Patents and Perspective on Surge Protection for Low-Voltage Circuits

Significance:

Part 6: Tutorials, textbooks, and reviews

Chapter 1 – Patents issued 1971 – 1984

These patents are included in this chapter of this Part 6 as they "teach" (using the legal term) applications of surge-protective devices. Only the front pages of the patents are included here. Complete copies, of course, would be available from the U.S. Patent Office. Seven of the nine patents included in this chapter were granted for non-conventional structures and applications of the emerging metal-oxide varistor (MOV) technology, fueled by the enthusiasm generated by the possibility of taking advantage of the flexibility of manufacturing MOVs in structures more complex than a simple disc with only two terminal electrodes. A search on the subject of "MOV" in the U.S. Patent Office yields nearly one hundred patents by other inventors.

All of these nine patents were assigned to the General Electric Company, which lost interest in any of them as the electronics-oriented varistor business was sold off by General Electric, the beginning of a succession of divestitures, acquisitions, and licensing of what has now become for several manufacturers primarily a business of manufacturing simple two-terminal structures that are subsequently incorporated into an SPD package by other manufacturers.

Two other patents included in this chapter deal with transient phenomena in power electronics and are cited in several patents issued to other inventors of surge-protection schemes, although these two do not include any claim associated with MOV applications.

Chapter 2 – Retrospective – 1972-2004

As witness to technology evolution and changing business priorities, this chapter of Part 6 begins – as an acknowledgment to the origins of the technology – with an early patent filed in the US, for which GE acquired a license and launched the "GE-MOV" ®¹ varistors in 1972, blossoming into a full line of two-terminal devices for low-voltage applications². Next, this chapter shows an excerpt from a product specification bulletin listing the wide range of ratings available by the mid-seventies. On the occasion of its Centennial, GE seemed determined to stay in the business of transient protection, as claimed by an advertisement citing its long roots in the field. However, while expansion of the variety of MOV structures continued, as shown by the covers of successive editions (avatars) of the *Transient Voltage Suppression Manual*, GE eventually did exit the business of low-voltage MOVs, with Harris Semiconductor taking over. That exit was later followed by yet another divestiture, now apparent as the latest MOV avatar when browsing the Internet for present MOV manufacturers – a long way from the 1970s GE-MOVs.

¹ Then a trademark of the General Electric Company.

² The MOV applications to high-voltage surge arresters were also developed during that period, but are not covered in this Anthology, except for the seminal Shakshaug et al. paper which is included as an annex of Part 7.

United States Patent

[72]	Inventors	Francois D. Martzloff; William McMurray; John P. Walden, Schenectady, N.Y.	Δ
[21]	Appl. No.	791,750	ic
[22]	Filed	Jan. 16, 1969	Č
[45]	Patented	Mar. 9, 1971	-
[73]	Assignee	General Electric Company	Р
[54]	RECOVE THROUG CIRCUIT 8 Claims,	RY SYSTEM FOR SHORT CIRCUITS H SWITCHING DEVICES IN POWER S 4 Drawing Figs.	
[52]	U.S. Cl		A
[51]	Int. Cl		a ir
[50]	Field of Se	arch	tł
		11–14, 45, 45C; 307/202; 317/53 (Inquired)	ге
[56]		References Cited	tl +1

UNITED STATES PATENTS

3,406,327 10/196	Mapham et al.	321/45
------------------	---------------	--------

OTHER REFERENCES

The Institution of Electrical Engineers, Paper No. 3889E, " An Audio-Frequency High Power Generator Employing Silicon Controlled Rectifiers," pp. 255, 256, May 1962, Copy in Class 321/45

Primary Examiner---William H. Beha Jr. Attorneys--Frank L. Neuhauser, Oscar B. Waddell, James C. Davis, Jr., Edward W. Goebel, Jr. and Joseph B. Forman

ABSTRACT: When a short circuit or shoot-through occurs in a power circuit having two thyristors in series with commutating circuit inductors, a shunt capacitor isolated from the DC power supply by an impedance automatically resonates with the inductors to turn off both thyristors. A second automatic recovery system for repeated short circuits that occur before the capacitor has recharged operates to temporarily disable the power supply. In a high-voltage inverter the impedance is a resistor functioning to dampen voltage overshoots and to implement a relay or solid state second recovery system.

