

## **Overview and Challenges**

#### S. J. Pennycook Condensed Matter Sciences Division, Oak Ridge National Laboratory







**Research funded by DOE BES Division of Materials Sciences** 

#### **Collaborators:**

**Electron Microscopy:** 

**ORNL**:

- M. F. Chisholm
  - M. Varela

  - Y. Peng
  - A. Borisevich
  - O. L. Krivanek

  - G. Duscher
  - S. Lopatin
  - S. T. Pantelides
  - R. Buczko
  - L. J. Allen S. Findlay M. Oxley



Si SiGe



#### Semiconductor Interfaces:

Materials Theory:

Imaging Theory:

University of Melbourne:

**ORNL/NCSU:** Vanderbilt/ORNL:

## **Challenges for electronic materials**

- Gate Dielectrics
  - Thickness: geometric vs. electronic
  - Stoichiometry and crystallinity
- Single atom detection
  - Image
  - Spectroscopy: localized states
- 3D tomography?

**STEM**  $\Rightarrow$  simultaneous imaging and electronic properties

Aberration correction  $\Rightarrow$  single atom sensitivity

## **TEM or STEM?**



- STEM invented by Crewe in 1960's
- Incoherent imaging with electrons
- Atomic resolution spectroscopy
- Now standard on commercial TEMs



## **STEM or TEM?**





HAADF (Z-contrast) Resolution = probe size = 0.61λ/α Z-contrast Local



BFSTEM (conventional TEM) Resolution =  $\lambda/\alpha$ 

Phase contrast Non-local

### **Probe Size is Limited by Spherical Aberration**

#### VG Microscope's HB501UX, 100 kV



#### Aberration correction $\Rightarrow$ smaller brighter probe Critical for single atom sensitivity

## **Resolution with a perfect Lens**



**Ideal lens** achieves diffraction limit

## **Resolution with a Real Lens**



#### A real lens has spherical aberration

resolution ~ 50 times worse than the diffraction limit

## **Correction of Spherical Aberration**



## **Etter Covactivio** n

## UCoprected 1004

#### Uncorrected 300kV STEM: 1.3 Å







100 kV microscope now rivals 300 kV performance

## **Imaging of Single Bi Atoms in Si(110)**



## 300 kV STEM







## 300 kV STEM

Before correction: 1.3 Å theoretical



#### 1.3 Å achieved in Si $\langle 110 \rangle$



Squeeze the same current into a smaller, brighter probe

After correction:

0.5 Å theoretical

## Image limited to 0.84 Å by instabilities



## **La-stabilized** γ-alumina

#### Before correction



## La-stabilized γ-alumina



#### After correction



La atoms located on Al sites



## Quantum aspects of STEM – Schrödinger's cat microscope :

Electron prepared as converging spherical wave

Dynamical scattering through specimen

Propagation to detector

1m 10<sup>8</sup> m/s 10 ns

Collapse of wave function

Sample recoil

### **Detector must be included in the observation**

## Observable and nonobservable in the STEM

How do we get atomic resolution imaging and spectroscopy?



### Observable and non-observable in the STEM Exit wavefunction Low Angle Bri

- Electron intensity distribution inside the crystal is not an observable!
- We can weight the electron intensity distribution by the detector function
- The amount of localization in a STEM image depends on the detector used (the "observer" in QM)

Exit wavefunction intensity



#### Large Angle Bright Field: EELS

Low Angle Bright Field: Phase contrast TEM



High Angle Dark Field: Z-contrast



## **1s Bloch States**

1s

Most localized Bloch states in real space Most extended in reciprocal space Dominate detector integration Most local image



2s state most highly excited Little contribution to image



#### THE Z-CONTRAST IMAGE IS A DIRECT IMAGE OF 1S BLOCH STATES

Pennycook, Nellist and Rafferty, Microscopy & Microanalysis 6, 343 (2000)



## **Does the 1s state dominance hold with larger probe angles?**

Objective aperture 23 mrad, no aberrations.

