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QUASI-SYSTOLIC PROCESSOR AND
QUASI-SYSTOLIC ARRAY

CROSS REFERENCE TO RELATED
APPLICATIONS

The application claims priority to U.S. Provisional Patent
Application Ser. No. 62/812,953 filed Mar. 1, 2019, the
disclosure of which is incorporated herein by reference in its
entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This invention was made with United States Government
support from the National Institute of Standards and Tech-
nology (NIST), an agency of the United States Department
of Commerce and under Agreement No. 00014-20-1-2031
awarded by the Office of Naval Research and the Defense
Advanced Research Program Agency and under a Coopera-
tive Research Agreement Award from NIST to the Univer-
sity of Maryland under Agreement No. 70NANB14H209.
The Government has certain rights in the invention. Licens-
ing inquiries may be directed to the Technology Partnerships
Office, NIST, Gaithersburg, Md., 99; voice (301)-975-2573;
email tpo@nist.gov; reference NIST Docket Number
19-026US1.

BRIEF DESCRIPTION

Disclosed is a quasi-systolic processor comprising: a
plurality of forward input transmission lines that individu-
ally receive a forward datum, and a number of forward input
transmission lines is s; a plurality of forward output trans-
mission lines that individually receive a forward output, and
a number of forward output transmission lines is s; a
plurality of backward input transmission lines that individu-
ally receive a backward datum, and a number of backward
input transmission lines is s; a plurality of backward output
transmission lines that individually receive a backward
output, and a number of backward output transmission lines
is s; a plurality of primary processors with a number of
primary processors being f, such that:

each primary processor is connected to: one pair of the
forward input transmission lines that comprises: a first
forward input transmission line from which the primary
processor receives a first forward datum and produces a first
forward output from the first forward datum; and a second
forward input transmission line from which the primary
processor receives a second forward datum and produces a
second forward output from the second forward datum; one
pair of the forward output transmission lines that comprises:
a first forward output transmission line that receives the first
forward output from the primary processor; and a second
forward output transmission line that receives the second
forward output from the primary processor; one pair of the
backward input transmission lines that comprises: a first
backward input transmission line from which the primary
processor receives a first backward datum and produces a
first backward output from the first backward datum; and a
second backward input transmission line from which the
primary processor receives a second backward datum and
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produces a second backward output from the second back-
ward datum; and one pair of the backward output transmis-
sion lines that comprises: a first backward output transmis-
sion line that receives the first backward output from the
primary processor; and a second backward output transmis-
sion line that receives the second backward output from the
primary processor; and each primary processor comprises: a
forward linear transform processor in electrical, magnetic,
mechanical, or photonic communication with the first for-
ward input transmission line, the second forward input
transmission line, the first forward output transmission line,
the second forward output transmission line, and a phase
angle memory and that: receives the first forward datum
from the first forward input transmission line, the second
forward datum from the second forward input transmission
line, and a phase angle from the phase angle memory; and
linearly transforms the first forward datum and the second
forward datum through a rotation about the phase angle to
produce the first forward output and the second forward
output that are independent combinations of the first forward
datum and the second forward datum; a backward linear
transform processor in electrical, magnetic, mechanical, or
photonic communication with the first backward input trans-
mission line, the second backward input transmission line,
the first backward output transmission line, the second
backward output transmission line, and the phase angle
memory and that: receives the first backward datum from the
first backward input transmission line, the second backward
datum from the second backward input transmission line,
and the phase angle from the phase angle memory; and
linearly transforms the first backward datum and the second
backward datum through a rotation about the phase angle to
produce the first backward output and the second backward
output that are independent combinations of the first back-
ward datum and the second backward datum; the phase
angle memory in electrical, magnetic, mechanical, or pho-
tonic communication with the forward linear transform
processor and the backward linear transform processor and
that: stores the phase angle; communicates to the phase
angle to the forward linear transform processor and the
backward linear transform processor; receives a counter
signal from a counter; receives a scaled accumulated phase
from a phase angle accumulation memory; and updates the
phase angle with the scaled accumulated phase in response
to receiving the counter signal from the counter; and the
phase angle accumulation memory in electrical, magnetic,
mechanical, or photonic communication with the counter
and the forward linear transform processor and that: receives
the counter signal from the counter, the first forward output
from the forward linear transform processor, and an accu-
mulation reset signal from a accumulator controller; and
produces the accumulated phase by cumulatively summing
the first forward output; and resetting the accumulated phase
to the accumulation reset signal in response to receiving the
counter signal; and when s is odd, an identity processor that
is connected to: one forward input transmission line from
which the identity processor receives forward datum and
produces an identity output as forward output from the
forward datum; and one forward output transmission line
that receives the forward output from the identity processor;
one backward input transmission line from which the iden-
tity processor receives backward datum and produces back-
ward output from the backward datum; and one backward
output transmission line that receives the backward output
from the identity processor, wherein each forward input
transmission line is connected to one of: a single primary
processor or a single identity processor of the quasi-systolic
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processor; each backward input transmission line is con-
nected to one of: a single primary processor or a single
identity processor of the quasi-systolic processor; each for-
ward output transmission line is connected to one of: a single
primary processor or a single identity processor of the
quasi-systolic processor; and each backward output trans-
mission line is connected to one of: a single primary
processor or a single identity processor of the quasi-systolic
processor.

Disclosed is a quasi-systolic array comprising: a primary
quasi-systolic processor; an edge row bank in data commu-
nication with the primary quasi-systolic processor and com-
prising a plurality of edge quasi-systolic processors; an edge
column bank in data communication with the primary quasi-
systolic processor and comprising a plurality of edge quasi-
systolic processors; an interior bank in data communication
with the edge row bank and the edge column bank and
comprising a plurality of interior quasi-systolic processors,
such that each primary quasi-systolic processor, edge quasi-
systolic processor, and interior quasi-systolic processor
independently comprise a quasi-systolic processor of claim
1, and each quasi-systolic processor is in electrical, mag-
netic, mechanical, or photonic communication with another
quasi-systolic processor, and the quasi-systolic processors
are disposed and electrically connected in rows and columns
of quasi-systolic processors, such that: the primary quasi-
systolic processor and the edge row bank are disposed in a
first row of the quasi-systolic array; the primary quasi-
systolic processor and the edge column bank are disposed in
a first column of the quasi-systolic array; the primary
quasi-systolic processor initially receives forward datum
before any other quasi-systolic processor in the quasi-
systolic array and initially produces forward output from the
initially received forward datum before any other quasi-
systolic processor in the quasi-systolic array; at least half of
the forward output transmission lines of the primary quasi-
systolic processor is connected to a single edge quasi-
systolic processor of the edge row bank, and at least half of
the forward output transmission lines of the primary quasi-
systolic processor is connected to a single edge quasi-
systolic processor of the edge column bank; in the edge row
bank, edge quasi-systolic processors are electrically con-
nected to each other in seriatum, and a number of forward
input transmission lines halves sequentially from quasi-
systolic processor to quasi-systolic processor; in the edge
column bank, edge quasi-systolic processors are electrically
connected to each other in seriatum, and a number of
forward input transmission lines halves sequentially from
quasi-systolic processor to quasi-systolic processor; and in
the interior bank, an interior quasi-systolic processor
receives forward datum and produces backward datum that
is subjected to backward propagation through interior quasi-
systolic processors in the interior bank and edge quasi-
systolic processors in the edge row bank and the edge
column bank and finally received by the primary quasi-
systolic processor.

Disclosed is a process for performing streaming eigen-
updates in a hardware neuromorphic network that comprises
the quasi-systolic array of claim 6, the process comprising:
receiving, by the primary quasi-systolic processor of the
quasi-systolic array, a first forward datum and a second
forward datum; producing, by the primary quasi-systolic
processor from the first forward datum and the second
forward datum, a first forward output and a second forward
output; receiving the first forward output from the primary
quasi-systolic processor by the edge row bank, and serially
iteratively transforming and reducing a dimensionality of the
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first forward output by the edge quasi-systolic processors of
the edge row bank to produce third forward data for the
interior quasi-systolic processors in the interior bank; receiv-
ing the second forward output from the primary quasi-
systolic processor by the edge column bank, and serially
iteratively transforming and reducing a dimensionality of the
second forward output by the edge quasi-systolic processors
of the edge column bank to produce fourth forward data for
the interior quasi-systolic processors in the interior bank;
receiving the third forward data and the fourth forward data
by the interior quasi-systolic processors in the interior bank
and producing first backward data and second backward date
from the third forward data and the fourth forward data and
backward propagating the first backward data and the sec-
ond backward data through the interior quasi-systolic pro-
cessors in the interior bank by serially iteratively transform-
ing the first backward data and the fourth backward data by
the interior quasi-systolic processors to produce third back-
ward data and fourth backward data; receiving the third
backward data from the interior bank by the edge row bank,
and serially iteratively transforming the third backward data
by the edge quasi-systolic processors of the edge row bank
to produce fifth backward data for the primary quasi-systolic
processor; receiving the fourth backward data from the
interior bank by the edge column bank, and serially itera-
tively transforming the fourth backward data by the edge
quasi-systolic processors of the edge column bank to pro-
duce sixth backward data for the primary quasi-systolic
processor; receiving the fifth backward data from the edge
row bank and the sixth backward data from the edge column
bank by the primary quasi-systolic processor, and transform-
ing the fifth backward data and the sixth backward data by
the primary quasi-systolic processor to produce final back-
ward data to perform streaming eigen-updates in the hard-
ware neuromorphic network.

BRIEF DESCRIPTION OF THE DRAWINGS

The following description cannot be considered limiting
in any way. With reference to the accompanying drawings,
like elements are numbered alike.

FIG. 1 shows a quasi-systolic processor in panels A and
B;

FIG. 2 shows a quasi-systolic processor in panels A and
B;

FIG. 3 shows a primary processor;

FIG. 4 shows an identity processor;

FIG. 5 shows an intercommunication along transmission
lines between a first quasi-systolic processor and a second
quasi-systolic processor;

FIG. 6 shows a quasi-systolic array in a generalized
configuration;

FIG. 7 shows a quasi-systolic array that includes an
arbitrary number of forward input transmission lines of a
primary quasi-systolic processor and corresponding num-
bers of edge quasi-systolic processors and interior quasi-
systolic processors;

FIG. 8 shows a quasi-systolic array that includes eight
forward input transmission lines of a primary quasi-systolic
processor and corresponding numbers of edge quasi-systolic
processors and interior quasi-systolic processors;

FIG. 9 shows a quasi-systolic array that includes four
forward input transmission lines of a primary quasi-systolic
processor and corresponding numbers of edge quasi-systolic
processors and interior quasi-systolic processors;

FIG. 10 shows a neuromorphic network that includes a
quasi-systolic array;
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FIG. 11 shows a plurality of transformations;

FIG. 12 shows a quasi-systolic array;

FIG. 13 shows a machine learning machine that includes
an NxM memory array, a kxN memory array, and a kxM
memory array. The short-term memory array stores updates
of NxM array that are periodically transferred. The short-
term memory arrays can equivalently be in combination
with the NxM array to store and use a prediction of the
future state of the NxM array;

FIG. 14 shows a matrix decomposition machine, wherein
streaming input data (x*/ and ") is combined with short-
term memory block in a Compute Matrix Decomposition
block. The output of this block updates the kxN memory
block and the kxM memory block;

FIG. 15 shows (A) show a graph of normalized contri-
bution versus singular value index for an example of nor-
malized singular values of a middle layer of a 728%x256x
128x10 network trained for MNIST with ReL.U and
sigmoidal activation, wherein a batch size was 10 000. Panel
B shows a graph of cumulative contribution versus singular
value index for a cumulative sum of singular values, wherein
the sum of the first few vectors approached the total sum of
one and include most of the batch information;

FIG. 16 shows a comparison of training algorithms for
(A) stochastic gradient descent (SGD), (B) mini-batch gra-
dient descent (MBGD), (C) singular value decomposition
(SVD) approximation of a batch, and (D) streaming batch
eigenupdates (SBE), wherein SGD and SBE are rank 1 and
calculated on the fly and provide a highest degree of
acceleration;

FIG. 17 shows a difference between SBE values and the
full SVD values for (A) and (C) singular vectors X’ and A’
for

(X' vaf)]

e=1 —abs( —
[Ix=11

and (B) and (D) singular values for

2
o
e=1- abs(j].
s

Batch sizes were 32 for panel A and B and 1024 for panel
C and D. The larger batches had greater fidelity with more
iterations. Increases in the difference corresponded to the
update of the weight matrix and subsequent change in the
gradient;

FIG. 18 shows training set loss functions under different
SGD and batch learning rules (for a batch size of 32) versus
a number of epochs in panel A and matrix updates in panel
B. SVD and SBE included more epochs to train and fewer
matrix updates than MBGD and SGD; and

FIG. 19 shows an graphs for different training rules versus
batch size including in panel A the number of epochs to train
the training set loss function down to 0.1 (dashed lines) and
0.01 (solid lines) and in panel B the number of matrix
updates to set the loss function to 0.1 (dashed lines) and to
0.01 (solid lines). SVD and SBE training rules increased
update efliciency compared to MBGD and SGD.

