a2 United States Patent

Shainline et al.

US011258415B2

US 11,258,415 B2
Feb. 22, 2022

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

NEUROMIMETIC CIRCUIT

Applicant: Government of the United States of
America, as represented by the
Secretary of Commerce, Gaithersburg,
MD (US)

Inventors: Jeffrey Shainline, Boulder, CO (US);

Sae Woo Nam, Boulder, CO (US);

Sonia Buckley, Boulder, CO (US)

GOVERNMENT OF THE UNITED
STATES OF AMERICA, AS
REPRESENTED BY THE
SECRETARY OF COMMERCE,
Gaithersburg, MD (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 1105 days.

Appl. No.: 15/841,701

Filed: Dec. 14, 2017

Prior Publication Data
US 2018/0211158 Al Jul. 26, 2018
Related U.S. Application Data

Provisional application No. 62/450,266, filed on Jan.
25, 2017.

Int. CL.

HO3F 19/00 (2006.01)

GO6N 3/04 (2006.01)

GO6F 1/08 (2006.01)

GO6N 3/067 (2006.01)

GO6N 3/08 (2006.01)

GO6N 3/063 (2006.01)

U.S. CL

CPC ... HO3F 19/00 (2013.01); GOGF 1/08

(2013.01); GO6N 3/049 (2013.01); GO6N

3/0472 (2013.01); GO6N 3/063 (2013.01);
GO6N 3/0675 (2013.01); GO6N 3/088
(2013.01)
(58) Field of Classification Search

CPC ... HO3K 3/3015; HO3F 19/00; GOGF 1/08;
GO6N 3/049; GO6N 3/0675; GO6N 3/088;
GO6N 3/0472; GO6N 3/063
USPC ....cceeeee 257/14, 21, 23; 327/571; 364/807,
307/311, 324, 317, 116, 117

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,508,529 A * 4/1996 Roenker ............ HO1L 29/868

257/14

OTHER PUBLICATIONS

Pulsed neural networks consisting of single flux-quantum spiking
neurons, T. Hirose et al (Year: 2007).*

S. Jahanmirinejad and A. Fiore, “Proposal for a superconducting
photon number resolving detector with large dynamic range”, Opt.
Express, 2012, 5017, 20.

(Continued)

Primary Examiner — Arnold M Kinkead
(74) Attorney, Agent, or Firm — Office of Chief Counsel
for National Institute of Standards and Technology

(57) ABSTRACT

A neuromimetic circuit includes: a primary single photon
optoelectronic neuron; a synapse in optical communication
with the primary single photon optoelectronic neuron; and
an axonic waveguide in optical communication with the
primary single photon optoelectronic neuron and the syn-
apse such that the axonic waveguide optically interconnects
the primary single photon optoelectronic neuron and the

synapse.

18 Claims, 41 Drawing Sheets




US 11,258,415 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

A. Casaburi, et al., “Experimental evidence for photoinduced vortex
crossing in current carrying superconducting strips”, Phys. Rev. B,
2015, 214512, 92.

A. Casaburi et al., “Current distribution in a parallel configuration
superconducting strip-line detector,” Appl. Phys. Lett., 2013, 013503,
103.

F. Marsili, et al.,, “Physics and application of photon number
resolving detectors based on superconducting parallel nanowires”.
New J. Phys., 2009, 045022, 11.

A. Divochiy, et al., “Superconducting nanowire photon-number-
resolving detector at telecommunication wavelengths”, Nat. Photon,
2008, 302, 2.

* cited by examiner



US 11,258,415 B2

Sheet 1 of 41

Feb. 22, 2022

U.S. Patent

[ oandiyg

(494 9¢¢

A

¥éa

~—

N T

BTG 4

8138

iiiiiiiiiiii

~T™

012

o
N



US 11,258,415 B2

Sheet 2 of 41

Feb. 22, 2022

U.S. Patent

7 0Ing1y

Ty 1 A 1
e e
823 %35
T HERCC O R
| WL,-ﬁ SR
N .w ,,,,, It A M- w, ,,,,, “
|38 A
923 A
{ 74 £ 088
) )
Q77 A&

——

0128

|

famny
o)
N



US 11,258,415 B2

Sheet 3 of 41

Feb. 22, 2022

U.S. Patent

92¢

¢ 2IN31y

N
o

[N R )

ot RN

el s I

014

I

G ™

—

012

|

<
<
N




U.S. Patent

Feb. 22, 2022

228
/"‘"’j

Sheet 4 of 41

US 11,258,415 B2

® L S g%
o3
A b A A
<P bl
N ™ ot N
o [t
o O
T~ ™~ O3
o3 [
I
O ™ ¢« @ o ® . 3
(]
&3
O ™
[t}
A A& A 4
[o.0] jes}
N =~
(8] ot
o =
g g Pl
o
~ O
A A
<D
e o] e O
[
=} L
-~ ]
= «1
<t
ot
o oo} <
— ® b -
oq AN