United States Patent

[72]	Inventors	Leon J. Goldberg; Francois D. Martzloff, both of N.Y.	Schenectady,	33
[21]	Appl. No.	4.246		-
[22]	Filed	Jan. 20, 1970		P
[45]	Patented	Aug. 17, 1971		A
[73]	Assignee	General Electric Company		A
[54]	OVERCUI STATE VO 9 Claims, 9	RENT PROTECTION FOR SOLTAGE REGULATOR	OLID-	
[52]	U.S. Cl		323/9,	ļ
		323/43.5 S, 32	23/45, 323/62	ł
[51]	Int. Cl		G05f 1/20,	c
			G05f 1/30	t
[50]	Field of Sea	arch	317/16, 33,	с
		33 SC; 321/14; 323/9, 43	8.5, 45, 57, 62	r
[56]		References Cited		0
	U	NITED STATES PATENTS		2
3.281	.652 10/19	966 Perrins	323/43.5 X	6

3,461,378	8/1969	King	323/45 X
3,495,129	2/1970	Donner et al.	323/43.5 X
3,514,688	5/1970	Martin	323/43.5 X

Primary Examiner—J. D. Miller

Assistant Examiner-A. D. Pellinen

Attorneys-John F. Ahern, Paul A. Frank, Julius J. Zaskalicky, Donald R. Campbell, Frank L. Neuhauser, Oscar B. Waddell and Joseph B. Forman

ABSTRACT: A solid-state voltage regulator constructed with low current rating step changing solid-state switches, or pairs of switches, is protected against overcurrents in the interval before the opening of a slow-acting circuit breaker. The overcurrent is transferred from one switch to another in sequence rapidly to take advantage of the short time current overcapacity, or is diverted to a shunting protective switch which can have other functions. Alternatively, one switch has a high current rating, and the overcurrent is diverted to the heavyduty switch.

Martzloff

[54] INTEGRAL SENSOR FOR MONITORING A METAL OXIDE VARISTOR

- [75] Inventor: Francois D. Martzloff, Schenectady, N.Y.
- [73] Assignee: General Electric Company, Schenectady, N.Y.
- [22] Filed: Sept. 30, 1971
- [21] Appl. No.: 185,184
- [52] U.S. Cl...... 338/20, 73/362 SC, 338/22
- [51]
 Int. Cl.
 H01c 7/10

 [58]
 Field of Search
 338/13, 20, 21, 324, 338/325, 322; 73/362 SC; 323/68, 69

[56] **References Cited** UNITED STATES PATENTS

3,622,849	11/1971	Kelley	323/69 X
2,747,158	5/1956	LeBel	323/69

FOREIGN PATENTS OR APPLICATIONS

783,669 9/1957 Great Britain 73/362 SC

[11] **3,742,419** [45] **June 26, 1973**

Primary Examiner—C. L. Albritton Attorney—Frank L. Neuhauser, John F. Ahern et al.

[57] ABSTRACT

A body of sintered metal oxide material having first and second opposed surfaces and a third surface disposed therebetween has first and second electrodes in contact with the first two opposed surfaces for establishing a main conductive path through the device and a third electrode in contact with one of the two opposed surfaces and spaced very close to the corresponding electrode for establishing a monitoring conductive path for sensing the operating temperature of the body as a function of the resistance thereof. The monitoring path may also be established by a pair of third electrodes positioned on opposite sides of the surface interconnecting the first two surfaces whereby the monitoring path intersects the main conductive path. The sintered metal oxide material has varistor characteristics.

13 Claims, 6 Drawing Figures

United States Patent 1191

Tasca et al.