DETAILED DESCRIPTION

A detailed description of one or more embodiments is
presented herein by way of exemplification and not limita-
tion.

35

40

W

0

6

It has been discovered that for hardware accelerated
machine learning systems a quasi-systolic array that
includes a plurality of quasi-systolic processors calculate a
low rank matrix decomposition to approximate a full rank
update matrix without explicitly calculating a full rank
update matrix. Advantageously, the quasi-systolic array
trains a hardware neuromorphic network at a greater effi-
ciency in terms of area, time, and energy than conventional
systolic processors. Moreover, quasi-systolic array provides
a computer architecture that efficiently calculates a weight
matrix update for the hardware neuromorphic network.
Neuromorphic networks can include billions of unique,
tunable parameters. For each parameter under operation,
hardware calculates how each parameter should be tuned.
Beneficially, the quasi-systolic array performs operations of
an approximation algorithm for this calculation with less
memory overhead. Parameters in the hardware neuromor-
phic network can be stored in a physical crossbar array that
has a matrix representation, referred to as a main parameter
array. Conventional architectures update the matrix by cal-
culating an additional update matrix to transfer into the main
parameter array. A dimension of the update matrix is as large
as that of the main parameter array. In contract, the quasi-
systolic array provides matrix decomposition methods, such
as streaming principal component analysis, to calculate an
approximation of the update matrix using far fewer param-
eters stored in memory. As a result of the fewer number of
memory locations used and calculations to train the network
performed by the quasi-systolic array, the quasi-systolic
array reduces time, area, and energy needed to operate the
neuromorphic hardware system as compared with conven-
tional arrays of systolic processors.

In an embodiment, with reference to FIG. 1, FIG. 2, FIG.
3, FIG. 4, and FIG. 5, quasi-systolic processor 201 includes
a plurality of forward input transmission lines 209 that
individually receive forward datum 208, and a number of
forward input transmission lines 209 is s; a plurality of
forward output transmission lines 216 that individually
receive a forward output 212, and a number of forward
output transmission lines 216 is s; a plurality of backward
input transmission lines 210 that individually receive a
backward datum 211, and a number of backward input
transmission lines 210 is s; a plurality of backward output
transmission lines 217 that individually receive a backward
output 213, and a number of backward output transmission
lines 217 is s; a plurality of primary processor 202 with a
number of primary processor 202 being f, such that

Each primary processor 202 is connected to: one pair of
forward input transmission lines 209 that includes first
forward input transmission line 209.1 from which primary
processor 202 receives first forward datum 208.1 and pro-
duces first forward output 212.1 from first forward datum
208.1, and second forward input transmission line 209.2
from which primary processor 202 receives second forward
datum 208.2 and produces second forward output 212.2
from second forward datum 208.2; one pair of forward
output transmission lines 216 that includes first forward
output transmission line 216.1 that receives first forward
output 212.1 from primary processor 202, and second for-
ward output transmission line 216.2 that receives second
forward output 212.2 from primary processor 202; one pair
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of backward input transmission lines 210 that includes first
backward input transmission line 210.1 from which primary
processor 202 receives first backward datum 211.1 and
produces first backward output 213.1 from first backward
datum 211.1, and second backward input transmission line
210.2 from which primary processor 202 receives second
backward datum 211.2 and produces second backward out-
put 213.2 from second backward datum 211.2; and one pair
of backward output transmission lines 217 that include first
backward output transmission line 217.1 that receives first
backward output 213.1 from primary processor 202, and
second backward output transmission line 217.2 that
receives second backward output 213.2 from primary pro-
cessor 202.

Each primary processor 202 includes forward linear trans-
form processor 218 in electrical, magnetic, mechanical, or
photonic communication with first forward input transmis-
sion line 209.1, second forward input transmission line
209.2, first forward output transmission line 216.1, second
forward output transmission line 216.2, and phase angle
memory 220. Forward linear transform processor 218
receives first forward datum 208.1 from first forward input
transmission line 209.1, second forward datum 208.2 from
second forward input transmission line 209.2, and phase
angle 226 from phase angle memory 220; and linearly
transforms first forward datum 208.1 and second forward
datum 208.2 through a rotation about phase angle 226 to
produce first forward output 212.1 and second forward
output 212.2 that are independent combinations of first
forward datum 208.1 and second forward datum 208.2. Each
primary processor 202 also includes backward linear trans-
form processor 219 in electrical, magnetic, mechanical, or
photonic communication with first backward input transmis-
sion line 210.1, second backward input transmission line
210.2, first backward output transmission line 217.1, second
backward output transmission line 217.2, and phase angle
memory 220. Backward linear transform processor 219
receives first backward datum 211.1 from first backward
input transmission line 210.1, second backward datum 211.2
from second backward input transmission line 210.2, and
phase angle 226 from phase angle memory 220; and linearly
transforms first backward datum 211.1 and second backward
datum 211.2 through a rotation about phase angle 226 to
produce first backward output 213.1 and second backward
output 213.2 that are independent combinations of first
backward datum 211.1 and second backward datum 211.2.
Each primary processor 202 also includes phase angle
memory 220 and phase angle accumulation memory 221.

Phase angle memory 220 is in electrical, magnetic,
mechanical, or photonic communication with forward linear
transform processor 218 and backward linear transform
processor 219 and stores phase angle 226; communicates
phase angle 226 to forward linear transform processor 218
and backward linear transform processor 219; receives
counter signal 227 from counter 222; receives scaled accu-
mulated phase 229 from phase angle accumulation memory
221; and updates phase angle 226 with scaled accumulated
phase 229 in response to receiving counter signal 227 from
counter 222.

Phase angle accumulation memory 221 is in electrical,
magnetic, mechanical, or photonic communication with
counter 222 and forward linear transform processor 218 and
receives counter signal 227 from counter 222, first forward
output 212.1 from forward linear transform processor 218,
and an accumulation reset signal 230 from accumulator
controller 224; and produces accumulated phase 228 by
cumulatively summing first forward output 212.1; and reset-

20

25

30

35

40

45

50

55

60

65

8

ting accumulated phase 228 to accumulation reset signal 230
in response to receiving counter signal 227.

When s is odd, quasi-systolic processor 201 includes
identity processor 214 that is connected to: one forward
input transmission line 209 from which identity processor
214 receives forward datum 208 and produces identity
output 215 as forward output 212 from forward datum 208;
one forward output transmission line 216 that receives the
forward output 212 from identity processor 214; one back-
ward input transmission line 210 from which identity pro-
cessor 214 receives backward datum 211 and produces
backward output 213 from backward datum 211; and one
backward output transmission line 217 that receives back-
ward output 213 from identity processor 214.

In quasi-systolic processor 201, each forward input trans-
mission line 209 is connected to one of: a single primary
processor 202 or a single identity processor 214 of quasi-
systolic processor 201; each backward input transmission
line 210 is connected to one of: a single primary processor
202 or a single identity processor 214 of quasi-systolic
processor 201; each forward output transmission line 216 is
connected to one of: a single primary processor 202 or a
single identity processor 214 of quasi-systolic processor
201; and each backward output transmission line 217 is
connected to one of: a single primary processor 202 or a
single identity processor 214 of quasi-systolic processor
201.

In an embodiment, with reference to FIG. 3, primary
processor 202 also include accumulator controller 224 in
electrical, magnetic, mechanical, or photonic communica-
tion with phase angle accumulation memory 221; and coun-
ter 222 in electrical, magnetic, mechanical, or photonic
communication with phase angle accumulation memory
221, phase angle memory 220, and backward linear trans-
form processor 219. Counter 222 receives accumulated
phase 228 from phase angle accumulation memory 221;
receives second backward output 213.2 from backward
linear transform processor 219; and produces scaled accu-
mulated phase 229 by applying second backward output
213.2 to accumulated phase 228.

According to an embodiment, with reference to FIG. 4,
quasi-systolic processor 201 identity processor 214
includes: first dummy input member 225.1 in electrical,
magnetic, mechanical, or photonic communication with
second forward linear transform processor 218 and that
communicates first dummy input data 234 to second forward
linear transform processor 218; and second forward linear
transform processor 218 in electrical, magnetic, mechanical,
or photonic communication with forward input transmission
line 209, second phase angle memory 220, forward output
transmission line 216, and first dummy output member 231.
Second forward linear transform processor 218 receives
forward datum 208 from forward input transmission line
209, first dummy input data 234 from first dummy input
member 225.2, and zero phase angle 232 from second phase
angle memory 220; and linearly transforms forward datum
208 and first dummy input data 234 through rotation about
zero phase angle 232 to produce identity output 215 as
forward output 212 and first dummy output data 235, such
that forward output 212 is identical to forward datum 208.

In an embodiment, identity processor 214 also includes:
second dummy input member 225.2 in electrical, magnetic,
mechanical, or photonic communication with second back-
ward linear transform processor 219 and that communicates
second dummy input data 234 to second forward linear
transform processor 218; and second backward linear trans-
form processor 219 in electrical, magnetic, mechanical, or
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photonic communication with backward input transmission
line 210, second phase angle memory 220, backward output
transmission line 217, and second dummy output member
231 and that: receives backward datum 211 from backward
input transmission line 210, second dummy input data 234
from second dummy input member 225.2, and zero phase
angle 232 from second phase angle memory 220; and
linearly transforms backward datum 211 and second dummy
input data 234 through rotation about zero phase angle 232
to produce backward output 213 and second dummy output
data 235, such that backward output 213 is identical to
backward datum 211.

A plurality of quasi-systolic processors 201 can be inter-
connected in quasi-systolic array 200. In an embodiment,
with reference to FIG. 5 for two quasi-systolic processors
201 of a quasi-systolic array 200, FIG. 6 for a generalized
quasi-systolic array 200, FIG. 7 for quasi-systolic array 200
with an arbitrary number of first data received by primary
quasi-systolic processor 236, FIG. 8 for eight first data
received by primary quasi-systolic processor 236, and FIG.
9 for four first data received by primary quasi-systolic
processor 236, quasi-systolic array 200 includes: primary
quasi-systolic processor 236; edge row bank 239 in data
communication (e.g., edge forward data flow 242 and edge
backward data flow 243) with primary quasi-systolic pro-
cessor 236 and including a plurality of edge quasi-systolic
processors 237; edge column bank 240 in data communica-
tion (e.g., edge forward data flow 242 and edge backward
data flow 243) with primary quasi-systolic processor 236
and including a plurality of edge quasi-systolic processors
237, interior bank 241 in data communication (e.g., interior
backward data flow 245 and interior backward data flow
245) with edge row bank 239 and edge column bank 240 and
including a plurality of interior quasi-systolic processors
238, wherein each primary quasi-systolic processor 236,
edge quasi-systolic processor 237, and interior quasi-sys-
tolic processor 238 independently are a quasi-systolic pro-
cessor 201; each quasi-systolic processor 201 is in electrical,
magnetic, mechanical, or photonic communication with
another quasi-systolic processor 2011. Quasi-systolic pro-
cessors 201 are disposed and electrically connected in rows
and columns. Primary quasi-systolic processor 236 and edge
row bank 239 are disposed in a first row of quasi-systolic
array 200; primary quasi-systolic processor 236 and edge
column bank 240 are disposed in a first column of quasi-
systolic array 200. Here, primary quasi-systolic processor
236 initially receives forward datum 208 before any other
quasi-systolic processor 201 in quasi-systolic array 200 and
initially produces forward output 212 from the initially
received forward datum 208 before any other quasi-systolic
processor 201 in primary quasi-systolic processor 236. At
least half of the forward output transmission lines of the
primary quasi-systolic processor 236 is connected to a single
edge quasi-systolic processor 237 of the edge row bank 239,
and at least half of forward output transmission lines 216 of
primary quasi-systolic processor 236 is connected to a single
edge quasi-systolic processor 237 of edge column bank 240.
In edge row bank 239, edge quasi-systolic processors 237
are electrically connected to each other in seriatum, and a
number of forward input transmission lines 209 halves
sequentially from quasi-systolic processor 201 to quasi-
systolic processor 201. In edge column bank 240, edge
quasi-systolic processors 237 are electrically connected to
each other in seriatum, and a number of forward input
transmission lines 209 halves sequentially from quasi-sys-
tolic processor 201 to quasi-systolic processor 201. In inte-
rior bank 241, interior quasi-systolic processor 238 receives
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forward datum 208 and produces backward datum 211 that
is subjected to backward propagation through interior quasi-
systolic processors in interior bank 241 and edge quasi-
systolic processors 237 in edge row bank 239 and edge
column bank 240 and finally received by primary quasi-
systolic processor 236.