US 11,258,415 B2

Sheet 5 of 41

Feb. 22, 2022

U.S. Patent

G 9an31

e e m S PR i P
. - P P : e e
A I m | 988 ooy 03 R
m T-m--wim WA-M,:N-JM m | T.-wiw:m m ,w-:N:- 81 T ’
B B "ovetS vig ! N R S s RS T
ves A ! " 82% 353 o
: : . . J
........ ®
i m e . ] DB m DR
; ! ; 083
m M T ............ ! ]
W@NN cotenes 03T m 927 . 083 81z 1
T:M,-N:m AVNJ : = ] ! ] ot
SR < 2 D ] < I SUS— S ; ¢ ¥2% % 813 w
877 444 2% %% 424 3%
007



U.S. Patent Feb. 22, 2022 Sheet 6 of 41 US 11,258,415 B2

240 246

Figure 6



U.S. Patent Feb. 22, 2022 Sheet 7 of 41 US 11,258,415 B2

240 246

Figure 7



US 11,258,415 B2

Sheet 8 of 41

Feb. 22, 2022

U.S. Patent

Q 2an3iy
82z AT
m Yt A s SEEE T "
< N m m ,,,,,,,,,,,,,,,,,,,, |~ 0ge/rTe
: s Lo
YEEFCE S L WU S
® ez
@
v9%
A ®
) v 9ZEAYE {TTTTTTTT I
: b .
< w N p N w m m | 07E/P1E
" O s
093 VEEIVeT - N ‘‘‘‘‘ D b e
753 027
0ZBHFE |
< w N | o osee
YETIHCE N _ ,\
ez 042

l

fon
¥



US 11,258,415 B2

6 2INn31y

Sheet 9 of 41

Feb. 22, 2022

U.S. Patent

Lo G oz
ogz ® 992
L ]
L
(((((((((((((( T
o L~ 0287TE
09% 997
- 07212
— )
{ \
02% 99%

44



U.S. Patent Feb. 22, 2022 Sheet 10 of 41 US 11,258,415 B2

280 284

242 S 282 g 218/230

Figure 10



U.S. Patent Feb. 22, 2022 Sheet 11 of 41 US 11,258,415 B2

(A)
222
250 252 258
218 218 S 251 S 254 p-mee S ...... :
b P
220 270 244 Q44 Lot
(B)
222
266 250 268
218 218 S 267 g 254 . S ...... :
ST-S..~2_.) S 8 o] ) )E ;
220 270 272 244 b

Figure 11



U.S. Patent Feb. 22, 2022 Sheet 12 of 41 US 11,258,415 B2

™

o oo

5 @®

=

£ et 3 a0
8

S it

e
o~




U.S. Patent

SPON recieves photons
via commmunication path

A

Feb. 22, 2022

Shee

t 13 of 41

¥

Synapse
weights
signal

Photons converted
» to electrical signal
using detector

Photonic signal
recetved in SPON

y

Synapse signal
sent over
superconducting
wire to integrated
element

y

Electrical signal
integrated

|

Integrated signal sent via
superconducting wire

/

\

Signal
decays

Integrated signal
threshold set

v

SPON receives
photonie signal

US 11,258,415 B2

A

SPON receives photons

v

QOutput neurons optical
signal to fiber to be
sent out of cryostat

v

QOutput signal sent to
superconductor!
semiconductor interface

routed

Photonic signal splits and

signals sent to
photodiode when firing
rate is monttored

A 4

Superconductor voltage
amplifier produces
output voltage, sends

signal

A 4

receive signal and
produce photonic
output

Figure 13



U.S. Patent Feb. 22, 2022 Sheet 14 of 41 US 11,258,415 B2

Figure 14




U.S. Patent Feb. 22, 2022 Sheet 15 of 41 US 11,258,415 B2

Figure 15




U.S. Patent Feb. 22, 2022 Sheet 16 of 41 US 11,258,415 B2

Spike probability

5

15

I
iy

photo

Mumber of
4 o o
b Lo

[y
<o

£ - : ; ; ;
AT RS T EA A E R
Cuerent {{ /1)

10 20 30 40 50
Mumber of incident photons ?

LS

ﬂ;s:iy.s fﬁ}( 5{} %

0 D1 00 03 04 05 06 07 0B 09 1
Current {1,/ 1)

Figure 16



US 11,258,415 B2

Sheet 17 of 41

Feb. 22, 2022

U.S. Patent

1 9an3Lyy

i,
RN
2

o
SaRee:

S

eReteReRosy

e
e
SR

e

"

%*j.