[54] SURGE SUPPRESSION TRANSMISSION MEANS

- [75] Inventors: Dante M. Tasca, Philadelphia, Pa.; John D. Harnden, Jr.; Francois D. Martzloff, both of Schenectady, N.Y.
- [73] Assignee: General Electric Company
- [22] Filed: Oct. 21, 1971
- [21] Appl. No.: 191,216

- [58] Field of Search...333/97 R, 81 AB, 17, 13, 24.2, 333/2, 96, 97 S; 338/20-21, 216, 220; 317/61.5; 339/147; 329/161-162

[56] References Cited

UNITED STATES PATENTS

9/1947	Tubbs	
5/1948	Johnson	
2/1950	Hunt	
4/1951	Ferrill, Jr	
7/1952	Norton	
7/1957	Reggia	
11/1959	Gunn et al	333/81 B
12/1961	Chester et al	
7/1963	Jacobs et al.	
7/1966	Garstang	
	9/1947 5/1948 2/1950 4/1951 7/1952 7/1957 11/1959 12/1961 7/1963 7/1966	9/1947 Tubbs

(11) 3,711,794

[45] Jan. 16, 1973

3,426,299	2/1969	Dixon, Jr	24.2 X
3,611,073	10/1971	Hamamoto et al	8/20 X
3,663,458	5/1972	Masuyama et al2	52/518

OTHER PUBLICATIONS

Gunn, M. W., "Wave Propagation in Rectangular Waveguide Containing a Semiconducting Film" Proc. IEE. Vol. 114 2-1967, pp. 207-210.

Primary Examiner—Eli Lieberman Assistant Examiner—Wm. H. Punter Attorney—Frank L. Neuhauser et al.

[57] ABSTRACT

In a coaxial connector a generally toroidal shaped member of metal oxide varistor material is connected between the inner and outer conductors of the connector. The metal oxide varistor material has an alpha in excess of 10 in the current density range of from 10^{-5} to 10^2 amperes per square centimeter. The spacing of the peripheral portions of the member is set so that a high impedance is presented to normal applied voltage between the peripheral portions. For voltages applied between the peripheral portions progressively in excess of the normal voltage rapidly decreasing impedance is presented by the toroidal member in accordance with the alpha of the material thereby limiting the variation in voltage between the peripheral portions of the toroidal shaped member.

11 Claims, 13 Drawing Figures

Anderson et al.

[54] INTEGRATED POLYCRYSTALLINE VARISTOR SURGE PROTECTIVE DEVICE FOR HIGH FREQUENCY APPLICATIONS

- [75] Inventors: Thomas E. Anderson, Normal, Ill.; Francois D. Martzloff, Schenectady, N.Y.
- [73] Assignce: General Electric Company, Schenectady, N.Y.
- [22] Filed: June 29, 1973
- [21] Appl. No.: 375,132

[52] U.S. Cl. 317/61, 317/61, 5, 317/68,

- 338/21 [51] Int. Cl. H02h 9/04
- 317/41,61

[56] **References** Cited UNITED STATES PATENTS Heath 338/21 3,162,831 12/1964

RD 5808 3,845,358 [11]

[45] Oct. 29, 1974

3,304,529	2/1967	Forwald et al	338/21
3,740,701	6/1973	Harnden	338/21 X
3,764,566	10/1973	Matsuoka et al.	338/21 X

Primary Examiner-James D. Trammell Attorney, Agent, or Firm-Paul I. Edelson; Joseph T. Cohen; Jerome C. Squillaro

[57] ABSTRACT

A polycrystalline varistor of the bulk effect zinc oxide base type adapted for use in voltage surge suppression on VHF signal lines is disclosed. The device comprises a unitary body including a spiral inductor electrically in series with the varistor element to prevent capacitive loading of the protected signal line.

9 Claims, 3 Drawing Figures

United States Patent [19] Martzloff

[54] POLYCRYSTALLINE VARISTOR SURGE PROTECTIVE DEVICE FOR HIGH FREQUENCY APPLICATIONS

- [75] Inventor: Francois D. Martzloff, Schenectady, N.Y.
- [73] Assignce: General Electric Company, Schenectady, N.Y.
- [22] Filed: June 29, 1973
- [21] Appl. No.: 374,933
- [51] Int. Cl. H02h 3/20, H02h 3/22

[56] References Cited

UNITED STATES PATENTS

2,176,211	10/1939	Cork et al 3	33/73 C
2,896,128	7/1959	Fuller et al.	. 317/61
3,274,447	9/1966	Nelson	. 317/61