A plurality of quasi-systolic arrays 200 can be intercon-
nected in neuromorphic network 203. In an embodiment,
with reference to FIG. 10, neuromorphic network 203
includes a plurality of quasi-systolic arrays 200 in data
communication with forward data member 206 to receive
forward datum 208 from forward data member 206 and in
data communication with backward data member 248 to
receive backward datum 211 from quasi-systolic arrays 200.
Controller 204 is in communication with forward data
member 206 and backward data member 248 for control of
with forward data member 206 and backward data member
248.

Several data are communicated in quasi-systolic proces-
sor 201, primary processor 202, and identity processor 214
and include forward datum 208, backward datum 211,
forward output 212, backward output 213, identity output
215, dummy input data 234, and dummy output data 235. It
is contemplated that forward datum 208, backward datum
211, forward output 212, backward output 213, identity
output 215, dummy input data 234, and dummy output data
235 independently can include multiple bit digital voltages,
analog voltage signals, multiple bit photonic signals, analog
photonic signals (encoded in either intensity or polariza-
tion), or spin waves to generate information about the
gradient of the neural network training and can be raw
image, sound, text, video, medical information at the input
layer or processed information of this nature from deeper
layers into the neural network as well as back-propagated
error information from the final layer or processed back-
propagated error information from the final layer. Exem-
plary data include an image of a cat, a video of a child, the
text of a novel, as well as information about whether the
network correctly analyzes the image of the cat, the video of
the child, or the text of the novel. Moreover, in addition to
the data from the network layer, these data can also be the
modified data from the quasi-systolic processor. Data can
take the form of temporal pulses of from 100 picoseconds to
1 second, specifically from 10 nanoseconds to 1 microsec-
ond, and more specifically from 10 to 50 nanoseconds.
These patterns can include 1 bit to 256 bits or more
specifically from 1 bit to 4 bits. The voltage composing the
signals can be from —10 Volts to 10 Volts or more specifi-
cally from 0 Volts to 3.3 Volts. In photonic embodiments
these signals can be composed from 1 to 10'* photons or
more specifically from 1 to 1000 photons. In an embodi-
ment, data includes an 8 digital bit string with O Volts being
logical low and 3.3 Volts being logical high derived from the
pixel information from a digital image as could be taken
with a digital camera. In an embodiment, forward datum 208
is an 8 digital bit string with 0 Volts being logical low and
3.3 Volts being logical high from a digital image. In an
embodiment, backward datum 211 is an 8 big digital bit
string with 0 Volts being logical low and 3.3 volts being
logical high containing information about the classification
error. In an embodiment, forward output 212 is an 8 bit
digital string of linearly transformed information from a
forward datum 208 In an embodiment, backward output 213
is an 8 bit digital string with a linearly transformed infor-
mation from datum 211 In an embodiment, identity output
215 outputs an 8 bit digital string (dummy output data 235)
which equal to its inputted forward datum 208. In an
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embodiment, dummy input data 234 is an 8 big digital string
representing the number zero. In an embodiment, dummy
output data 235 is an 8 bit digital string which is equal to its
inputted forward datum 208.

Data are communicated along various transmission lines,
e.g., forward input transmission line 209, backward input
transmission line 210, forward output transmission line 216,
backward output transmission line 217, communication line
233, and the like. Such transmission lines independently can
include a conductive metal line that includes copper, alu-
minum, or niobium or can include a wave guide that
includes silicon nitride or silicon. Exemplary transmission
lines include metallization layers in foundry silicon pro-
cesses, or layers composed on printed circuit boards, or
waveguides etched into silicon or composed of fiberoptic
cables. Moreover, such lines can be encased in a planarized
layer of dielectric. In an embodiment, transmission lines
include includes a set of 8, 1 micron tall by 250 nm wide
copper lines arrayed such that each line contains one bit of
information. It should be appreciated that transmission lines
interconnect quasi-systolic processors 201 in quasi-systolic
array 200. With reference to FIG. 5, FIG. 6, and FIG. 7,
adjacent quasi-systolic processors (201.1, 201.2) are con-
figured such that first forward input transmission lines 209.1
connected to first quasi-systolic processor 201.1 receive and
communicate first forward data 208.1 to first quasi-systolic
processor 201.1 so that first primary processor 202.1 of first
quasi-systolic processor 201.1 produces first forward output
2121 from a combination of first forward data 208.1.
Subsequently, first forward output 212.1 from first primary
processor 202.1 in first quasi-systolic processor 201.1 is
communicated in first forward output transmission line
216.1 from first quasi-systolic processor 201.1 to adjacent
second quasi-systolic processor 201.2 that is in direct serial
communication with first quasi-systolic processor 201.1. In
this configuration, first forward output transmission line
216.1 of first quasi-systolic processor 201.1 becomes second
forward input transmission line 209.2 of second quasi-
systolic processor 201.2, and first forward output 212.1 is
second forward datum 208.2 received by second primary
processor 202.2. Accordingly, it should be appreciated that
second backward input transmission lines 210.2 connected
to second primary processor 202.2 of second quasi-systolic
processor 201.2 receive and communicate second backward
data 211.2 along second backward input transmission lines
210.2 to second quasi-systolic processor 201.2 so that sec-
ond primary processor 202.2 of second quasi-systolic pro-
cessor 201.2 produces second backward output 213.2 from
a combination of second backward data 211.2. Subse-
quently, second backward output 213.2 from second primary
processor 202.2 in second quasi-systolic processor 201.2 is
communicated in second backward output transmission line
217.1 from second quasi-systolic processor 201.2 to adja-
cent first quasi-systolic processor 201.1 that is in direct serial
communication with second quasi-systolic processor 201.2.
In this configuration, second backward output transmission
line 217.2 of second quasi-systolic processor 201.2 becomes
first backward input transmission line 210.2 of first quasi-
systolic processor 201.1, and second backward output 213.2
is first backward datum 211.1 received by first primary
processor 202.1.

Data (e.g., forward datum 208, backward datum 211,
dummy input data 234, dummy output data 235, and the
like) are processed by forward linear transform processor
218, backward linear transform processor 219, in coordina-
tion with phase angle memory 220, phase angle accumula-
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tion memory 221, accumulation multiplier 223, accumulator
controller 224, and dummy input member 225.

Forward linear transform processor 218 receives forward
datum 208 and produces forward output 212. Forward linear
transform processor 218 can include a transistor, polariza-
tion grating or crystal, interferometer, memory such as a
resistive switch, static random access memory, magnetic
tunnel junction, or flash memory, and the like to perform a
rotation or other linear operation as can be performed by a
2 by 2 matrix multiplication and can be a CORDIC proces-
sor, a polarization rotator, or a crossbar array of resistive
switches. Exemplary forward linear transform processors
218 a forward array of 1-48 shift and add registers arrayed
to form a CORDIC processor or more specifically a forward
array of 8 shift and add registers. Moreover, these systems
can be mass produced using conventional silicon and non-
silicon foundry processes. In an embodiment, forward linear
transform processor 218 includes a series of 8 digital bit shift
registers and 8 digital bit adders arrayed to perform a
CORDIC vector matrix multiplication.

Wither reference to FIG. 3, phase angle memory 220
receives scaled accumulated phase 229 and counter signal
227 and produces phase angle 226 that is communicated to
forward linear transform processor 218 and backward linear
transform processor 219. Phase angle memory 220 can
include static random access memory cells, dynamic random
access cells, flash memories, resistive memories and mag-
netic tunnel junctions can store the information to determine
how to linearly transform data within a forward linear
transform processors 218 and can include a memory as
described above or a combination of such memory. Exem-
plary phase angle memory 220 includes banks of static
random access memory cells storing a 1 to 256 bit digital
number. Moreover, phase memory can be updated or
accessed to change the phase angle stored in the memory by
the application of voltages or other signals to the phase angle
memory. In an embodiment, phase angle memory 220
includes a bank of 8 static random-access memory cells
composed of integrated transistors. Here, phase angle 226
can include multiple digital voltages levels, quantized quan-
tities of charges, the orientation of a magnetic spin of one or
more electrons, an analog or digital state of a memory such
as a phase angle memory 220, or a temporal time delay
between two events to represent the information of the phase
angle to be passed to the forward linear transform processor
218 or the backward linear transform processor 219 and can
be changed, e.g., updated, depending on the data flowing
through the quasi-systolic array. Exemplary phase angle 226
includes 8 digital voltage levels from 0 V to 3.3 V or an
analog value stored as resistance from 1 Kohm to 100
GOhm. Moreover, such phase angle can be transmitted in a
way similar to forward datum 208 or backward datum 211
along transmission lines such as forward input transmission
line 209 or backward input transmission line 210. In an
embodiment, phase angle 226 includes a 4 bit digital voltage
signal with 0 V being logical zero and 3.3 V being logical 1.
Also, counter signal 227 can include multiple bit digital
voltages, analog voltage signals, multiple bit photonic sig-
nals, analog photonic signals (encoded in either intensity or
polarization), or spin waves that can be transmitted across a
transmission line such as forward input transmission line
209. Exemplary counter signals 227 include a 4 bit digital
voltage signal with 0 V being logical zero and 3.3 V being
logical 1. Moreover, this digital signal can be any width in
time from 1 ns to 1 s or more specifically from 10 ns to 100
ns. In an embodiment, counter signal 227 includes an
electrical impulse from 0 V to 3.3 V with a 10 ns pulse
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width. Further, scaled accumulated phase 229 can include
multiple digital voltages levels, quantized quantities of
charges, the orientation of a magnetic spin of one or more
electrons, an analog or digital state of a memory such as a
phase angle memory 220, or a temporal time delay between
two events to update the phase angle 226 stored within a
phase angle memory 220 and can be changed or updated
depending on the data flowing through the quasi-systolic
array Exemplary scaled accumulated phases 229 include a
1-256 bit digital voltage signal with 0 V being logical zero
and 3.3 V being logical 1 or more specifically a 4 bit digital
voltage signal, or could be implemented with an analog
value stored as resistance from 1 KOhm to 100 GOhm.
Moreover, scaled accumulated phase 229 can be updated or
accessed to change the phase angle stored in the memory by
the application of voltages or other signals to the scaled
phase angle memory. In an embodiment, scaled accumulated
phase 229 includes 8 digital voltage levels from 0 V to 3.3
V.

Counter 222 communicates counter signal 227 to phase
angle memory 220 and phase angle accumulation memory
221. Counter 222 can include a series of static random
memory access cells, dynamic random access memory cells,
nonvolatile memories such as resistive switches, magnetic
tunnel junctions, or flash memories, a digital or analog adder
that include transistors, a comparator composed of transis-
tors, and the like to accumulate the number of cycles that
have passed and upon reaching a threshold updating the
phase angle memory 220. Exemplary counters 222 include
1 to 1024 bit static random access memory cells, a 1 to 2048
bit adder, a 1 to 2048 bit comparator or more specifically two
banks of 4 bit to 8 bit static random access memory cells, a
8 bit to 16 bit adder, and a 8 bit to 16 bit comparator.
Moreover, counter 227 can transmit data across a transmis-
sion line such as forward input transmission line 209 or other
similar transition line. In an embodiment, counter 222
includes 16 static random access memory cells, a 16 bit
adder and a 16 bit comparator.

