Probing optical and electronic properties of individual defects through scanning transmission electron microscopy and firstprinciples theory

Stephen J. Pennycook

Departments of Materials Science and Engineering,

National University of Singapore

and

University of Tennessee

Advances in aberration correction

Pt on γ -Al₂O₃

 $\begin{array}{c}
 001 \\
 1-10 \\
 1 nm
 \end{array}$

A. Y. Borisevich 2004

P.D. Nellist 1996 Uncorrected

1 nm

3rd order corrected

VG Microscopes HB603U 300 kV

Pt on graphene

Wu Zhou 2012 5th order corrected

Nion UltraSTEM 60 kV

Stacking Sequence at Interfaces by STEM/EELS

S. J. Pennycook and M. Varela, J Electron Microsc, 60, S213–S223 (2011).

Outline

- Point defects in graphene
 - Configuration
 - Bonding, electronic structure
 - Dynamics
- Optical properties
 - "Plasmons" in graphene
 - Atomic resolution valence EELS: optical properties defect by defect!
- Future directions
 - meV resolution EELS
 - 3D atomic resolution

Graphene team

Wu Zhou

Juan-Carlos Idrobo

Myron Kapetanakis

Jaekwang Lee

Single atom microscopy: Bonding, Dynamics and Optical Properties

Sok Pantelides

Tracking point defect dynamics

Zhou et al. Microsc. Microanal. (2012)

Direct identification of species from image intensity

Zhou et al. Microsc. Microanal. (2012)

Atom by atom spectroscopy

Revealing the nature of chemical bonding

How do the Si atoms bond in the graphene lattice?

Reference spectra for the Si L-edge

Bonding of single Si atoms in the graphene lattice

SP

Some 3*d* states in Si-C₄ structure are missing!

3D structure from DFT calculations

0.54 Å out-of-plane for Si-C₃ \implies sp³-like hybridization for Si-C₃ 0.63 Å out-of-plane for SiC bulk

Myron Kapetanakis

Participation of d_{xy} states in chemical bonding of Si-C₄

Si $3d_{xy}$ states participate in the chemical bonding of Si-C₄ sp²d hybridization for planar 4-fold coordination

W. Zhou, M. D. Kapetanakis, M. P. Prange, S. T. Pantelides, S. J. Pennycook, and J.-C. Idrobo *Phys Rev Lett*, 109, 206803 (2012).

Si₆ magic cluster

UltraSTEM at 60 kV

W. Zhou, J-C Idrobo: Si on graphene

Reversible dynamics at the atomic scale

Atomic scale molecular dynamics

Optical properties from EELS

Energy loss:
$$\chi(E) = \operatorname{Im}\left(\frac{1}{\varepsilon(E)}\right)$$

$$\chi(E) \to \varepsilon(E) \to \varepsilon_1(E), \varepsilon_2(E)$$

$$\uparrow$$
Optical absorption

STEM-EELS: Optical absorption with atomic resolution

Delocalization is a problem?

Typical "plasmon" peaks of monolayer graphene

How do point defects affect the plasmon response?

Atomically localized plasmon enhancement FWHM for enhanced plasmon: 0.43±0.05 nm (< λ /200)

W. Zhou, J. Lee, J. Nanda, S.T. Pantelides, S.J. Pennycook and J.C. Idrobo Nature Nanotechnology 7, 161 (2012).

Atomically localized plasmon resonance

High frequency (10¹⁵ Hz) signals could be transmitted along atomically confined paths by assembling single atoms on graphene

*W. Zhou et al., Nat. Nanotech. 7, 161 (2012)

1-D edge plasmon on graphene with 6Å localization

Localization depends both on the energy loss and the specific electron excitation mode contributing to the energy loss

W. Zhou et al. Ultramicroscopy (2012)

Surprisingly localized

R. F. Egerton, Rep. Prog. Phys. 72, 6502 (2009).

STEM-VEELS SPECTRA AND MAPS -- GRAPHENE

NOT preservation of elastic contrast

HAADF

HAADF at optimum focus

Definition of Plasmons

David Pines & David Bohm, Physical Review 85, 338 (1952)

$$\operatorname{Im}\left(-\frac{1}{\epsilon(\omega)}\right) \quad \epsilon(\omega) \longrightarrow \mathbf{0}$$