[11] **3,863,111** [45] Jan. 28, 1975

3,310,766	3/1967	Downing et al	
3,496,435	2/1970	Manley	
3,521,200	7/1970	Matsushima et al	
3,611,073	10/1971	Hamamoto	
3,703,665	11/1972	Yereance	
3,711,794	1/1973	Tasca et al	
3.728.584	4/1973	Kuhlow	317/234 A

Primary Examiner-J. D. Miller

~

Assistant Examiner—Patrick R. Salce Attorney, Agent, or Firm—Donald R. Campbell; Joseph T. Cohen; Jerome C. Squillaro

[57] ABSTRACT

A polycrystalline varistor of the bulk effect zinc oxide base type adapted for use in voltage surge suppression on VHF signal lines is disclosed. The device comprises a connector having a housing attached thereto containing a polycrystalline varistor and a conductive spring member. The spring member is configured to provide for the proper mechanical positioning of the varistor and to provide an electrical inductance in series with the varistor to prevent capacitive loading of the protected signal line.

9 Claims, 2 Drawing Figures

Burgess et al.

[54] RECONSTITUTED METAL OXIDE VARISTOR

- [75] Inventors: James F. Burgess, Schenectady; Roland T. Girard, Scotia; Francois D. Martzloff: Constantine A. Neugebauer, both of Schenectady, all of N.Y.
- [73] Assignee: General Electric Company, Schenectady, N.Y.
- [21] Appl. No.: 722,388
- [22] Filed: Sep. 13, 1976
- [51] [52] Int. Cl.² H01C 7/10
- 29/621; 252/518; 338/20; 338/327
- 29/610, 621; 427/101; 428/412, 328-330; 252/518, 518.1, 518.3; 260/37 PC

4,103,274 [11] Jul. 25, 1978 [45]

[56] **References Cited**

U.S. PATENT DOCUMENTS

3,503,029	3/1970	Matsuoka 338/20
3,935,157	1/1976	Schiller et al 260/37 PC
3,999,159	12/1976	Matsuura et al 338/21

OTHER PUBLICATIONS

Chemical Abstracts, vol. 85, 1976, p. 571.

Primary Examiner-C. L. Albritton Attorney, Agent, or Firm-Lawrence D. Cutter; Joseph T. Cohen; Marvin Snyder

ABSTRACT [57]

Reconstituted metal oxide varistors are formed by hot pressing powdered metal oxide varistor ceramic with plastic resin. Metal electrodes may be pressed directly into the ceramic-plastic composite to provide improved contact characteristics.

25 Claims, 6 Drawing Figures

United	States	Patent	[19]
--------	--------	--------	------

Martzloff

[54] MULTI-TERMINAL VARISTOR CONFIGURATION

[75]	Inventor:	Francois D	. Martzloff,	Schenectady,
		N.Y.		

- [73] Assignee: General Electric Company, Schenectady, N.Y.
- [21] Appl. No.: 972,448
- [22] Filed: Dec. 22, 1978
- [51] Int. Cl.² H02H 1/04

[56] References Cited

U.S. PATENT DOCUMENTS

2,935,712	5/1960	Oppenheim et al	338/20
3,764,854	10/1973	Craddock	361/127

FOREIGN PATENT DOCUMENTS

7507645	1/1976	Netherlands		338/21
---------	--------	-------------	--	--------

Primary Examiner-Harry E. Moose, Jr.

Attorney, Agent, or Firm—Lawrence D. Cutter; James C. Davis; Marvin Snyder

[57] ABSTRACT

A pair of varistor disks, each having one face thereof coated substantially entirely with electrode material and another face thereof coated with spaced-apart electrode material, such as in two semicircular patches, are joined together so that said faces coated with a single electrode are coincident. This configuration reduces by a factor of two the over-all area required for equal current density as compared with certain prior varistor configurations. The varistor of the present invention also exhibits a lower diameter-to-thickness ratio and hence provides a significantly stronger mechanical structure. Additionally, the varistors of the present configuration may be readily provided with grooves between electrode surfaces so as to increase the interelectrode spacing, without significantly reducing the mechanical strength of the device. The invention of the present structure also permits flexible lead configurations.