Phase angle accumulation memory 221 receives counter
signal 227, forward output 212, and accumulation reset
signal 230 and produces accumulated phase 228 therefrom.
Phase angle accumulation memory 221 can include static
random access memory cells, dynamic random access cells,
flash memories, resistive memories and magnetic tunnel
junctions to store the information needed to determine how
to linearly transform data within a forward linear transform
processors 218 and can memory as previously described.
Exemplary phase angle accumulation memory 221 include
banks of static random access memory cells storing a 1 to
256 bit digital number. Moreover, this phase memory can be
updated or accessed to change the phase angle stored in the
memory by the application of voltages or other signals to the
phase angle memory. In an embodiment, phase angle accu-
mulation memory 221 includes a bank of 8 static random-
access memory cells composed of integrated transistors. It is
contemplated that accumulated phase 228 can include mul-
tiple digital voltages levels, quantized quantities of charges,
the orientation of a magnetic spin of one or more electrons,
an analog or digital state of a memory such as phase angle
accumulation memory 221, or a temporal time delay
between two events to represent the information of the phase
angle to be passed to forward linear transform processor 218
or backward linear transform processor 219 and can be
changed or updated depending on the data flowing through
the quasi-systolic array. Exemplary accumulated phase 228
includes 8 digital voltage levels from 0 V to 3.3 V or an
analog value stored as resistance from 1 Kohm to 100
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GOhm. Moreover, such angle can be transmitted in a way
similar to forward datum 208 or backward datum 211 along
transmission lines such as forward input transmission line
209 or backward input transmission line 210. In an embodi-
ment, accumulated phase 228 includes a 4 bit digital voltage
signal with 0 V being logical zero and 3.3 V being logical 1.

Accumulator controller 224 communicates accumulated
phase 228 to accumulation multiplier 223. Accumulator
controller 224 can include a series of static random memory
access cells, dynamic random access memory cells, non-
volatile memories such as resistive switches, magnetic tun-
nel junctions, or flash memories, a digital or analog adder
composed of transistors, a comparator composed of transis-
tors, and the like to accumulate the number of cycles that
have passed and upon reaching a threshold triggering the
accumulated phase 228 to transfer to the accumulation
multiplier 223. Accumulator controller 224 can include 1 to
1024 bit static random access memory cells, a 1 to 2048 bit
adder, a 1 to 2048 bit comparator or more specifically two
banks of 4 bit to 8 bit static random access memory cells, a
8 bit to 16 bit adder, and a 8 bit to 16 bit comparator.
Moreover, accumulator controller 224 can transmit data
across a transmission line such as forward input transmis-
sion line 209 or other similar transition line. In an embodi-
ment, accumulator controller 224 includes a 16 static ran-
dom access memory cells, a 16 bit adder and a 16 bit
comparator. Accumulation multiplier 223 receives accumu-
lated phase 228 and backward output 213 and produces
scaled accumulated phase 229 therefrom. Accumulation
multiplier 223 can include digital or analog multipliers
composed of transistors, magnetic tunnel junctions, resistive
memories, static random access memories, flash memories,
or dynamic random access memories to multiply two num-
bers. Exemplary accumulation multiplier 223 include arrays
of 1-10° transistors, or more precisely 10-50 transistors.
Moreover, these transistors are laid out consistent with
Boolean algebra such that the inputs to the transistors
cascade to produce the logical multiplication of the two
input. In an embodiment, accumulation multiplier 223
includes a 16 bit digital Boolean multiplier circuit composed
of transistors.

Backward linear transform processor 219 receives phase
angle 226 and backward datum 211 and produces backward
output 213. Backward linear transform processor 219 can
include transistors, polarization gratings or crystals, inter-
ferometers, memories such as resistive switches, static ran-
dom access memories, magnetic tunnel junctions, or flash
memories to perform a rotation or other linear operation as
can be performed by a 2 by 2 matrix multiplication and can
be a CORDIC processor, a polarization rotator, or a crossbar
array of resistive switches. Exemplary backward linear
transform processor 219 includes a forward array of 1-48
shift and add registers arrayed to form a CORDIC processor
or more specifically a forward array of 8 shift and add
registers. Moreover, these systems can be mass produced
using conventional silicon and non-silicon foundry pro-
cesses. In an embodiment, backward linear transform pro-
cessor 219 includes a series of 8 digital bit shift registers and
8 digital bit adders arrayed to perform a CORDIC vector
matrix multiplication.

With reference to FIG. 4, in identity processor 214,
forward linear transform processor 218 receives forward
datum 208 along communication line 233, dummy input
data 234, and zero phase angle 232 and produces dummy
output data 235 therefrom. Dummy input data 234 can
include multiple bit digital voltages, analog voltage signals,
multiple bit photonic signals, analog photonic signals (en-
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coded in either intensity or polarization), or spin waves to
generate fixed information so that the processing is consis-
tent despite the presence of a missing input. Exemplary
dummy input data 234 include a 1 to 1024 digital voltage
string composed entirely of zeros, or zero photons along an
input photonic channel. The dummy input data 234 can
include temporal pulse width from 100 picoseconds to 1
second, specifically from 10 nanoseconds to 1 microsecond,
and more specifically from 10 to 50 nanoseconds. These
patterns can include 1 bit to 256 bits or more specifically
from 1 bit to 4 bits. The voltage composing the signals can
be from -10 Volts to 10 Volts or more specifically from 0O
Volts to 3.3 Volts. In photonic embodiments, these signals
can be composed from 1 to 10'2 photons or more specifically
from 1 to 1000 photons. In an embodiment, dummy input
data 234 includes an 8 digital bit string with 0 Volts being
logical low and 3.3 Volts being logical high but with all of
the members of the string being 0 Volts. Further, zero phase
angle 232 can include multiple digital voltages levels, quan-
tized quantities of charges, the orientation of a magnetic spin
of one or more electrons, an analog or digital state of a
memory such as a phase angle memory 220, or a temporal
time delay between two events to represent the information
of the phase angle to be passed to the forward linear
transform processor 218 or the backward linear transform
processor 219 and can be changed or updated depending on
the data flowing through the quasi-systolic array. Zero phase
angle 232 includes 8 digital voltage levels from 0 V to 3.3
V or an analog value stored as resistance from 1 Kohm to
100 GOhm. Moreover, such angle can be transmitted in a
way similar to forward datum 208 or backward datum 211
along transmission lines such as forward input transmission
line 209 or backward input transmission line 210. In an
embodiment, zero phase angle 232 includes a 4 bit digital
voltage signal with 0 V being logical zero and 3.3 V being
logical 1 but because it is the zero phase angle all of the bits
are logical zero. Dummy input member 225 communicates
communication line 233 and can include a conductive metal
line that can include copper, aluminum, or niobium or can
include wave guides that include silicon nitride or silicon.
Exemplary dummy input member 225 can include metalli-
zation layers in foundry silicon processes, or layers com-
posed on printed circuit boards, or waveguides etched into
silicon or composed of fiberoptic cables. Moreover, these
lines are encased in a planarized layer of dielectric. In an
embodiment, dummy input member 225 include includes a
set of 8, 1 micron tall by 250 nm wide copper lines arrayed
such that each line contains one bit of information.

Phase angle memory 220 communicates zero phase angle
232 to forward linear transform processor 218 and backward
linear transform processor 219. Phase angle memory 220
can include static random access memory cells, dynamic
random access cells, flash memories, resistive memories and
magnetic tunnel junctions to store the information to deter-
mine how to linearly transform data within a forward linear
transform processors 218 and can include different types of
the above memories. Exemplary phase angle memory 220
includes banks of static random access memory cells storing
a 1 to 256 bit digital number. Moreover, phase angle
memory 220 can be updated or accessed to change the phase
angle stored in the memory by the application of voltages or
other signals to the phase angle memory. In an embodiment,
phase angle memory 220 includes a bank of 8 static random-
access memory cells composed of integrated transistors.
Dummy output member 231 receives dummy output data
235. Dummy output member 231 can include static random
access memory cells, dynamic random access cells, flash
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memories, resistive memories and magnetic tunnel junctions
to store the dummy output data 235 and can include different
types of the above memories. Exemplary phase angle
memory 220 includes banks of static random access memory
cells storing a 1 to 256 bit digital number. In an embodiment,
dummy output member 231 includes a bank of 8 static
random-access memory cells composed of integrated tran-
sistors.

In an embodiment, with reference to FIG. 10, quasi-
systolic arrays 200 are in communication with forward data
member 206 to receive forward datum 208 and in commu-
nication with backward data member 248 to communicate
backward datum 211 thereto. forward data member 206 And
backward data member 248 are in communication and under
control of controller 204. Forward data member 206 can
include volatile or nonvolatile memory elements such as
static random access memories, magnetic tunnel junctions,
resistive memories, flash memories, or dynamic random
access memory to store new forward datum 208 type data or
temporarily store already processed forward datum 208.
Exemplary forward data member 206 includes 10-10° non-
volatile or volatile memory units operating as a first-in-first-
out buffer of data. Moreover, the memory can be accessed or
overwritten at any time. In an embodiment, forward data
member 206 includes 16,384 memory cells. Also, backward
data member 248 can include volatile or nonvolatile
memory elements such as static random access memories,
magnetic tunnel junctions, resistive memories, flash memo-
ries, or dynamic random access memory so as to store new
forward datum 208 type data or temporarily store already
processed backward datum 211, Exemplary forward data
member 206 include 10-10° nonvolatile or volatile memory
units operating as a first-in-first-out buffer of data. More-
over, the memory can be accessed or overwritten at any time.
In an embodiment, forward data member 206 includes
16,384 memory cells. Further, controller 204 can include an
arithmetic logic unit, a central processing unit, a field
programmable gate array composed of integrated silicon or
discrete printed circuit board components that can manage
flow of data in and out of the quasi-systolic array as well as
control the clocking of the system. Exemplary controller 204
includes arithmetic logic units and central processing units
using. Moreover, these components can be integrated into
silicon and fabricated out of transistors and have access to
external sources of memory. In an embodiment, controller
204 includes a central processing unit based on a reduced
instruction set processor.

Further, the quasi-systolic array can be assembled into a
system in which the quasi-systolic array receives electrical
power from which to provide current and voltage to all of its
components, wherein controller 204 or edge forward output
transmission line 216 or edge backward output transmission
line 217 has access to external data inputs for which a
desired action of the quasi-systolic array is to be computed.
This system could be a single chip, system of chips, or chip
packaged and integrated on a circuit board with adequate
power for the quasi-systolic array operation. For digital
embodiments, components can be synchronized to an exter-
nal clock to provide arrival of data to correspond with its
calculation.

Quasi-systolic array 200 can be made in various ways. In
an embodiment, a process for making quasi-systolic array
200 includes the layout of an electronic or photonic circuit
according to foundry design rules, the production of litho-
graphic mask sets, the photolithographic patterning of a
semiconductor wafer, the implantation of dopants into that
wafer, followed by the oxidation or deposition of a gate
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oxide, or additional fabrication of metallization or wave
guide layers for the wiring of the circuit information.

The process for making quasi-systolic array 200 also can
include annealing of semiconductor wafer, the passivation of
the wafer, the singulation and packaging of individual die
from the wafer. For nonvolatile memories, it can include
placement of nonvolatile memories within the metallization,
wiring, or waveguide layers of the semiconductor wafer.

In an embodiment, a process for making quasi-systolic
processor 201, primary processor 202, and identity proces-
sor 214 independently include the layout of an electronic or
photonic circuit according to foundry design rules, the
production of lithographic mask sets, the photolithographic
patterning of a semiconductor wafer, the implantation of
dopants into that wafer, followed by the oxidation or depo-
sition of a gate oxide, and the additional fabrication of
metallization or wave guide layers for the wiring of the
circuit information.