Redhin
o

20
R

e

¥

e
R

5
IO

s

SO
e




U.S. Patent Feb. 22, 2022 Sheet 18 of 41 US 11,258,415 B2

() | ig} <Y>

B

Figure 18



U.S. Patent Feb. 22, 2022 Sheet 19 of 41 US 11,258,415 B2

st
o

el

Q‘;

Lo

N2

Nanowire resistance (100 k2)

Yoltage {
4

Photons out {109

Photons in {10%)

Figure 19



U.S. Patent Feb. 22, 2022 Sheet 20 of 41 US 11,258,415 B2

QPP

Figure 20



U.S. Patent

Feb. 22, 2022 Sheet 21 of 41 US 11,258,415 B2

3

fonnsh
<3

b
<

10°

Bt
oo
roni

}nﬁk
2
£

S
<
Gt

3
[

Pt
2

Total firing energy (fJ) Energy per photon (a)

Capacitor
- T otal

10? 10°

101
Number of photons emitted

107

Figure 21



415 B2

b

US 11,258

4

7 0InsLy

Sheet 22 of 41

Feb. 22, 2022

U.S. Patent




U.S. Patent

Feb. 22, 2022 Sheet 23 of 41

PRI receiver

US 11,258,415 B2

Figure 23



U.S. Patent

Feb. 22, 2022 Sheet 24 of 41

Figure 24

US 11,258,415 B2



US 11,258,415 B2

A

(A
fe

thra

iy

Me

Sheet 25 of 41

Feb. 22, 2022

U.S. Patent

Figure 25



U.S. Patent Feb. 22, 2022 Sheet 26 of 41 US 11,258,415 B2

imh%%&imrf

Exa%mm??

Figure 26



U.S. Patent Feb. 22, 2022 Sheet 27 of 41 US 11,258,415 B2

WG plane 2

Figure 27



U.S. Patent Feb. 22, 2022 Sheet 28 of 41 US 11,258,415 B2

1¢°

1Q§

10°

Size (mm)

10°

10° 10 . 108 10°

;i /
C WG

(32334

3]

1{3@ L 1{}2 T o

4 o -
T

Figure 28



US 11,258,415 B2

Sheet 29 of 41

Feb. 22, 2022

U.S. Patent

62 oans1g

——

s

e

B
e

e epuesSeidng

XKDLOD {ENSiA AUBWI

smugjey |

eupay

Aenie (14SNS

Jake| feinau 38H4




U.S. Patent Feb. 22, 2022 Sheet 30 of 41 US 11,258,415 B2

0

-0.2

-{}.4

Intensity {(dB)

«  {nm
- 160 am

iy {dB)

L5

inten

& 9 10

Absorption (%)

1
- L nm
e 2T 1HIYY
)
0.1

0 20 40 60 80 100 120 140 160 180200
Height of spacer {nm)

Figure 30



U.S. Patent Feb. 22, 2022 Sheet 31 of 41 US 11,258,415 B2

W it = 01%

P 1 1{}%{3 : M“‘”MM
P : y

st saecances {f, z{ﬁ}w ............. R
™. 2 £ o
o :

.:'ﬂ'.\':

NG

ER

e

e L

dpoinst

Lo

{ 28 44 £50 86 1430
Number of incident photons

Figure 31



U.S. Patent Feb. 22, 2022 Sheet 32 of 41 US 11,258,415 B2

Figure 32




U.S. Patent Feb. 22, 2022 Sheet 33 of 41 US 11,258,415 B2

Figure 33




U.S. Patent Feb. 22, 2022 Sheet 34 of 41 US 11,258,415 B2

A

T

~TE

B e e YD e T

00 200 300 400 500 600
Height {(nm)

200400 600800 1000 1200 1400
Width (nm)

Figure 34



US 11,258,415 B2

Sheet 35 of 41

Feb. 22, 2022

U.S. Patent

Gg oINS

(wu) del spinSanepp
009 004 00 00¢ 00¢ 00T

<ok BUTBUBUASIIUY e b

FITRUWHLAL e

| A%mv ded wmwmmgmﬁ |
mm@ 005 00F 00t  00¢

g3




U.S. Patent Feb. 22, 2022 Sheet 36 of 41 US 11,258,415 B2

S

e

S

e

S
e

e
R,

...-
e
R

2

=

5%

S
2
s

e

£

900 nm

%

o
e
e

i
G
S

i

e

i

o

S
e

o

D=

TS
g

=

e

e

52

i

o

.
R

e

R

R

Figure 36

ey 3

P = 2000 nm

i

Sy

470 nm

SERRBIBBBRBBSBBELN
-
——-——

Wy




US 11,258,415 B2

Sheet 37 of 41

Feb. 22, 2022

U.S. Patent

Sl

e

———

¢ 2anJ1]

s
s s

2 2
s s
i i
i i
i i
2

2

e,

R
2

e

R

5
e

R

S m;w B

g it
s s

2 2
s s
i i
i i
i i
i i
i i
e
: :