 $\frac{\epsilon_2(\omega)}{\epsilon_1(\omega)^2 + \epsilon_2(\omega)^2}$

 $\epsilon_2(\omega) \approx 0$

 $\epsilon_1(\omega) = 0$

J-C Idrobo

Plasmons in graphite

F. J. Nelson, J.-C. Idrobo, J. D. Fite, Z. L. Mišković, S. J. Pennycook, S. T. Pantelides, J. U. Lee, and A. C. Diebold, "Electronic Excitations in Graphene in the 1–50 eV Range: The π and π + σ Peaks Are Not Plasmons," *Nano Lett*, 14, 3827–3831 (2014).

EELS simulation at atomic resolution

Dynamical Electron Scattering

Density Functional Theory

- Detailed description of electron propagation (dynamical diffraction, channeling)
- Probe position dependence

- FULL SOLID STATE BONDING
- Incident electron is a plane wavemagically appears at the atom
- No incident beam direction
- No detector
- No spatial information

M. P. Prange, M. P. Oxley, M. Varela, S. J. Pennycook, and S. T. Pantelides, "Simulation of Spatially Resolved Electron Energy Loss Near-Edge Structure for Scanning Transmission Electron Microscopy," *Phys Rev Lett*, 109, 246101 (2012).

Combining Electron Scattering & DFT
core state

$$M_{if}(\mathbf{Q}_{g}) = \langle \varphi_{i}(\mathbf{r}) | \exp(2\pi i \mathbf{Q}_{g} \cdot \mathbf{r}) | \varphi_{f}(\mathbf{r}) \rangle$$

 $\int_{\mathbf{Q}_{g}} = \mathbf{q} + \mathbf{g} = (\mathbf{k} + \mathbf{g}) - \mathbf{k}'$ momentum transfer
We measure intensities: $\left| M_{if}(\mathbf{Q}_{g}) \right|^{2} = M_{if}(\mathbf{Q}_{g}) M_{if}^{*}(\mathbf{Q}_{h})$

Mixed Dynamical Form Factor (MDFF) – needed for STEM probe

$$S^{i,f}\left(\mathbf{Q}_{\mathbf{g}},\mathbf{Q}_{\mathbf{h}},E_{\text{loss}}\right) = \left\langle i \left| \exp\left(2\pi i \mathbf{Q}_{\mathbf{g}}\cdot\mathbf{r}\right) \right| f \right\rangle \left\langle f \left| \exp\left(-2\pi i \mathbf{Q}_{\mathbf{h}}\cdot\mathbf{r'}\right) \right| i \right\rangle$$

Dynamical Form Factor (DFF) – only applies for plane wave

$$S^{i,f}(\mathbf{q}, E_{\text{loss}}) = \left| \left\langle i \left| \exp\left(2\pi i \mathbf{q} \cdot \mathbf{r}\right) \right| f \right\rangle \right|^2$$

EELS: Inelastic Scattering Potential

detector and beam direction

The full inelastic scattering potential:

$$W^{i,f}(\mathbf{r},\mathbf{r'},E_{\text{loss}}) \propto \sum_{\mathbf{h},\mathbf{g}} \mu_{\mathbf{h},\mathbf{g}}^{i,f} e^{-2\pi i \mathbf{g} \cdot \mathbf{r}} e^{2\pi i \mathbf{h} \cdot \mathbf{r'}}$$

DFF
$$\Rightarrow \mu_{0,0}^{i,f} \propto \int_{\text{detector}} k' \frac{\left| \left\langle i \left| \exp\left(2\pi i \mathbf{q} \cdot \mathbf{r}\right) \right| f \right\rangle \right|^2}{\left| \mathbf{q} \right|^4} d\Omega_{k'}$$

Mean value of the inelastic potential

The Inelastic STEM Image

The inelastic image as a function of probe position R.

$$I^{i,f}(\mathbf{R},t) \propto \int_{0}^{t} \sum_{\mathbf{h},\mathbf{g}} \Psi_{\mathbf{h}}^{*}(\mathbf{R},\mathbf{r'}_{\perp},z) \Psi_{\mathbf{g}}(\mathbf{R},\mathbf{r}_{\perp},z) \mu_{\mathbf{h},\mathbf{g}}^{i,f} dz$$

$$\mathrm{DFF} \Longrightarrow \mu_{0,0}^{i,f} \Longrightarrow I \propto \left|\Psi_{0}\right|^{2} \mu_{0,0}^{i,f}$$