The process for making quasi-systolic processor 201,
primary processor 202, and identity processor 214 also can
include annealing of semiconductor wafer, the passivation of
the wafer, the singulation and packaging of individual die
from the wafer. For nonvolatile memories, it can include the
placement of nonvolatile memories within the metallization,
wiring, or waveguide layers of the semiconductor wafer.

Quasi-systolic array 200, quasi-systolic processor 201,
and primary processor 202 have numerous advantageous
and unexpected benefits and uses. In an embodiment, with
reference to FIG. 6, a process for performing streaming
eigen-updates in a hardware neuromorphic network that
includes quasi-systolic array 200 includes: receiving, by
primary quasi-systolic processor 236 of quasi-systolic array
200, first forward datum 208 and second forward datum 208;
producing, by primary quasi-systolic processor 236 from
first forward datum 208 and second forward datum 208, first
forward output 212 and second forward output 212; receiv-
ing first forward output 212 from primary quasi-systolic
processor 236 by edge row bank 239, and serially iteratively
transforming and reducing a dimensionality of first forward
output 212 by the edge quasi-systolic processors of edge row
bank 239 to produce third forward data for the interior
quasi-systolic processors in interior bank 241; receiving
second forward output 212 from primary quasi-systolic
processor 236 by edge column bank 240, and serially
iteratively transforming and reducing a dimensionality of
second forward output 212 by edge quasi-systolic processors
of edge column bank 240 to produce fourth forward data for
interior quasi-systolic processor 238 in interior bank 241;
receiving the third forward data and the fourth forward data
by interior quasi-systolic processor 238 in interior bank 241
and producing first backward data from the third forward
data and the fourth forward data and backward propagating
the first backward data through the interior quasi-systolic
processors in interior bank 241 by serially iteratively trans-
forming the first backward data by the interior quasi-systolic
processors to produce third backward data and fourth back-
ward data; receiving second forward output 212 from pri-
mary quasi-systolic processor 236 by edge column bank
240, and serially iteratively transforming and reducing a
dimensionality of second forward output 212 by edge quasi-
systolic processors of edge column bank 240 to produce
second backward data for interior quasi-systolic processor
238; receiving the third backward data from interior bank
241 by edge row bank 239, and serially iteratively trans-
forming the third backward data by the edge quasi-systolic
processors of edge row bank 239 to produce fifth backward
data for primary quasi-systolic processor 236; receiving the
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fourth backward data from interior bank 241 and second
backward data by edge column bank 240, and serially
iteratively transforming the fourth backward data by the
edge quasi-systolic processors of edge column bank 240 to
produce sixth backward data for primary quasi-systolic
processor 236; and receiving the fifth backward data from
edge row bank 239 and the sixth backward data from edge
column bank 240 by primary quasi-systolic processor 236,
and transforming the fifth backward data and the sixth
backward data by primary quasi-systolic processor 236 to
produce final backward data to perform streaming eigen-
updates in the hardware neuromorphic network. In the
process for performing streaming eigen-updates, receiving,
by the primary quasi-systolic processor 236 of the quasi-
systolic array 200, first forward datum 208 and second
forward datum 208 occurs by applying the signal informa-
tion of these datums to the transmission lines and then
propagating the information along the first forward input
transmission line 209 and the second forward input trans-
mission line 209.

In the process for performing streaming eigen-updates,
producing, by primary quasi-systolic processor 236 from
first forward datum 208 and second forward datum 208, first
forward output 212 and second forward output 212 occurs
by applying the forward datum 208 and second forward
datum 208 to quasi-systolic processor 201 by accessing its
forward input transmission line 209.1 and forward input
transmission line 209.2. Applying forward datum 208 and
second forward datum 208 activates forward linear trans-
form processor 218 and reading the output of forward linear
transform processor 218 as the values of first forward output
212 and second forward output 212. In an embodiment,
inputs are transformed by a coordinate rotation digital
computer implementing a series of additions and bit shifts to
achieve a rotation by phase angle 226. At the end of this
process, outputs appear spontaneously as a shift on the
voltage levels of the output which can be read by probing of
the values with a voltmeter or propagated in the quasi-
systolic array.

In the process for performing streaming eigen-updates,
receiving first forward output 212 from primary quasi-
systolic processor 236 by edge row bank 239, and serially
iteratively transforming and reducing a dimensionality of
first forward output 212 by edge quasi-systolic processors of
edge row bank 239 to produce third forward data for interior
quasi-systolic processors in interior bank 241 occurs by
applying the second forward datum 208 to quasi-systolic
processor 201.B by accessing its forward input transmission
line 209.1. Applying forward datum 208 activates the inte-
rior forward linear transform processor 218 and reading the
output of the forward linear transform processor 6 as the
values of the first forward output 212. In an embodiment,
inputs are transformed by a coordinate rotation digital
computer implementing a series of additions and bit shifts to
achieve a rotation by the stored phase angle. At the end of
this process, outputs appear spontaneously as a shift on the
voltage levels of the output that can be read by probing
values with a voltmeter or propagated in the quasi-systolic
array.

In the process for performing streaming eigen-updates,
receiving second forward output 212 from primary quasi-
systolic processor 236 by edge column bank 240, and
serially iteratively transforming and reducing a dimension-
ality of second forward output 212 by edge quasi-systolic
processors of edge column bank 240 to produce fourth
forward data for interior quasi-systolic processor 238 in
interior bank 241 occurs by applying second forward datum
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208 to a quasi-systolic processor 201.B by accessing its
forward input transmission line 209. Applying forward
datum 208 activates interior forward linear transform pro-
cessor 218 and reading the output of forward linear trans-
form processor 218 as the values of first forward output
212.1 and second forward output 212.2. In an embodiment,
inputs are transformed by a coordinate rotation digital
computer implementing a series of additions and bit shifts to
achieve a rotation by the stored phase angle 226. At the end
of this process, outputs appear spontaneously as a shift on
the voltage levels of the output that can be read by probing
values with a voltmeter or propagated in the quasi-systolic
array.

In the process for performing streaming eigen-updates,
receiving the third forward data and the fourth forward data
by interior quasi-systolic processor 238 in interior bank 241
occurs by applying the signal information of these datums to
the transmission lines and then propagating the information
along second forward input transmission line 209.

In the process for performing streaming eigen-updates,
producing first backward datum 211 by way of interior
quasi-systolic processor 238 in interior bank 241 occurs by
applying the third forward datum 208 and fourth third
forward datum 208 to a quasi-systolic processor 201.A by
accessing its forward input transmission line 209.1 and
forward input transmission line 209.2. Applying forward
datum 208 activates interior forward linear transform pro-
cessor 218 and reading the output of the forward linear
transform processor as values of first forward output 212.1
and second forward output 212.2. In an embodiment, inputs
are transformed by a coordinate rotation digital computer
implementing a series of additions and bit shifts to achieve
a rotation by stored phase angle 226. This process can be
repeated iteratively and in order across each of quasi-
systolic processors 201.A until final quasi-systolic processor
201.A produces first backward datum 211 at its output at
edge of interior bank 241 where outputs appear spontane-
ously as a shift on the voltage levels of the output that can
be read by probing values with a voltmeter or backward
propagated in the quasi-systolic array or exchanged with
backward datum 211 of a neighboring quasi-systolic array
200 to be back-propagated.

In the process for performing streaming eigen-updates,
producing second backward datum 211 from second forward
data by way of edge quasi-systolic processors of edge
column bank 240 occurs by applying second forward datum
208 to quasi-systolic processor 201.B by accessing its for-
ward input transmission line 209.1. Applying forward datum
208 activates interior forward linear transform processor 218
and reading the output of the forward linear transform
processor as the values of first forward output 212.1. In an
embodiment, inputs are transformed by a coordinate rotation
digital computer implementing a series of additions and bit
shifts to achieve a rotation by stored phase angle 226. This
process can be repeated iteratively and in order across each
of quasi-systolic processor 201.B until final quasi-systolic
processor 201.B produces second backward datum 211 at its
output at the end of edge column bank 240 where outputs
appear spontaneously as a shift on the voltage levels of the
output that can be read by probing values with a voltmeter
or backward propagated in the quasi-systolic array or
exchanged with backward datum 211 of a neighboring
quasi-systolic array 200 to be back-propagated.

In the process for performing streaming eigen-updates,
producing third backward datum 211 and fourth backward
datum 211 by way of interior quasi-systolic processor 238 in
interior bank 241 occurs by applying first backward datum

10

20

25

30

35

40

45

50

55

60

65

20

211 to quasi-systolic processor 201.A. by accessing its
backward input transmission line 210.1 and backward input
transmission line 210.2. Applying backward datum 211
activates interior forward linear transform processor 218 and
reading the output of backward linear transform processor
219 as the values of first backward output 213.1 and second
backward output 213.2. In an embodiment, inputs are trans-
formed by a coordinate rotation digital computer implement-
ing a series of additions and bit shifts to achieve a rotation
by stored phase angle 226. This process can be repeated
iteratively and in order across each of the quasi-systolic
processor 201.A until final quasi-systolic processor 201.A
produces third and fourth backward datum 211 at its output
at either edge of interior bank 241 where the outputs would
appear spontaneously as a shift on the voltage levels of the
output that can be read by probing values with a voltmeter
or backward propagated to edge row bank 239 and edge
column bank 240.

In the process for performing streaming eigen-updates,
producing fifth backward data by edge quasi-systolic pro-
cessors of edge row bank 239 occurs by applying the fourth
backward datum 211 to a quasi-systolic processor 201.B by
accessing its backward input transmission line 210.1 and
backward input transmission line 210.2. Applying backward
datum 211 activates interior forward linear transform pro-
cessor 218 and reading the output of backward linear
transform processor 219 as values of first backward output
213.1 and second backward output 213.2. In an embodi-
ment, inputs are transformed by a coordinate rotation digital
computer implementing a series of additions and bit shifts to
achieve a rotation by stored phase angle 226. This process
can be repeated iteratively and in order across each of
quasi-systolic processor 201.B until final quasi-systolic pro-
cessor 201.B produces fifth backward datum 211 at its
output at edge of edge row bank 239 where outputs appear
spontaneously as a shift on the voltage levels of the output
that can be read by probing values with a voltmeter or
backward propagated to primary quasi-systolic processor
236.

In the process for performing streaming eigen-updates,
producing sixth backward data by way of edge quasi-
systolic processors of edge column bank 240 occurs by
applying second backward datum 211 and fourth backward
datum 211 to quasi-systolic processor 201.B by accessing its
backward input transmission line 210.1 and backward input
transmission line 210.2. Applying backward datum 211
activates interior forward linear transform processor 218 and
reading the output of backward linear transform processor
219 as values of first backward output 213.1 and second
backward output 213.2. In an embodiment, inputs are trans-
formed by a coordinate rotation digital computer implement-
ing a series of additions and bit shifts to achieve a rotation
by stored phase angle 226. This process can be repeated
iteratively and in order across each of quasi-systolic pro-
cessor 201.B until final quasi-systolic processor 201.B pro-
duces sixth backward datum 211 at its output at edge of edge
column bank 240 where outputs appear spontaneously as a
shift on the voltage levels of the output that can be read by
probing values with a voltmeter or backward propagated to
primary quasi-systolic processor 236.

In the process for performing streaming eigen-updates,
producing final backward data by way of primary quasi-
systolic processor 236 occurs by applying fifth backward
datum 211 and sixth backward datum 211 to quasi-systolic
processor 201.A by accessing its backward input transmis-
sion line 210.1 and backward input transmission line 210.2.
Applying backward datum 211 activates interior forward
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linear transform processor 218 and reading the output of
backward linear transform processor 219 as values of first
backward output 213.1 and second backward output 213.2.
In an embodiment, inputs are transformed by a coordinate
rotation digital computer implementing a series of additions
and bit shifts to achieve a rotation by stored phase angle 226.
This process can be repeated iteratively and in order across
each of quasi-systolic processors 201.A until final quasi-
systolic processor 201.A produces final backward datum
211.

Quasi-systolic array 200, by virtue of its action of forward
and backward propagating data, stores within phase angle
226 of each quasi-systolic processor 201 information con-
cerning the data that passed through the array that could be
an eigenvector, or singular vector, or principal component of
the data. The accuracy of this data depends on the latency,
or time for forward and backward passes to complete, of the
array, and quasi-systolic array 200 has an advantage of low
latency and high speed of propagation. Quasi-systolic array
200 is both fast and accurate. In addition, eigenvectors, or
singular vectors, or principal components of the data repre-
sent an efficient form of compression of data that can be data
from a neuromorphic computer or accelerator and that
provides for efficient operation of a neuromorphic computer
or accelerator.