U.S. Patent Feb. 22, 2022 Sheet 38 of 41 US 11,258,415 B2

Figure 38



U.S. Patent Feb. 22, 2022 Sheet 39 of 41 US 11,258,415 B2

:-. e

R S ._._m,,;,::::::~:~:~:~:-‘
SRR :-:-:-:-. :-, ORI ,-:-V-,-:i:k:::::::*:*:* R

1520 1540 1580
Wavelength {nm)}

Figure 39



U.S. Patent

Feb. 22, 2022

Sheet 40 of 41

< k) k2
N
g Do :
N H »
L aaad L el ; .."
ST W I :
@ & ? :“
R *
s :
g B
: N &
: N 2
i ‘ o
L o
! +
- e -~
o &
QG
i Q%
- G 2
s B oo
P
N P R
2 9
2 & W
. e W
)3 2 3

400 00

200
Number of crossings

A P «§3
(‘e gp) Bmod

US 11,258,415 B2

Figure 40



415 B2

258

b

Sheet 41 of 41 US 11

Feb. 22, 2022

U.S. Patent

(1 08 09 Oy 74

{ury wybuey peddeuprn

i
WU 0= AV Edild ¢

WU Q= MV Zdiid o
W08 = MV Zditd » #

R

e

I

P 2anS1y




US 11,258,415 B2

1
NEUROMIMETIC CIRCUIT

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application Ser. No. 62/450,266 filed Jan. 25, 2017,
the disclosure of which is incorporated herein by reference
in its entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This invention was made with United States Government
support from the National Institute of Standards and Tech-
nology (NIST), an agency of the United States Department
of Commerce. The Government has certain rights in the
invention. Licensing inquiries may be directed to the Tech-
nology Partnerships Office, NIST, Gaithersburg, Md.,
20899; voice (301) 301-975-2573; email tpo@nist.gov; ref-
erence NIST Docket Number 17-001US1.

BRIEF DESCRIPTION

Disclosed is a neuromimetic circuit comprising: a primary
single photon optoelectronic neuron; a synapse in optical
communication with the primary single photon optoelec-
tronic neuron; and an axonic waveguide in optical commu-
nication with the primary single photon optoelectronic neu-
ron and the synapse such that the axonic waveguide
optically interconnects the primary single photon optoelec-
tronic neuron and the synapse.

Also disclosed is a process for performing neuromimetic
computing, the process comprising: receiving a primary
signal by a primary single photon optoelectronic neuron;
producing an axonic photonic signal by the primary single
photon optoelectronic neuron; communicating the axonic
photonic signal to a synapse; receiving the axonic photonic
signal by the synapse; producing a dendritic signal in
response to receipt of the axonic photonic signal; commu-
nicating the dendritic signal from the synapse to a secondary
single photon optoelectronic neuron; receiving the dendritic
signal by the secondary single photon optoelectronic neuron;
producing a second axonic photonic signal in response to
receipt of the dendritic signal to perform neuromimetic
computing.

BRIEF DESCRIPTION OF THE DRAWINGS

The following descriptions should not be considered
limiting in any way. With reference to the accompanying
drawings, like elements are numbered alike.

FIG. 1 shows a neuromimetic circuit;

FIG. 2 shows a neuromimetic circuit;

FIG. 3 shows a neuromimetic circuit;

FIG. 4 shows a neuromimetic circuit;

FIG. 5 shows a neuromimetic circuit;

FIG. 6 shows a primary single photon optoelectronic
neuron;

FIG. 7 shows a secondary single photon optoelectronic
neuron;

FIG. 8 shows an receiver;

FIG. 9 shows an receiver;

FIG. 10 shows an transmitter;

FIG. 11 shows a synapse in panels a and b;

FIG. 12 shows a synapse;

FIG. 13 shows steps in perform neuromimetic computing;
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2

FIG. 14 shows a neuromimetic circuit;

FIG. 15 shows (a) a parallel nanowire detector (PND)
neuron circuit. (b) A PND with all wires superconducting.
(c) A PND where one of the wires is driven normal by
absorption of a single photon, redirecting the current
through the other four. (d) APND with two normal wires due
to absorption of two photons. (¢) A PND with all wires
driven normal by exceeding the critical current. A LED in
parallel with this PND now receives current, causing a firing
event;

FIG. 16 shows a Monte Carlo simulation of spike prob-
ability. (a) PND with ten SNSPDs. (b) The same simulation
as (a) but with four traces isolated for clarity. (¢) The number
of absorbed photons which gives a 50% absorption prob-
ability plotted as a function of bias current. Traces for PNDs
with 10, 20, and 40 nanowires are shown;

FIG. 17 shows a spider web neuron;

FIG. 18 shows (a) an SND circuit. (b) Component dia-
gram indicating either SND or PND array;

FIG. 19 shows electrical characteristics for SND with
Iwire=100 um. (a) Resistance versus number of photons for
the SND. Inset shows the exponential current-voltage curve
for the LED. Photons out versus photons in for SNDs with
(b) ic=4 pA, N=1% and (c) ic=8 pA, n=0.1%. Here, 1 is the
efficiency of the LED;

FIG. 20 shows neuromorphic circuit configurations. (a)
PND with nTron amplifier. (b) Integrate-and-stop firing. (c)
Neuron with the possibility for both excitatory and inhibi-
tory excitation. Green corresponds to photons inhibiting
firing and red to photons exciting firing. These photons can
have different colors. (d) Firing of the upper neuron inhibits
firing of the lower neuron. (e) Circuit for achieving self- and
upstream feedback;