10 Claims, 4 Drawing Figures

[11] 4,212,045
[45] Jul. 8, 1980

Bloomer et al.

[54] CURRENT-LIMITED SPARK GAP FOR TRANSIENT PROTECTION

- [75] Inventors: Milton D. Bloomer; Francois D. Martzloff, both of Schenectady, N.Y.
- [73] Assignee: General Electric Company, Schenectady, N.Y.
- [21] Appl. No.: 468,000
- [22] Filed: Feb. 18, 1983
- [51] Int. Cl.³ H01K 1/68
- [52] U.S. Cl. 315/75; 315/127;
- 315/125–127, 207, 240, 241 R; 307/126, 130; 361/56, 111, 126

[45] Date of Patent: Aug. 21, 1984

[56] References Cited

U.S. PATENT DOCUMENTS

2,888,639	5/1959	Petermichl et al 361/56 X
3,660,719	5/1972	Grenier 361/56

Primary Examiner—Eugene R. LaRoche Attorney, Agent, or Firm—Geoffrey H. Krauss; James C. Davis, Jr.; Marvin Snyder

[57] ABSTRACT

High voltage transients are effectively clamped by means of a spark gap, in parallel connection with a load to be protected, and having a capacitor in series with the parallelled load-spark gap combination. The series capacitor limits follow-through current through the spark gap to a level permitting survival of the spark gap. Where the load is an incandescent lamp, the spark gap is formed by shaping the lamp internal lead structure, such that an additional external spark gap component is not required.

13 Claims, 2 Drawing Figures

1

3,682,841 VOLTAGE DEPENDENT RESISTORS IN A BULK TYPE Michio Matsuoka, Takeshi Masuyama, and Yoshio Iida, 5 Osaka-fu, Japan, assignors to Matsushita Electric In-dustrial Co., Ltd., Osaka, Japan Filed Dec. 1, 1970, Ser. No. 93,971 Claims priority, application Japan, Dec. 12, 1969, 44/100,447; Dec. 16, 1969, 44/102,203, 44/ 102,204, 44/102,205, 44/102,206; Dec. 23, 1969, 44/569; Apr. 6, 1970, 45/29,908 Int. Cl. H01b 1/06 **5** Claims

U.S. Cl. 252-518

ABSTRACT OF THE DISCLOSURE

A voltage dependent resistor of the bulk type. The resistor has a sintered body consisting essentially of, as a major part, zinc oxide (ZnO) and, as an additive, 0.05 to 10.0 mole percent of beryllium oxide (BeO) and $_{20}$ 0.05 to 10.0 mole percent, in total, of at least one member selected from the group consisting of bismuth oxide (Bi₂O₃), cobalt oxide (CoO) manganese oxide (MnO), barium oxide (BaO), strontium oxide (SrO) and lead oxide (PbO). Electrodes are provided which are in con- 25 tact with said body.

This invention relates to voltage dependent resistors having non-ohmic resistance due to the bulk thereof and 30 more particularly to varistors comprising zinc oxide and beryllium oxide.

Various voltage dependent resistors such as silicon carbide varistors, selenium rectifiers and germanium or silicon p-n junction diodes have been widely used for 35 stabilization of voltage or current of electrical circuits. The electrical characteristics of such a voltage dependent resistor are expressed by the relation:

$$I = \left(\frac{V}{C}\right)n$$

where V is the voltage across the resistor, I is the current flowing through the resistor, C is a constant corresponding to the voltage at a given current and exponent n is a numerical value greater than 1. The value of n is 45 calculated by the following equation:

$$n = \frac{\log_{10}(I_2/I_1)}{\log_{10}(V_2/V_1)}$$

where V_1 and V_2 are the voltages at given currents I_1 and ⁵⁰ I2, respectively. The desired value of C depends upon the kind of application to which the resistor is to be put. It is ordinarily desirable that the value of n be as large as possible since this exponent determines the extent to which the resistors depart from ohmic characteristics.