Quasi-systolic array 200 and processes disclosed herein
have numerous beneficial uses, including compression of
batch training data in artificial neural networks, compression
of artificial neural network training data for transmission
during model synchronization in data centers or federated
learning across wireless networks, subspace tracking of
incoming radar signals from phase arrays, and extraction of
principal components for time series data. Advantageously,
quasi-systolic array 200 overcomes limitations of technical
deficiencies of conventional compositions such as slow
speed of training, reduced accuracy from large batches due
to slow speed of training, more efficient utilization of
memory resources, and smaller size and energy consump-
tion due to fewer numbers of calculations. Further, quasi-
systolic array 200 can scale to much larger sizes than
conventional approaches due to the exponential relationship
between size and time in the quasi-systolic array 200 opera-
tion.

With reference to FIG. 11, a process for training a
neuromorphic network is shown with benefits from quasi-
systolic array 200 being shown for training the neuromor-

phic network. For input data X passed into neural network
layer W, whereupon output data ? is produced and passed

into a nonlinear function r(y) whereupon the output of 1(y)
is passed into neural network layer W, where the process of

propagation is repeated until the input data X is classified.

When the accuracy of the classification of X is determined,

—
d is backpropagated through the array to communicate the
error or accuracy of the classification. For each layer in the

—
neuromorphic network, once 8 and X are both known,
Ao L > N

W/=W'/_ 8 X/, wherein i and j are row and column
indexes of W, and 1 is a small constant. For a single pair of

—
X and 9, this is stochastic gradient descent (SGD) and
involves m+n units of memory, wherein m is a dimension of

X, and n is a dimension of 5. For B pairs of X and 3 for
updating the neuromorphic network, the update is
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that is referred to as minibatch stochastic gradient descent
and involves mxn memory units. However, when quasi-
systolic array 200 performs minibatch gradient descent, data

are represented by compressed singular vectors X and X,
known as eigenupdates and stored as phase angles 226 in the
array. Here, k pairs of vectors correspond to each of k
columns in quasi-systolic array 200. Performing an update

such that W»=W"/ qquzlkfpfipf involve k(m+n) memory
and is less than m+n units used by minibatch gradient
descent.

Quasi-systolic array 200 and processes herein unexpect-
edly provide a more memory efficient way to perform
minibatch gradient descent than conventional articles. More-
over, quasi-systolic array 200 can employ different opera-
tional modes to compress other machine learning algorithms
or represent compression of data using other methods
besides singular value decomposition such as principal
component analysis or nonnegative matrix factorization.

The articles and processes herein are illustrated further by
the following Examples, which are non-limiting.

EXAMPLES

Example 1. Schematic Operation of On-Line
Update Matrix Decomposer Architecture for
Machine Learning Hardware

A quasi-systolic array for update management of a neural
network involves computing a low rank approximation of
the update of a neural network using online streaming that
can be used for non-volatile storage media that implement a
neuromorphic network. The quasi-systolic array uses a
guess for a low rank approximation of the update. The
quasi-systolic array receives two sets of inputs that can
include an input vector and an error vector for each layer of
a neural network in addition to an estimation of the low-rank
approximation. Using these inputs and a previous estimate,
the quasi-systolic array determines a new, best guess that is
used when the quasi-systolic array performs the operation
again. In this way, quasi-systolic array performs a continu-
ous set of operations with each new set of inputs and
continuously refines the initial low rank approximation from
which it started. This low-rank approximation is a com-
pressed representation of the update that is performed on the
neural network.

Such a compressed representation allows for reducing
storage and computational resources for the update which
leads to high energy efficiency of the update. It also reduces
the number of write operations that need to be performed on
the non-volatile storage medium in question, hence extend-
ing its lifetime and endurance. The computing method
proposed may be implemented with digital or analog com-
ponents.

The quasi-systolic array can include an update matrix
decomposer architecture for machine learning hardware
shown in FIG. 13 and FIG. 14. The quasi-systolic array store
predictions of an NxM memory array in memory arrays X"/
and A’/ as shown in FIG. 13. Additional memory arrays can
be used to store singular values or other scalars to scale the
values in the memory arrays. These values program the
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NxM array or predict its future state for other calculations.
X7 A%, and additional scalars represent a k-rank matrix
decomposition of a future state of the NxM array. The
additional scalars can be singular values, learning rates, or
additional matrix decomposition values.

Index i is a randomly selected batch of training data
streaming into quasi-systolic array. Index j corresponds to a
member of a selected batch, wherein, for each member of the
batch, a transformation on X and A” is calculated and
short-term memory arrays are updated with newly calculated
values X7*' and A”7*'. The calculation takes as inputs, X'/
and A7, which are the present values of the arrays, x’/ and
&, which are input data streams corresponding to an input
to the training batch, and any additional constants or calcu-
lated scalar values and vectors from the matrix decomposi-
tion.

After a batch is completed or otherwise terminated, the
NxM memory is updated using the kxN memory, the kxM
memory, and any additional scaling values or vectors.

Example 2. Utility of Streaming Batch
Eigenupdates for Hardware Neuromorphic
Networks

Neuromorphic networks based on nanodevices, such as
metal oxide memristors, phase change memories, and flash
memory cells, have generated considerable interest for their
increased energy efficiency and density in comparison to
graphics processing units (GPUs) and central processing
units (CPUs). Though immense acceleration of the training
process can be achieved by leveraging the fact that the time
complexity of training does not scale with the network size,
it is limited by the space complexity of stochastic gradient
descent, which grows quadratically. A quasi-systolic array
reduce space complexity by using low-rank approximations
of stochastic gradient descent. This low spatial complexity
combined with streaming methods allows for significant
reductions in memory and compute overhead and provide
improvements in area, time, and energy efliciency of train-
ing. The quasi-systolic array provides streaming batch eige-
nupdate (SBE) in a neuromorphic network.

Deep neural networks (DNNs) are popular in a fields from
image recognition to natural language processing. These
systems have enormous computational overhead, particu-
larly on multiply and accumulate (MAC) operations, and
specialized hardware were made to accelerate these tasks. As
the networks are themselves tolerant to noise and low
precision computing (4-bit and below), theoretical and
experimental investigations have shown that analog imple-
mentations of DNNs using Ohm’s and Kirchhoff’s laws to
perform MAC operations can vastly accelerate the training
and reduce the energy of inference by orders of magnitude.

Investigations regarding an appropriate nanodevice suit-
able for analog inference have focused on different families
of 2-terminal memory devices (memristors, resistive ran-
dom-access memory (ReRAIVI), phase change memories
(PCM), etc.) as well as 3-terminal devices (flash memory,
lithium insertion). These devices have the desirable proper-
ties of analog tunability, high endurance, and long-term
memory needed for use in embedded inference applications.
Applications based on these devices perform well when used
for inference and have been well studied, with intermediate
scale systems having been built by integrating devices into
crossbar arrays.

Though effort has been focused on building inference
engines, work has begun to address difficulties in training
such nanodevice arrays. In crossbar architectures, there are
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two approaches to updating the weights. The first, which fits
well with weights computed in software, is to sequentially
update each weight separately. The other, called an outer
product update, is to update all the weights simultaneously
with two vectors of voltages or voltage pulses. This latter
approach is limited in the type of updates that can be applied,
but its speed and energy advantage essentially preclude the
use of the former in practical applications. The quasi-
systolic array provides outer product updates that approach
training fidelity available for algorithms based on sequential
weight updates, which are often employed in software-based
platforms.

Crossbar array architectures have O(1) complexity for
operations inference and update. For a suitably parallelized
architecture, the number of clock cycles needed for these
operations is independent of the size of the memory arrays
in each layer. For inference, this is not a problem, but for
matrix updates, this limits the training algorithm to stochas-
tic gradient descent (SGD), since this is the only algorithm
which uses rank 1 outer product updates alone. This
approach does not allow independent updates of each ele-
ment; therefore, a complete high rank update of a whole
crossbar would require a series of these outer product
updates. Though SGD is a powerful method for training,
other methods, employed in software, such as momentum,
Adagrad, or, most simply, batch update can sometimes be
superior. However, these require additional memory over-
head or explicit look-a-head updates of the memory.

Mini-batch gradient descent (MBGD), as the simplest
possible modification of SGD, is of extreme interest, par-
ticularly in the case of nanodevice arrays. It has been
suggested that it can increase tolerance with respect to
device nonidealities, as well as be employed to minimize the
number of device updates, which can be a problem in
systems with low endurance or high energy to program. In
PCM arrays, minimizing the number of updates is involved
in preventing a hard reset when the device reaches its natural
conductance limit. Additionally, in cases where the energy
of inference is significantly less than the energy of update,
reducing the number of updates could result in a substantial
decrease in the energy required to train the network, even if
it occurs at the expense of training time.

Streaming batch eigenupdates by a quasi-systolic array
provide batch update, wherein a batch is broken up into a
smaller number of principal components that are subse-
quently used to train the network. The streaming batch
eigenupdates provided by the quasi-systolic array provide
benefits of batch update and involve substantially less over-
head and have a significantly lower computational cost than
conventional systems.

The streaming batch eigenupdate provided by the quasi-
systolic array estimates representative single outer product
update for the batch. This approach is fast and minimizes the
amount of information that is stored to make each update.
An arbitrary network layer is trained on batch i with an axb
weight matrix w’. The layer receives j activations x'7 of
dimension b and backpropagated errors &7 of dimension a
per batch. In the ideal case, we would like the network to
update according to

wl=wirAw!,

where the batch average update AW’ is a sum of outer
products,

AW == &[]
W an:; [x*]
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Each term in this sum is the gradient of the loss function
of that input x'/, which ais a rank 1 matrix. The sum of the
gradients, AW, is the gradient of the batch loss function and
is in general a rank n matrix. Performing such an update with
conventional SGD includes n outer product operations. The
outer product operation itself is a rank 1 operation, and
hence an efficient alternative would entail using a low rank
matrix approximation of AW’ to reduce the total number of
updates performed. More specifically, k<n outer product
updates are performed, wherein k is the number of signifi-
cant singular values of the true gradient Aw’.

Performing the singular value decomposition (SVD) of
AW’ entails significant memory overhead and computational
cost. One solution involves employing unsupervised tech-
niques such as streaming principal component analysis
(PCA) to extract the k most significant singular vectors of a
streaming covariance matrix. An algorithm for PCA
describes evolution of neural network weights. By applying
his formalism here on the weight updates, we can extract, on
the fly, a set of k most representative vectors, of the original
rank n update. This allows us to perform memory limited
batch updates with k(a+b) additional memory units instead
of axb as used in previous studies. This amounts to using a
separate unsupervised neural network to train the network of
interest, but this network trains on the batch gradient and
involves very short-term memory as the gradient is con-
stantly changing.

For a case of k=1, define an approximation for Aw’, AWi,
in terms of left and right singular unit vectors X’ and A’
corresponding to the largest singular value, o’. The rank 1
approximation, which we call the principal eigenupdate of
the batch, is then:

IN NG
This represents the single best rank 1 approximation of
the batch update, with 1 the traditional learning rate. These

values can be estimated over a streaming batch of size n such
that

X‘_ Xi,n Ai Ai,n
TIXE T T AR

and o'~0"" using the following update rules where j runs
from 1 to n:

Kb .J' X 4 .1 i Gl '_A_"J)
i+l i+l lA®/]|
. i it
AR = J A 1 ij (x - XL
j+l j+1 [IX 54|
JYNCIIS BV RS SC kb Sl Y Cichd i)
j+1 JHLONXEEY AR

Afterwards the weight matrix is updated using the rank 1
estimators of the singular values. The next batch is calcu-
lated from the end condition of the previous batch such that
Xibl=xin  AHLI=AR" and o'*1'=cg"". The previous best
estimate is presumed to approximate the subsequent best
estimate, which is true if the learning rate is sufficiently
small.