FIG. 21 shows (a) an energy to generate a single photon
versus number of photons emitted for four different LED
efficiencies. (b) Contributions to total energy consumption
for a 10% eflicient LED;

FIG. 22 shows a monolithically integrated electrically
injected emissive-center LED in Si for the proposed neuro-
morphic computing application;

FIG. 23 shows a spider web neuron. (a) Overview of the
device. (b) Dendritic arbor design which combines light
from multiple neurons;

FIG. 24 shows (a) a stingray neuron. (b) FDTD simulation
of the dendritic arbor for the stingray neuron with SNSPDs
present to absorb the light and (c¢) without SNSPDs present;

FIG. 25 shows synapses with electromechanically tunable
coupling. (a) Interplane waveguide coupler. (b) Lateral
waveguide coupler. The inset shows an abstract representa-
tion of the synaptic circuit element used in subsequent
network diagrams;

FIG. 26 shows an abstract symbol definition for general
neuron with inhibition and gain;

FIG. 27 shows (a) an MLP implemented with the SOEN
platform. (b) Cross section in the x-z plane. (¢) Three-
dimensional schematic of stacked die. (a) illustrates layers of
neurons in the network, (b) illustrates planes of routing
waveguides, and (c) illustrates sheets of stacked die;

FIG. 28 shows (a) a length and width of layer versus
number of neurons in a layer assuming each neuron in a
given layer is connected to each neuron in the next layer. (b)
Number of neurons per centimeter squared versus the num-
ber of connections per neuron;

FIG. 29 shows a superconducting optoelectronic network
(SOEN) model of the mammalian visual cortex;

FIG. 30 shows an absorption of light propagating in a
waveguide with SNSPD on top in (a) parallel and (b)
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perpendicular configurations, for different spacer heights
between the SNSPD and waveguide. (c) Absorption in
waveguides of different thicknesses for different spacer
heights;

FIG. 31 shows mean number (a) and standard deviation
(b) of absorbed photons versus number of incident photons
for neuron designs where light is directed past each nanow-
ire once (single pass). Mean number (c¢) and standard
deviation (d) of absorbed photons versus number of incident
photons for neuron designs where light is directed past each
nanowire ten times;

FIG. 32 shows a flux-dissipating spider web neuron;

FIG. 33 shows (a) a flux-trapping PND circuit. (b) An
alternative PND design which avoids flux trapping;

FIG. 34 shows effective indices of refraction for various
guided modes in a waveguiding layer with index of refrac-
tion n=3.52 and cladding n=1.46. (a) Slab mode calculations
of both TE and TM modes for different film thicknesses
showing different vertical mode orders. (b) TE and TM
modes for different waveguide widths in a film of height 200
nm. The cladding index is shown as the dashed line in both
(a) and (b);

FIG. 35 shows supermode propagation constants for
200-nm-thick, 350-nm-wide waveguides with 3.52 core
index and 1.46 cladding index at A=1220 nm. The inset
shows the fractional splitting, and the mode profiles show
the symmetric mode for gaps of 100 and 600 nm;

FIG. 36 shows a 3D integration platform, utilizing alter-
nating waveguide widths to mitigate cross talk, which
increases the waveguide packing density and allows arbi-
trary co-propagation lengths;

FIG. 37 shows [(a)-(1)] fabrication in which (a) deposition
of the first a-Si film occurs; (b) patterning/etching wave-
guide structures; (c) deposition of the spacer SiO, plane (800
nm); (d) chemical-mechanical planarization (CMP) of the
spacer (~~300 nm depth); (e) deposition of a ~200 nm SiO,
thickness compensation plane to reach the target gap; (f)
repeating [(a)-(e)] based on the number of desired planes.
Top surface was not CMP’d after the final cladding depo-
sition of 1100 nm. (g) Scanning-electron-microscope cross
section of a-Si fill patterns in three planes; [(h)-(j)] optical
micrographs of representative test devices on the wafer;

FIG. 38 shows three planes of micro-ring resonators. (a)
Test device arrangement; (b) measured drop-port transmis-
sion spectra of one resonance from each ring, showing both
raw and fitted curves. Inset: drop-port transmission spectra
of identical P1, P2, and P3 rings encompassing three reso-
nance peaks, showing a nominal free-spectral range (FSR)
of ~~425 GHz;

FIG. 39 shows an interplane coupler in (a) zoom view; (b)
layout showing key design parameters; (c) perspective view
of simplified layout for cut-back measurements; (d) 2D
E-field slice of simulation result, showing complete power
transfer; (e) experimentally measured loss spectrum of 32
successive IPCs;

FIG. 40 shows waveguide crossing performance. (a)
Simplified perspective view of test devices for P1/P2 and
P1/P3 crossings; (b) experimentally measured transmitted
power in cut-back measurements; and

FIG. 41 shows waveguide cross talk for (a) a simplified
perspective view of test devices for P1/P2 and P1/P3 cross
talk paths; (b) experimentally measured cross talk values
(dots) and theoretical cross talk data (solid lines).