Probe size: 0.53 Å



Image, t = 10 Å

As 1s



#### Image, t = 1000 Å

YES





## Bonding at the Si/SiO<sub>2</sub> Interface

Z-contrast image with Pixon™ reconstruction







# Interface width 3 - 5 Å

### Imaging an *abrupt* interface:



**Imaging a** *rough* **interface:** 





## Sharp Si/SiO<sub>2</sub> interface

Line trace summed vertically over 3 pixels



## Sharp Si/SiO<sub>2</sub> interface

Line trace summed vertically over 200 pixels

Fit

Derivative FWHM 5.1Å Probe FWHM 1.3 Å *Roughness 0.49 nm* 

## **Beam broadening - thick specimen**





Amorphous or nonaligned crystal

P<sub>eff</sub><sup>2</sup> continues to increase with thickness

## **HA-ADF STEM**

- Gate oxide width is independent of thickness
- Interface roughness appears to increase



Gate Oxide Thickness: 20 Å

Muller JEOL 2010F, 200 kV, See Diebold et al, Microscopy and Microanalysis 2003

## **Localization of Inelastic Scattering**

- Classical estimates based on impact parameter
- S. J. Pennycook, Ultramicroscopy, 26 (1988) 239
- Quantum mechanical calculations O'(R) =

$$b^{rms} = \frac{2E_o}{X\Delta E} Log\left(\frac{4E_o}{\Delta E}\right)^{-1/2}$$

s O'(**R**) = 
$$\left(\frac{e^2}{\pi \hbar \upsilon}\right)^2 \left| \int \frac{\rho_{\text{no}}}{q^2} (\mathbf{q}) e^{-i\mathbf{K} \cdot \mathbf{R}} d\mathbf{K} \right|^2$$

Based on the dipole approximation:

H. Rose, Optik 45, (1976) 139

- R. H. Ritchie and A. Howie, *Phil Mag A* 58, (1988) 753
- D. Muller and J. Silcox, Ultramicroscopy 59, (1995) 735

Avoiding the dipole approximation:

D. W. Essex, P. D. Nellist and C. T. Whelan, Ultramicroscopy, 80 (1999) 183 B. Rafferty and S. J. Pennycook, *Ultramicroscopy*, **78** (1999) 141 L. A. Allen, S. D. Findlay, M. P. Oxley and C. J. Rossouw, Ultramicroscopy (2002) submitted

## **Classical view - impact parameter**

b

Core electron



### Passing swift electron

#### Where is the observer?

### **Quantum mechanical view**



## **Dipole Approximation**

**Object Function for O-K Edge 300 kV, 30 mrad collection angle** 



SrTiO<sub>3</sub> Ti *L*-shell EELS Probe:  $C_s = -0.05$  mm,  $\Delta f = -62$  Å,  $C_5 = 63$  mm E = 100 keV aperture = 20 mrad

ADF detector 56 – 202 mrad EELS detector semiangle: 20 mrad

Simulated:  $C_c = 0.0 \text{ mm}$ Simulated:  $C_c = 1.5 \text{ mm}$ 

Experimental



Zone-axis images t = 200 Å







Full band gap seen 0.5 nm into oxide

## **O-K Ionization Edge at the Si/SiO<sub>2</sub> IF**





## **Calculated Si-L<sub>2,3</sub> Edges at Si-SiO<sub>2</sub>**

SU



## **Calculated O-K Edges at the Si-SiO<sub>2</sub> IF**



## Si/SiO<sub>2</sub> Interface with Suboxide





## **Abrupt Si/SiO<sub>2</sub> Interface**





## Z-Contrast at Si/Ge/SiO<sub>2</sub> Interfaces





## **EELS at the Ge/SiO<sub>2</sub> Interfaces**





## **EELS at the Ge/SiO<sub>2</sub> Interface**



### **EELS: Single Atom Detection**



## **EELS: Single Atom Detection**



## **EELS: Single Atom Detection**



320 - 26

## **Aberration-corrected STEM:**

- Single atom sensitivity in imaging and spectroscopy
  - Dopants
  - -Sites: interstitial or substitutional
  - Special sites: steps, dislocation cores
- 3D tomography
  - -Tilt series limited resolution
  - -Confocal STEM?



DOE Transmission Electron Aberration-corrected Microscope initiative