This algorithm falls within a general family of noisy
power iterations, or power iterations performed on stochas-
tic matrices, which are known to extract the eigenvectors of
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covariance matrixes. It is, additionally, a bi-iterative method
for calculating both left and right eigenvectors.

The algorithm can be interpreted as updating the weighted
average activation and error based on the cross significance
of'its companion term. For example, the estimated activation
of the layer, X', is rotated significantly by x* subject to the
condition that

[5‘31 .Ai:j)
[1a%4]]

is large. If the error then of any particular input is small or
pointing in an uncommon direction, the estimated activation
does not change significantly. The same is true for A”7*!,
This algorithm, in the context of estimating the SVD of a
batch update matrix using streaming data, we call the
streaming batch eigenupdate (SBE) algorithm.

A feature of this approach is that it opens a tradeoff space
between the software and the hardware. On one hand, it
throws away a significant amount of the information from
the batch, which results in a low rank approximation. Hence,
for updates with higher rank, larger eigenvalue matrixes
would be less well represented and therefore take a longer
time to converge. On the other hand, this approximation,
which is a form of compression, allows for a much more
compact representation of the error, which has the potential
to dramatically reduce hardware costs. One point to note
here is that the smaller the rank of the weight update, the
more representative a low rank approximation would be.
Consequently, we might expect the eigenupdate to perform
better for activation functions that lead to sparse updates,
such as for rectifying activation functions like rectified
linear units (ReLU).

FIG. 15 shows an example of the effectiveness of the
quasi-systolic array prior to running network models. It
shows the relative significance of different singular values,
subject to the normalizing condition Z,,_," cpzzl for singular
index value p up to rank r. The plots show a representative
matrix decomposition for a particular batch update in the
middle of a conventional 728x256x32x10 network trained
on MNIST to 90% accuracy for the test set. Based on the
relative magnitude of values for our example batch, ReLU
activations can have as much as 60% of the batch informa-
tion contained in the first pair of singular vectors. From the
cumulative contribution, we can see for sigmoidal activa-
tion, which squashes the outputs of the neurons, the first 10
pairs of singular vectors can capture as much as 95% of the
information contained within our example batch. We attri-
bute this fact ultimately to the fact that despite the large sizes
of matrixes in these networks, the complexity of the trajec-
tories will ultimately be limited by significantly smaller
number of classes which are used to train the networks.

For experiments in this Example, we compare traditional
approaches, stochastic gradient descent (SGD) and mini-
batch gradient descent (MBGD), with our PCA based
approaches, specifically doing the singular value decompo-
sition (SVD) and the streaming batch eigenupdate (SBE)
estimation of the batch between matrix updates. While
MBGD and SVD cannot be efficiently implemented, SGD
and SBE can. FIG. 16 outlines the key distinctions in the
process execution of the algorithm.

To compare these approaches, we choose a very simple
network architecture of 728x100x10 neurons, using ReL. U
activation functions between layers and a cross-entropy loss
function. To control for the fact that using batches reduces
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the overall number of updates per epoch, we use a learning
rate optimizer prior to network simulations, which mini-
mizes the loss for 5 epochs. There is a hard cutoff termi-
nating our simulations after 900 epochs. Batch sizes were
varied from 20 to 213. Networks are trained on the MNIST
data set using the typical test-training partition. The exem-
plary series of networks trained below all began from the
same randomly drawn starting condition.

To illustrate the convergence of the SBE algorithm during
the batch training process, we calculate the error, €, for the
converging the singular vectors, X'/, to the true singular
vectors, X', as

(X' vaf)]

e=1- abs(—
[Ix=11

and similarly for the singular value as

2
o
e=1 —abs(,—,z]-l
s

FIG. 17 shows convergence curves of these errors during
network training for batch sizes 32 and 1024. While 1024
shows strong periodic behavior between updates and con-
vergence of the singular vectors down to an accuracy below
10-3, the smaller batch size of 32 shows periodic behavior
but no strong trends toward convergence of the approximate
singular vector. Despite this weak convergence of the sin-
gular vector, the training of the network converges.

Convergence of the singular vectors is not involved to
demonstrate convergence of the network. Convergence of
vectors during power iterations is determined by the eigen-
gap, or the gap between the target eigenvalue and the next
smallest eigenvalue of a matrix. A small eigengap leads to
significant contamination of the target vector with other
large eigenvalue vectors. This contamination complicates
finding the eigenvector itself but still pushes a network to a
lower value of the loss function.

FIG. 18 shows that all the training algorithms reduce the
training set loss function down to as low as 10-4. We find
that reducing the training set loss down to 10-2 is sufficient
to achieve 100% accuracy on the training set and therefore
about 97% to 98% accuracy on the test set. In these
simulations, the SGD function is the fastest algorithm for
training in terms of number of epochs, with MBGD, due to
its parallelism, having significantly faster wall clock time.
When re-plotting the data in terms of matrix updates, it’s
clear that the batch methods have an advantage in terms of
minimizing the number of times the memory is changed.
However, these measures do not consider the time to do the
matrix updates in hardware. Since the SVD and SBE meth-
ods use only rank 1 updates, it takes less time for them to
update the hardware by a factor of the number of elements
in the crossbar.

These general trends can be seen in FIG. 19, which shows
the number of epochs and number of matrix updates needed
to train the network to a training set loss of both 10-1 and
10-2. For this example, MBGD is clearly the highest per-
forming on all metrics, decreasing the number of updates
needed to train the network vs. SGD by more than two
orders of magnitude at a batch size of 4096. For the SBD and
SBE algorithms, the epochs to train grows much faster, and
the number of matrix updates needed to train only falls by
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a factor of 20 compared to SGD and does so at a much
smaller batch size of 128. For very small batch sizes, the
SBE algorithm performs worse than the SVD algorithm,
which we attribute to poor qualities of the update vector, but
at higher batch sizes it outperforms the SVD algorithm,
which is attributed to a mixture of better update quality but
with added stochasticity lacking in the SVD approach due to
the random degree of convergence and sampling of lower
significance eigenupdates and singular vectors.

For below, the SBE approach is lower performing than the
MBGD approach in terms of number of epochs to train and
number of matrix updates. However, its use would vastly
accelerate the wall clock time of training in a hardware
network since the transfer of the weights has the same
complexity as the SGD approach, even in cases where the
batches were stored in a local and parallel short-term
memory array. Moreover, in the case of k=1, calculating and
storing the low rank versions of activations and error (left
and right eigenvalues) take up significantly less area and
compute (O(a+b)) as compared to the full rank (O(axb))
versions.

If a higher quality update were desired, the above algo-
rithm could be extended to the calculation of multiple
eigenupdates in parallel, similar to an Oja asymmetrical
subspace network. The application of k eigenupdates would
still be significantly faster than the time needed to transfer
the point-wise or column-wise transfer for a full ranked
batch update. Based on FIG. 15, a full rank transfer is
unnecessary and possibly even detrimental if excess infor-
mation leads to over fitting.

A challenge is determining the most efficient hardware
implementation of the SBE algorithm. The major operations
involved include summation, multiplication and division.
Among them the most computationally intensive part is the
normalization operation, x™”/||x"”||. Since we may only be
working with low precision, such as 4-bit precision, and
only dealing with a linear number of computations vs.
problem size, the overhead of implementing these opera-
tions is significantly smaller when compared to their full
rank counterparts. Digital implementations of such opera-
tions can be constructed with systolic array approaches or by
quasi-systolic array, and if further energy efliciency is
required, analog approaches can be used as well.

An alternate analog approach which gets rid of the
division operation altogether is borrowed from the original
Taylor series formulation of the Oja equations, which
replaces division with a multiplication and subtraction. Such
a calculation, though, may run into issues with numerical
stability. However, the physical constraints of the system
along with the parallel calculation of additional singular
vectors could stabilize the algorithm. Calculating multiple
singular vectors accelerates convergence of the dominant
vectors. Moreover, future hardware could likely use short
term memory cells, such as trench capacitors and FET’s, to
perform resistive multiplication and dot product operations
in combination with Gilbert cells to scale the outputted
values properly.

Comparative Example 1. Systolic Array

With reference to FIG. 12, systolic array 246 includes a
plurality of systolic processors arranged in a N rows and k
columns in which adjacent systolic processors are in direct
data communication and communicate data in forward
propagation and data in backward propagation. In the sys-
tolic array, propagation of information across n rows and m
columns reduces dimensionality of input data from N to
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N-m-n. Each processing element reduces dimensionality by
one, and dimensionality reduction scales linearly with an
amount of time a datum takes to pass through the array. An
array twice as large reduces dimensionality by twice as
much, but takes twice as long to do so. By comparison, a
quasi-systolic array reduces dimensionality by a factor of
two. This multiplicative scaling provides dimensionality
reduction that scales exponentially with the number of
quasi-systolic elements. Although the area and energy
required can be the same as the systolic array, the architec-
tural arrangement of the quasi-systolic array provides the
time required to perform dimensionality reduction that is
exponentially accelerated.

The quasi-systolic array 200 achieves this reduction by
arranging systolic elements in a binary tree structure and
embedding the binary tree structure in a grid format. The
exponential acceleration provided by this organizational
structure can provide computations based on highly non-
simple group operations, where different branches of the
binary tree can act on distinct subgroups of an input space.
Matrix rotations are examples of such tasks.

Quasi-systolic arrays can be arranged in two dimensions
and can be implemented spatially in three dimensions.
Conventional systolic arrays can be a one-dimensional array
with outputs that present a subproblem to be solved by a
second one-dimensional array, which presents a subproblem
to be solved by a third one-dimensional array, and so-on
recursively, resulting in two-dimensional structures. Due to
the arrangement of elements in quasi-systolic processor 201,
they have a tree structure and are two-dimensional struc-
tures. Solving the subproblem they present with another
quasi-systolic array 200 is performed by recursively stack-
ing quasi-systolic processors 201 on top of the first, into a
third dimension.

While one or more embodiments have been shown and
described, modifications and substitutions may be made
thereto without departing from the spirit and scope of the
invention. Accordingly, it is to be understood that the present
invention has been described by way of illustrations and not
limitation. Embodiments herein can be used independently
or can be combined.

All ranges disclosed herein are inclusive of the endpoints,
and the endpoints are independently combinable with each
other. The ranges are continuous and thus contain every
value and subset thereof in the range. Unless otherwise
stated or contextually inapplicable, all percentages, when
expressing a quantity, are weight percentages. The suffix (s)
as used herein is intended to include both the singular and
the plural of the term that it modifies, thereby including at
least one of that term (e.g., the colorant(s) includes at least
one colorants). Optional or optionally means that the sub-
sequently described event or circumstance can or cannot
occur, and that the description includes instances where the
event occurs and instances where it does not. As used herein,
combination is inclusive of blends, mixtures, alloys, reaction
products, and the like.

As used herein, a combination thereof refers to a combi-
nation comprising at least one of the named constituents,
components, compounds, or elements, optionally together
with one or more of the same class of constituents, compo-
nents, compounds, or elements.

All references are incorporated herein by reference.

The use of the terms a and an and the and similar referents
in the context of describing the invention (especially in the
context of the following claims) are to be construed to cover
both the singular and the plural, unless otherwise indicated
herein or clearly contradicted by context. Or means and/or.
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It can further be noted that the terms first, second, primary,
secondary, and the like herein do not denote any order,
quantity, or importance, but rather are used to distinguish
one element from another. The modifier about used in
connection with a quantity is inclusive of the stated value
and has the meaning dictated by the context (e.g., it includes
the degree of error associated with measurement of the
particular quantity). The conjunction or is used to link
objects of a list or alternatives and is not disjunctive; rather
the elements can be used separately or can be combined
together under appropriate circumstances.