DETAILED DESCRIPTION

A detailed description of one or more embodiments is
presented herein by way of exemplification and not limita-
tion.
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It has been discovered that a neuromimetic circuit
includes neurons interconnected by integrated photonic
waveguides, wherein neurons receive photonic signals from
other neurons. Individual neurons sum received signals on a
waveguide-integrated photon detector. When a signal
exceeds a threshold, a current pulse is delivered to a wave-
guide-integrated photon source that delivers a signal down-
stream to other neurons. A strength of connection between
two neurons can selectively be varied in hardware or
dynamically. The neuromimetic circuit can receive a clas-
sical light level and include reverse-biased p-i-n photode-
tectors with conventional digital electronics components to
threshold. Further, the neuromimetic circuit can receive a
few-photon signals and can include superconducting single
photon detectors to threshold.

In an embodiment, with reference to FIG. 1, neuromi-
metic circuit 200 includes: primary single photon optoelec-
tronic neuron 210; synapse 222 in optical communication
with primary single photon optoelectronic neuron 210; and
axonic waveguide 220 in optical communication with the
primary single photon optoelectronic neuron 210 and syn-
apse 222 such that axonic waveguide 220 optically inter-
connects primary single photon optoelectronic neuron 210
and synapse 222. Dendritic communication path 214 can be
in communication with primary single photon optoelec-
tronic neuron 210 and can communicate primary signal 212
to primary single photon optoelectronic neuron 210. It is
contemplated that primary source 216 produces primary
signal 212.

Neuromimetic circuit 200 can include axonic waveguide
220 that communicates axonic photonic signal 218 from
primary single photon optoelectronic neuron 210 to synapse
222. Secondary single photon optoelectronic neuron 228 is
in optical communication with synapse 222 such that syn-
apse 222 interconnects primary single photon optoelectronic
neuron 210 and secondary single photon optoelectronic
neuron 228. Here, dendritic communication path 226 is in
optical communication with synapse 222 and secondary
single photon optoelectronic neuron 228, wherein dendritic
communication path 226 interconnects synapse 222 and
secondary single photon optoelectronic neuron 228. In this
manner, dendritic communication path 226 communicates
dendritic signal 224 from synapse 222 to secondary single
photon optoelectronic neuron 228, and secondary single
photon optoelectronic neuron 228 can produce axonic pho-
tonic signal 230 that is communicated to recipient 234 via
axonic waveguide 232.

An arrangement or number of primary single photon
optoelectronic neuron 210, synapse 222, and secondary
single photon optoelectronic neuron 228 can selected, e.g.,
based on a desired performance of neuromimetic circuit 200,
e.g., for performing neuromimetic computing or to achieve
a selected architecture. In an embodiment, with reference to
FIG. 2, primary single photon optoelectronic neuron 210
provides axonic photonic signal 218 to synapse 222 that
produces and communicates dendritic signals 224 to a
plurality of secondary single photon optoelectronic neurons
228. In an embodiment, with reference to FIG. 3, primary
single photon optoelectronic neurons 210 provide axonic
photonic signals 218 to synapse 222 that produces and
communicates dendritic signal 224 to secondary single
photon optoelectronic neurons 228. In an embodiment, with
reference to FIG. 4, a select number of primary single
photon optoelectronic neuron 210 provide axonic photonic
signal 218 to synapse 222 that produces and communicates
dendritic signals 224 to a select number of secondary single
photon optoelectronic neurons 228. According to an
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embodiment, with reference to FIG. 5, a select number of
primary single photon optoelectronic neuron 210 provides
axonic photonic signal 218 to synapse 222 that produces and
communicates dendritic signals 224 to a select number of
secondary single photon optoelectronic neurons 228 that can
be in communication with a select number of synapses 222,
that in turn can be in communication with a select number
of secondary single photon optoelectronic neurons 228 that
in turn can be in communication with a select number of
recipients 234. It should be appreciated that an ultimate
secondary single photon optoelectronic neuron 228 is
arranged immediately prior to axonic waveguide 232 and
recipient 234 and preceded by synapse 222.

In an embodiment, with reference to FIG. 6, primary
single photon optoelectronic neuron 210 includes transmit-
ter 246 in communication with synapse 222; receiver 240 in
communication with transmitter 246; and superconducting
wire 244 that electrically interconnects receiver 240 and
transmitter 246. Superconducting wire 244 communicates
threshold signal 242 from receiver 240 to transmitter 246.
Further, receiver 240 receives primary signal 212, and
transmitter 246 produces axonic photonic signal 218.