Voltage dependent resistors comprising sintered bodies of zinc oxide with or without additives and silver paint electrodes applied thereto, have previously been disclosed. The non-linearity of such varistors is attributed to the interface between the sintered body of zinc 60 oxide with or without additives and the silver paint electrode and is controlled mainly by changing the compositions of said sintered body and silver paint electrode. Therefore, it is not easy to control the C-value over a wide range after the sintered body is prepared. Similarly, in varistors comprising germanium or silicon p-n junction diodes, it is difficult to control the C-value over a wide range because the non-linearity of these varistors is not attributed to the bulk but to the p-n junction. On the other hand, the silicon carbide varistors have nonlinearity due to the contacts among the individual grains of silicon carbide bonded together by a ceramic binding

2

material, i.e. to the bulk, and the C-value is controlled by changing a dimension in the direction in which the current flows through the varistors. The silicoon carbide varistors, however, have a relatively low n-valuue ranging from 3 to 6 and are prepared by firing in non-oxidizing atmosphere, especially for the purpose of obbtaining a lower C-value.

An object of the present invention is to provide a voltage dependent resistor having non-linearity due to the 10 bulk thereof and being characterized by a low C-value and high n-value.

Another object of the present invention is tto provide a method for making a voltage dependent resist or having the non-linearity due to the bulk thereof and beeing char-15 acterized by a high n-value, without using non-1-oxidizing atmosphere.

These objects are achieved by providing a vcoltage dependent resistor of the bulk type comprising a sintered body consisting essentially of, as a major part,, zinc oxide (ZnO), and, as an additive, 0.05 to 10.0 rmole percent of beryllium oxide (BeO) and 0.05 to 110.0 mole percent, in total, of at least one member seleccted from the group consisting of bismuth oxide (Bi2O33), cobalt oxide (CoO), manganese oxide (MnO), bariuum oxide (BaO), strontium oxide (SrO) and lead oxidde (PbO), and electrodes in contact with said body.

These and other objects of the invention will become apparent upon consideration of the following description taken together with the accompanying drawing; in which the single figure is a partly cross-sectional view through a voltage dependent resistor in accordance with the invention.

Before proceeding with a detailed descriptioon of the voltage dependent resistors contemplated by the invention, their construction will be described with reference to the aforesaid drawing wherein reference chaaracter 10 designates, as a whole, a voltage dependent resissor comprising, as its active element, a sintered body having a pair of electrodes 2 and 3 applied to opposites surfaces 40 thereof. Said sintered body 1 is prepared in aa manner hereinafter set forth and is in any form such ass circular, square or rectangular plate form. Wire leads 5 aand 6 are attached conductively to the electrodes 2 and 33, respectively, by a connection means 4 such as solder orr the like.

The sintered body 1 of the voltage dependent resistor according to the invention comprises a compositition consisting essentially of, as a major part, zinc oxidle (ZnO) and, as an additive, 0.05 to 10.0 mole percent of beryllium oxide (BeO) and 0.05 to 10.0 mole percent, in total, of at least one member selected from the group consisting of bismuth oxide (Bi2O3), cobalt oxidee (CoO). manganese oxide (MnO), barium oxide (BaO)), strontium oxide (SrO) and lead oxide (PbO) and hass the electrodes 2 and 3 in contact with said body.

A higher n-value can be obtained when said! additive consists essentially of 1.0 to 8.0 mole percent (of beryllium oxide (BeO) and 0.1 to 3.0 mole percent., in total, of at least one member selected from the groupp consisting of bismuth oxide (Bi₂O₃), cobalt oxide (Co(O), manganese oxide (MnO), barium oxide (BaO), sstrontium oxide (SrO) and lead oxide (PbO).

Table 1 shows the optimal compositions of ssaid additives for producing a voltage dependent resistoor having hibh n-value, low C-value and high stability with respect to temperature, humidity and electric load.

The sintered body 1 can be prepared by a peer se well known ceramic technique. The starting materialls having the compositions described in the foregoing deescription are mixed in a wet mill so as to produce homeogeneous mixtures. The mixtures are dried and pressed inn a mold into the desired shape at a pressure of from 1100 kg./ cm.2 to 1000 kg./cm.2. The pressed bodies are: sintered

Copy provided by USPTO from the CSIR Image Database

GE-MOV[®] Metal-Oxide Varistors

GE has been helping customers solve transient voltage problems since the introduction of GE-MOV® varistors in 1972. The GE-MOV® team is constantly researching the causes and effects of transients and developing new solutions to meet all types of transient suppression needs; committed to innovation beyond today's technology.