The DFF contains no information about the probe position or propagation For a given transition, fine structure will not change shape, only intensity

Near Edge Structure as a Function of Probe Position: 01 signal in LMO

Fine structure varies with probe position – need full simulation

Near Edge Structure as a Function of Energy: O1 signal

- Fine structure varies with energy
- Delocalization changes for transitions < 5 eV apart
- DFF or simple d₅₀ type expressions fail
- Need full simulation

THEORETICAL VEELS SPECTRA AND MAPS -- GRAPHENE

COMBINES DFT EXCITATION MATRIX ELEMENTS WITH DYNAMICAL SCATTERING

Experiment

THE ATOMIC CHARACTER OF GRAPHENE STATES

SELECT ELECTRONIC EXCITATIONS AT k = 0

Images from states with maximum atomic character

Reverse contrast

THE ORIGIN OF GRAPHENE-LIKE IMAGES

All k points

PROPOSED APPLICATIONS

THEORY: DEMONSTRATE THE POWER OF ATOMICALLY-RESOLVED VEELS

- POINT DEFECTS
- INTERFACES
- MAGNETIC DICHROISM
- EXPT: NEED BETTER S/N RATIO AND ENERGY RESOLUTION

Bilayer graphene: oriented BLG

Tilt: 0° Boundaries show dark

Width ~10 nm

Junhao Lin

Sok Pantelides

STEM images of Twisted Bilayer Graphene

Scale bars are 1 nm

EEL spectra of BLG (350 meV energy

Experiments @ ORNL

EEL spectra of BLG (60 meV energy

Dynamics of point defects...

Ce in AIN 0 0 C

R. Ishikawa and A. R. Lupini UltraSTEM200

We can see atomic diffusion...

Ce in AIN

R. Ishikawa and A. R. Lupini UltraSTEM200

Correlated vacancy-dopant motion

Interstitial "Kick-out" mechanism

Ce atom at interstitial sites

Simulate higher-temperature diffusion events!

Interstitial "Kick-out" mechanism

Ce atom at interstitial sites

Simulate higher-temperature diffusion events!

Kick-out mechanism

 $X \downarrow s + I \rightleftharpoons X \downarrow i$

X_s: Substitutional dopant
X_i: Interstitial dopant
I: Self-interstitial

Barrier : 3.7 eV

Why is the Ce barrier so low?

Large Ce atom is highly strained in a small AlN lattice

nature International weekly journal of science

Hasten high resolution

Build precision microscopes to map atoms, say **Stephen J. Pennycook** and **Sergei V. Kalinin**.

Feynman's goal = 0.1Å! "just look at the thing!"

"I would like to try and impress upon you while I am talking about all of these things on a small scale, the importance of improving the electron microscope by a hundred times. It is not impossible; it is not against the laws of diffraction of the electron."

- 1. S. J. Pennycook and S. V. Kalinin, "Hasten high resolution," Nature, 515, 487–488 (2014).
- 2. S. J. Pennycook, "Fulfilling Feynman's dream: "Make the electron microscope 100 times better"—Are we there yet?" *MRS Bull*, 40, 71–78 (2015).

STEM achieves 0.5 Å resolution

5th order aberration correction, 300 kV

Lett 2009, 102, 96101; **TEAM** project

Sawada, H. et al., J Electron Microsc 2009, 58, 357; **CREST** project

1000

82 pm

1500

82 pm

2000

Depth resolution at unit cell level...

-10 nm

projection eg HAADF at low resolution

Stability?

Substitutional Ce dopants in AIN

thickness = 12.4 nm

Simulation by Ryo Ishikawa

No need to align the sample!

3D atomic structure!

We could look at glasses!

3D atomic structure!

We could see grain boundaries in polycrystalline materials!

3D atomic structure!

There's still plenty to see at the bottom!

- Next generation corrector
 - -300 kV, CFEG, 60-100 mrad probe angle
 - -~0.2-0.12 Å diffraction limit
- Improved signal to noise ratio
- Optical properties with atomic sensitivity
- Improved precision of atomic positions
- 3D atomic resolution