In an embodiment, with reference to FIG. 7, secondary
single photon optoelectronic neuron 228 includes receiver
240 in communication with synapse 222; transmitter 246 in
communication with receiver 240; and superconducting
wire 244 that electrically interconnects receiver 240 and
transmitter 246. Superconducting wire 244 communicates
threshold signal 242 from receiver 240 to transmitter 246.
Further, receiver 240 receives dendritic signal 224, and
transmitter 246 produces axonic photonic signal 230.

In an embodiment, with reference to FIG. 8, receiver 240
includes a select number of superconducting photon detec-
tors 250. For primary single photon optoelectronic neuron
210, superconducting photon detector 250 is disposed on
primary input communication path 214. For secondary
single photon optoelectronic neuron 228 superconducting
photon detector 250 is disposed on dendritic communication
path 226. Receiver 240 also includes superconducting trans-
fer synapse 252 in communication with superconducting
photon detector 250 and in electrical communication with
integrator 258 superconducting wire 244, wherein supercon-
ducting wire 244 communicates synaptic signal 254 from
superconducting transfer synapse 252 to integrator 258.
Thresholding member 264 is in electrical communication
with integrator 258 via superconducting wire 244 that com-
municates integrated signal 260 to thresholding member
264, wherein thresholding member 264 produces threshold
signal 242 that is communicated by superconducting wire
244 to transmitter 246.

According to an embodiment, with reference to FIG. 9,
receiver 240 includes a select number of superconducting
photon detectors 250 and photonic transfer synapses 266 in
optical communication with superconducting photon detec-
tors 250. For primary single photon optoelectronic neuron
210, superconducting photon detector 250 and photonic
transfer synapse 266 are disposed on dendritic communica-
tion path 214. For secondary single photon optoelectronic
neuron 228 superconducting photon detector 250 and pho-
tonic transfer synapse 266 are disposed on axonic wave-
guide 220. Superconducting photon detector 250 is in elec-
trical communication with integrator 268 that produces
threshold signal 242 that is communicated by superconduct-
ing wire 244 to transmitter 246.

In an embodiment, with reference to FIG. 10, transmitter
246 includes superconducting voltage amplifier 280 in com-
munication with integrator (258 or 268) of receiver 240; and
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photon emitter 284 in communication with superconducting
voltage amplifier 280. Superconducting wire 244 commu-
nicates transmitter electrical signal 282 from superconduct-
ing voltage amplifier 280 to photon emitter 284, and photon
emitter 284 produces axonic photonic signal (218 or 230,
depending on whether transmitter 246 is disposed in primary
single photon optoelectronic neuron 210 or secondary single
photon optoelectronic neuron 228) that is communicated
from transmitter 246 by axonic waveguide (220 or 232,
depending on whether transmitter 246 is disposed in primary
single photon optoelectronic neuron 210 or secondary single
photon optoelectronic neuron 228).

In an embodiment, with reference to FIG. 11a, synapse
222 includes synaptic axon waveguide 270 in communica-
tion with axonic waveguide 220; and superconducting pho-
ton detector 250 in communication with synaptic axon
waveguide 270. Here, superconducting photon detector 250
receives axonic photonic signal 218 from synaptic axon
waveguide 270 and communicates photonic detection signal
251 from superconducting photon detector 250 via super-
conducting wire 244 to superconducting transfer synapse
252. Superconducting transfer synapse 252 communicates
synaptic signal 254 via superconducting wire 244 to inte-
grator 258.

In an embodiment, with reference to FIG. 115, synapse
222 includes synaptic axon waveguide 270 in communica-
tion with axonic waveguide 220; and photonic transfer
synapse 266 modifies axonic photonic signal 218 to produce
post-synaptic photonic signal 267. Post-synaptic photonic
signal 267 is in optical communication with superconduct-
ing photon detector 250 via synaptic dendrite waveguide
272. Superconducting photon detector 250 communicates
synaptic signal 254 via superconducting wire 244 to inte-
grator 268.

An exemplary axonal waveguide arbor 221 is shown in
FIG. 12. Here, photon emitters 284 couple light into axonal
arbor waveguides 296. These are routed through compo-
nents including in-plane waveguide crossings 290, inter-
planar transitions 292, and photonic beam taps 294. The
light couples from an axonic waveguide 220 to a synapse
222 and into a receiver 240.

It is contemplated that primary single photon optoelec-
tronic neuron 210 can include axonic waveguides 220 and
axonal waveguide arbors 221 to route photonic signals and
220 and 221 can be nanophotonic waveguides made of
silicon, silicon nitride, or other materials with index of
refraction larger than the containing material or vacuum. It
is contemplated that primary single photon optoelectronic
neuron 210 can include synapses 222 utilizing supercon-
ducting photon detectors 250 to convert optical signals to
electrical signals, and these synapses may be superconduct-
ing-nanowire single-photon detectors made from materials
such as WSi, NbN, NbTiN, MoSi, or other superconducting
materials. The synapses 222 may also include optically
absorptive materials. The synapses 222 may also include
electronic circuit elements such as resistors, inductors,
capacitors, and Josephson junctions. In particular, Josephson
junctions may play the role of converting photons to fluxons
which can then be stored in the integrator 258.