As the field of electronics has grown rapidly through the use of solid-state components, so have the applications for surge suppressors to protect these transientsensitive devices. Innovations such as surface-mount technology have also altered the demand profile by adding packaging considerations to functional ones.

As a result of innovation and research, the GE-MOV® line of metal-oxide varistors has expanded to include surface-mount devices, new high-energy packages, connector-pin varistors, and high-temperature, lowprofile varistors. These new products supplement the GE-MOV® line of radial, axial, and high-energy packaged varistors, already the broadest in the industry.

Series	Ratings & Characteristics Table Page(s)
СН	13
SM	14, 15
СР	16
MA	17
ZA	18, 19
LA	20
RA	21, 22
PA	23
DA/DB	24
BA/BB	24
CA	25
High Reliability	26

GE-MOV® Specification Guide

GE-MOV® Features

- **FAMILY FEATURES:**
- Wide Voltage/Energy Range
- Excellent Clamp Ratio

TYPE FEATURES: CH/SM Series

Surface Mount Varistors

- Better Performance
- Higher Reliability
- Lower Equipment Cost
- Saves on Board Height/Bulk/Weight

CP Series

Connector Pin Varistors

- Provides transient protection in connectors
- Available in 22, 20, and 16 gauge sizes

MA Series

- Axial Package
- Wide Voltage Range
- Automatic Insertion

- Power
 - No Follow-On Current

ZA Series

- Radial Package
- Low Voltage Operation

LA Series

- Radial Package
- Line Voltage Operation
- UL Recognized

RA Series

- Low Profile
- High Temperature Capability
- Precise Seating Plane
- In-Line Leads

PA Series

- Rigid Mountdown
- NEMA Creep and Strike Distance
- Quick Connect Terminal
- UL Recognized

- Fast Response TimeLow Standby
- UL Recognized

DA, DB, BA, BB Series

- High Energy Capability
- Rigid Terminals
- Isolated
- Low Inductance
- Improved Creep and Strike
- UL Recognized

CA Series

Industrial Discs

Hi Reliability Series

- 100% Prescreened
- 100% Process Conditioning
- Meets Military Specifications

GE Centennial Advertisement

How does GE intend to keep its lead in transient protection?

Staying power.

Most people recognize GE-MOV® varistors as the ultimate in system transient protection. With good reason. These metal oxide varistors, or movistors, are the result of research and experience that stems from the early years of General Electric, celebrating in 1978 its 100th birthday.

You may have shared our excitement along the GE path to leadership. Steinmetz' lightning generator demonstration in 1922. Anderson's lightning measurements on the Empire State Building in the 1930's. The definitive study of surge voltages in residential and industrial circuits formulated by Martzloff and Hahn of GE's Corporate R&D Center in 1970. And, of course, GE's \$10 million investment relating to the introduction of GE-MOV® varistors six years ago.

But in our view, the best is yet to come. GE's R&D work on transient protection continues to find more

sophisticated materials, better measurements and standardization. Soon, you'll be able to put the resulting new products and new ideas to work for you.

Experience, Innovation. Staying power. It's what you've come to expect, and can expect from GE when you need transient protection.

For the full story on GE-MOV® varistors, call your local authorized GE semiconductor distributor, or write General Electric Co., Electronics Park 7-49, Syracuse, N.Y. 13221. 222-06 ® Registered Trademark of General Electric Co

> There's more to GE semiconductors than meets the eye

GENERAL ELECTRIC

Avatars of the GE Transient Voltage Suppression Manual 1976 - 2004

Browsing the Web in 2004 for varistor vendors delivers the following message:

Divested Product Family

TRANSIENT VOLTAGE PRODUCTS

The former Harris Semiconductor and RCA Solid State family of transient voltage products (Radial Varistors, Multi-Layer Varistors, Industrial MOVs, Diode Arrays and Surgector TVS Thyristors) were sold to Littlefuse, Inc. These include products with prefixes of LA, ZA, CIII, MLA, MLE, AUML, RA, BB, MA, HA, NA and SP.