What is claimed is:

1. A quasi-systolic processor comprising:

a plurality of forward input transmission line that indi-
vidually receive a forward datum, and a number of
forward input transmission line is s;

a plurality of forward output transmission line that indi-
vidually receive a forward output, and a number of
forward output transmission line is s;

a plurality of backward input transmission line that indi-
vidually receive a backward datum, and a number of
backward input transmission line is s;

a plurality of backward output transmission line that
individually receive a backward output, and a number
of backward output transmission line is s;

a plurality of primary processor with a number of primary
processor being f, such that:

each primary processor is connected to:
one pair of the forward input transmission line that
comprises:

a first forward input transmission line from which
the primary processor receives a first forward
datum and produces a first forward output from
the first forward datum; and

a second forward input transmission line from
which the primary processor receives a second
forward datum and produces a second forward
output from the second forward datum;

one pair of the forward output transmission line that
comprises:

a first forward output transmission line that
receives the first forward output from the pri-
mary processor; and

a second forward output transmission line that
receives the second forward output from the
primary processor;

one pair of the backward input transmission line that
comprises:

a first backward input transmission line from
which the primary processor receives a first
backward datum and produces a first backward
output from the first backward datum; and

a second backward input transmission line from
which the primary processor receives a second
backward datum and produces a second back-
ward output from the second backward datum;
and

one pair of the backward output transmission line
that comprises:
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a first backward output transmission line that
receives the first backward output from the
primary processor; and

a second backward output transmission line that
receives the second backward output from the
primary processor; and

each primary processor comprises:

a forward linear transform processor in electrical,
magnetic, mechanical, or photonic communica-
tion with the first forward input transmission line,
the second forward input transmission line, the
first forward output transmission line, the second
forward output transmission line, and a phase
angle memory and that:
receives the first forward datum from the first

forward input transmission line, the second
forward datum from the second forward input
transmission line, and a phase angle from the
phase angle memory; and

linearly transforms the first forward datum and the
second forward datum through a rotation about
the phase angle to produce the first forward
output and the second forward output that are
independent combinations of the first forward
datum and the second forward datum;

a backward linear transform processor in electrical,
magnetic, mechanical, or photonic communica-
tion with the first backward input transmission
line, the second backward input transmission line,
the first backward output transmission line, the
second backward output transmission line, and the
phase angle memory and that:
receives the first backward datum from the first

backward input transmission line, the second
backward datum from the second backward
input transmission line, and the phase angle
from the phase angle memory; and

linearly transforms the first backward datum and
the second backward datum through a rotation
about the phase angle to produce the first back-
ward output and the second backward output
that are independent combinations of the first
backward datum and the second backward
datum;

the phase angle memory in electrical, magnetic,
mechanical, or photonic communication with the
forward linear transform processor and the back-
ward linear transform processor and that: stores
the phase angle; communicates the phase angle to
the forward linear transform processor and the
backward linear transform processor; receives a
counter signal from a counter; receives a scaled
accumulated phase from a phase angle accumula-
tion memory; and updates the phase angle with the
scaled accumulated phase in response to receiving
the counter signal from the counter; and

the phase angle accumulation memory in electrical,
magnetic, mechanical, or photonic communica-
tion with the counter and the forward linear trans-
form processor and that: receives the counter
signal from the counter, the first forward output
from the forward linear transform processor, and
an accumulation reset signal from an accumulator
controller; and produces the accumulated phase by
cumulatively summing the first forward output;
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and resetting the accumulated phase to the accu-
mulation reset signal in response to receiving the
counter signal; and
when s is odd, an identity processor that is connected to:
one forward input transmission line from which the
identity processor receives forward datum and pro-
duces an identity output as forward output from the
forward datum;

one forward output transmission line that receives the
forward output from the identity processor;

one backward input transmission line from which the
identity processor receives backward datum and pro-
duces backward output from the backward datum;
and

one backward output transmission line that receives the
backward output from the identity processor,

wherein each forward input transmission line is connected

to one of: a single primary processor or a single identity

processor of the quasi-systolic processor;

each backward input transmission line is connected to
one of: a single primary processor or a single identity
processor of the quasi-systolic processor;

each forward output transmission line is connected to
one of: a single primary processor or a single identity
processor of the quasi-systolic processor; and

each backward output transmission line is connected to
one of: a single primary processor or a single identity
processor of the quasi-systolic processor.

2. The quasi-systolic processor of claim 1, wherein the
primary processor further comprises the accumulator con-
troller in electrical, magnetic, mechanical, or photonic com-
munication with the phase angle accumulation memory.

3. The quasi-systolic processor of claim 1, wherein the
primary processor further comprises the counter in electri-
cal, magnetic, mechanical, or photonic communication with
the phase angle accumulation memory, the phase angle
memory, and the backward linear transform processor and
that:

receives the accumulated phase from the phase angle
accumulation memory;

receives the second backward output from the backward
linear transform processor; and

produces the scaled accumulated phase by applying the
second backward output to the accumulated phase.

4. The quasi-systolic processor of claim 1, wherein the

identity processor comprises:
a first dummy input member in electrical, magnetic,
mechanical, or photonic communication with a second
forward linear transform processor and that communi-
cates first dummy input data to the second forward
linear transform processor; and
the second forward linear transform processor in electri-
cal, magnetic, mechanical, or photonic communication
with the forward input transmission line, a second
phase angle memory, the forward output transmission
line, and a first dummy output member and that:
receives forward datum from the forward input trans-
mission line, first dummy input data from the first
dummy input member, and a zero phase angle from
the second phase angle memory; and

linearly transforms the forward datum and the first
dummy input data through rotation about the zero
phase angle to produce the identity output as forward
output and first dummy output data, such that the
forward output is identical to the forward datum.

5. The quasi-systolic processor of claim 4, wherein the
identity processor further comprises:
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a second dummy input member in electrical, magnetic,
mechanical, or photonic communication with a second
backward linear transform processor and that commu-
nicates second dummy input data to the second forward
linear transform processor; and
the second backward linear transform processor in elec-
trical, magnetic, mechanical, or photonic communica-
tion with the backward input transmission line, the
second phase angle memory, the backward output
transmission line, and a second dummy output member
and that:
receives backward datum from the backward input
transmission line, the second dummy input data from
the second dummy input member, and the zero phase
angle from the second phase angle memory; and

linearly transforms the backward datum and the second
dummy input data through rotation about the zero
phase angle to produce backward output and the
second dummy output data, such that the backward
output is identical to the backward datum.
6. A quasi-systolic array comprising:
a primary quasi-systolic processor;
an edge row bank in data communication with the primary
quasi-systolic processor and comprising a plurality of
edge quasi-systolic processors;
an edge column bank in data communication with the
primary quasi-systolic processor and comprising a plu-
rality of edge quasi-systolic processors;
an interior bank in data communication with the edge row
bank and the edge column bank and comprising a
plurality of interior quasi-systolic processors, wherein
each primary quasi-systolic processor, edge quasi-sys-
tolic processor, and interior quasi-systolic processor
independently comprise a quasi-systolic processor of
claim 1; each quasi-systolic processor is in electrical,
magnetic, mechanical, or photonic communication
with another quasi-systolic processor; and the quasi-
systolic processors are disposed and electrically con-
nected in rows and columns of quasi-systolic proces-
sors, such that:
the primary quasi-systolic processor and the edge row
bank are disposed in a first row of the quasi-systolic
array;

the primary quasi-systolic processor and the edge col-
umn bank are disposed in a first column of the
quasi-systolic array;

the primary quasi-systolic processor initially receives
forward datum before any other quasi-systolic pro-
cessor in the quasi-systolic array and initially pro-
duces forward output from the initially received
forward datum before any other quasi-systolic pro-
cessor in the primary quasi-systolic processor;

at least half of the forward output transmission lines of
the primary quasi-systolic processor is connected to
a single edge quasi-systolic processor of the edge
row bank, and at least half of the forward output
transmission lines of the primary quasi-systolic pro-
cessor is connected to a single edge quasi-systolic
processor of the edge column bank;

in the edge row bank, edge quasi-systolic processors
are electrically connected to each other in seriatum,
and a number of forward input transmission line
halves sequentially from quasi-systolic processor to
quasi-systolic processor;

in the edge column bank, edge quasi-systolic processor
are electrically connected to each other in seriatum,
and a number of forward input transmission line
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halves sequentially from quasi-systolic processor to
quasi-systolic processor; and

in the interior bank, an interior quasi-systolic processor
receives forward datum and produces backward
datum that is subjected to backward propagation
through interior quasi-systolic processors in the inte-
rior bank and edge quasi-systolic processors in the
edge row bank and the edge column bank and finally
received by the primary quasi-systolic processor.

7. The quasi-systolic array of claim 6, wherein the pri-
mary processor further comprises the accumulator controller
in electrical, magnetic, mechanical, or photonic communi-
cation with the phase angle accumulation memory.

8. The quasi-systolic array of claim 6, wherein the pri-
mary processor further comprises the counter in electrical,
magnetic, mechanical, or photonic communication with the
phase angle accumulation memory, the phase angle memory,
and the backward linear transform processor and that:

receives the accumulated phase from the phase angle
accumulation memory;

receives the second backward output from the backward
linear transform processor; and

produces the scaled accumulated phase by applying the
second backward output to the accumulated phase.

9. The quasi-systolic array of claim 6, wherein the identity

processor comprises:
a first dummy input member in electrical, magnetic,
mechanical, or photonic communication with a second
forward linear transform processor and that communi-
cates first dummy input data to the second forward
linear transform processor; and
the second forward linear transform processor in electri-
cal, magnetic, mechanical, or photonic communication
with the forward input transmission line, a second
phase angle memory, the forward output transmission
line, and a first dummy output member and that:
receives forward datum from the forward input trans-
mission line, first dummy input data from the first
dummy input member, and a zero phase angle from
the second phase angle memory; and

linearly transforms the forward datum and the first
dummy input data through rotation about the zero
phase angle to produce the identity output as forward
output and first dummy output data, such that the
forward output is identical to the forward datum.
10. The quasi-systolic array of claim 9, wherein the
identity processor further comprises:
a second dummy input member in electrical, magnetic,
mechanical, or photonic communication with a second
backward linear transform processor and that commu-
nicates second dummy input data to the second forward
linear transform processor; and
the second backward linear transform processor in elec-
trical, magnetic, mechanical, or photonic communica-
tion with the backward input transmission line, the
second phase angle memory, the backward output
transmission line, and a second dummy output member
and that:
receives backward datum from the backward input
transmission line, the second dummy input data from
the second dummy input member, and the zero phase
angle from the second phase angle memory; and

linearly transforms the backward datum and the second
dummy input data through rotation about the zero
phase angle to produce backward output and the
second dummy output data, such that the backward
output is identical to the backward datum.
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11. A process for performing streaming eigen-updates in

a hardware neuromorphic network that comprises the quasi-

systolic array of claim 6, the process comprising:

receiving, by the primary quasi-systolic processor of the
quasi-systolic array, a first forward datum and a second
forward datum;

producing, by the primary quasi-systolic processor from
the first forward datum and the second forward datum,
a first forward output and a second forward output;

receiving the first forward output from the primary quasi-
systolic processor by the edge row bank, and serially
iteratively transforming and reducing a dimensionality
of the first forward output by the edge quasi-systolic
processors of the edge row bank to produce third
forward data for the interior quasi-systolic processors
in the interior bank;

receiving the second forward output from the primary
quasi-systolic processor by the edge column bank, and
serially iteratively transforming and reducing a dimen-
sionality of the second forward output by the edge
quasi-systolic processors of the edge column bank to
produce fourth forward data for the interior quasi-
systolic processor in the interior bank;

receiving the third forward data and the fourth forward
data by the interior quasi-systolic processor in the
interior bank and producing first backward data and
second backward date from the third forward data and
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the fourth forward data and backward propagating the
first backward data and the second backward data
through the interior quasi-systolic processors in the
interior bank by serially iteratively transforming the
first backward data and the fourth backward data by the
interior quasi-systolic processors to produce third back-
ward data and fourth backward data;

receiving the third backward data from the interior bank
by the edge row bank, and serially iteratively trans-
forming the third backward data by the edge quasi-
systolic processors of the edge row bank to produce
fifth backward data for the primary quasi-systolic pro-
cessor;

receiving the fourth backward data from the interior bank
by the edge column bank, and serially iteratively trans-
forming the fourth backward data by the edge quasi-
systolic processors of the edge column bank to produce
sixth backward data for the primary quasi-systolic
processor; and

receiving the fifth backward data from the edge row bank
and the sixth backward data from the edge column bank
by the primary quasi-systolic processor, and transform-
ing the fifth backward data and the sixth backward data
by the primary quasi-systolic processor to produce final
backward data to perform streaming eigen-updates in
the hardware neuromorphic network.

* * * * *



