, but the knowledge representation must be
sufficient to formulate a contextual message.  The
contextual message must be formulated, prioritized and
timely sent to the receiver containing only the information
required.

The formulation of messages and informational content is
based on the need to know and the security level of the



receiver. Both the need to know and the security levels are
based on doctrine, policies and plans.

The ELF modeling of the intelligent node is not limited to
KC information exchange. Such modeling is an invaluable
tool for mission planning, mission execution, and
replanning. The intelligent nodes also serve as a useful asset
in filling the Critical Commander’s Information
Requirements (CCIR) and  Priority Intelligence
Requirements (PIR).

A. Intelligent Node in Two Echelons

The ELF model supports the information flow pattern of a
military organization. Figure 6 represents instances of a

World Model Exchange
for Vertical
Synchronization

Sensory
Reporting
World Model Exchange

for Horizontal
Synchronization

consideration of both individual components and a system
of such components.

The performance evaluation of individual intelligent nodes
must reflect the echelon levels they are modeled to
represent. Since events evolve faster at the lower echelons,
the intelligent nodes must evaluate information
proportionately faster. This is reasonable since lower
echelons are near term planners and are concerned with the
more immediate future. In general, the granularity of
information is finer at the lower levels, but requires shorter
term planning. The criteria for performance evaluation
therefore cannot be applied equally to a node, but must
reflect the echelon and functional purpose such an
intelligent node serves in the KC network.

4&—Orders/Plans from
Higher echelon

Orders/Plans to
‘/ fower echelons

Orders/Plans to lower
echelons

= Signal processing EEEEEE Actuators
[——— Sensors
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Figure 6. Information exchange between command and three subordinate units

battalion and three subordinate companies or brigade and
three subordinate battalions and depicts the purpose of the
individual components.

IV. PERFORMANCE EVALUATION

Before discussing performance evaluation, Measures of
Effectiveness (MOE) and Measures of Performance (MOP)
must be point out. The MOE and MOP are important
abstractions used for system evaluation [Noel Sproles,
2001]. The MOE provides the formulation of purpose or
need, while the MOP refers to the performance of a
particular entity developed to fill that need. The system of
Intelligent Nodes responds to the MOE: 'Ability to provide
task pertinent and concise information to the user'. The
definition of MOP is more complex and requires

The Intelligent Nodes are but elements in a system where
the value of the system is greater then the sum of its parts.
The evaluation criteria are therefore not scalable from
individual components to the system. The architectural
framework together with the performance requirements
provides the basis for evaluation. Below are listed some
architectu