It is contemplated that primary single photon optoelec-
tronic neuron 210 can include photon emitters 284 to
produce light or to redirect light from an external light
source. The photon emitters 284 could be light-emitting
diodes, lasers, or optical modulators.

It is contemplated that primary single photon optoelec-
tronic neuron 210 can include superconducting voltage
amplifiers 280 to produce sufficient voltage to produce light
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from a semiconductor or redirect light from an external
source. These voltage amplifiers 280 could be elements
making use of the superconducting-to-normal phase transi-
tion by heating a wire above its critical temperature or by
exceeding a wire’s critical current density. These voltage
amplifiers 280 could also be comprised of Josephson junc-
tion amplifiers such as Suzuki stacks.

It is contemplated that primary single photon optoelec-
tronic neuron 210 can include an axonal waveguide arbor
221 which routes photonic signals from neurons 210 or 228
to other neurons 228. The axonal waveguide arbor 221 may
contain multiple planes of waveguides. The axonal wave-
guide arbor 221 may contain components such as in-plane
waveguide crossings 290, inter-planar transitions 292, pho-
tonic beam taps 294, and axonal arbor waveguides 296.

In neuromimetic circuit 200, primary signal 212 can
include external light sources, external current sources,
external voltage sources, or photonic or electrical signals
generated on chip to activate primary single-photon opto-
electronic neuron and can include a light or electrical source.

In neuromimetic circuit 200, primary input communica-
tion path 214 can include free-space optical communication,
fiber optics, waveguides, on-chip waveguides, or electrical
wires to produce an optical or electrical signal and can be
any optical or electrical communication path.

In neuromimetic circuit 200, primary source 216 can
include can include external light sources, external current
sources, external voltage sources, or photonic or electrical
signals generated on chip to activate primary single-photon
optoelectronic neuron and can include a light or electrical
source.

In neuromimetic circuit 200, axonic photonic signal 218
can include photonic signals or any nature at any frequency
to communicate between primary single photon optoelec-
tronic neuron 210 and any other secondary single photon
optoelectronic neuron 228 and can be electromagnetic radia-
tion.

In neuromimetic circuit 200, axonic waveguide 220 can
include a propagation path in free space or a dielectric
medium, a dielectric waveguide made of silicon, silicon
nitride, or other dielectric, insulating, metallic, or supercon-
ducting waveguide material to communicate axonic pho-
tonic signal 218 and can be a material to guide electromag-
netic radiation.

In neuromimetic circuit 200, synapse 222 can include
photon detectors, photon absorbers, photon sources, resis-
tors, inductors, capacitors, superconducting circuit elements,
Josephson junctions, and the like to modify a photonic signal
and can be superconducting photon detectors, superconduct-
ing wires, Josephson circuits, or like device.

In neuromimetic circuit 200, dendritic signal 224 can
include optical or electrical signals to communicate from the
synapse 222 to the neuron 228 and can be photons, currents,
supercurrents, or voltages.

In neuromimetic circuit 200, dendritic communication
path 226 can include waveguides, electrical wires, super-
conducting wires, or free space to carry dendritic signal 224
and can be waveguides, electrical wires, superconducting
wires, or free space.

In neuromimetic circuit 200, secondary single photon
optoelectronic neuron 228 can include superconducting pho-
ton detectors, waveguides, electrical components such as
resistors, capacitors, inductors, superconducting circuit ele-
ments, Josephson junctions, electrical wires, light sources
such as light-emitting diodes and lasers to integrate signals
and produce an output and can be semiconductors, metals,
superconductors, dielectrics, or insulators.
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In neuromimetic circuit 200, axonic photonic signal 230
can include light and electrical signals to communicate
between secondary single-photon optoelectronic neurons
228 and can be photons, electrical currents, or electrical
voltages.

In neuromimetic circuit 200, axonic waveguide 232 can
include a propagation path in free space or a dielectric
medium, a dielectric waveguide made of silicon, silicon
nitride, or other dielectric, insulating, metallic, or supercon-
ducting waveguide material to communicate photonic signal
230 and can be a propagation path in free space or a
dielectric medium, a dielectric waveguide made of silicon,
silicon nitride, or other dielectric, insulating, metallic, or
superconducting waveguide material.

In neuromimetic circuit 200, recipient 234 can include
photon detectors or electrical signal detectors to receive the
signal output from a neuron 210 or 228 and can be a
superconducting photon detector, a semiconducting photon
detector, a superconducting circuit, a waveguide, a wire, or
a secondary single photon optoelectronic neuron 228.

In neuromimetic circuit 200, receiver 240 can include
superconducting photon detectors, waveguides, electrical
components such as resistors, capacitors, inductors, super-
conducting circuit elements, Josephson junctions, electrical
wires, light sources such as light-emitting diodes and lasers
to receive axonic photonic signals 218 and can be super-
conducting photon detectors, waveguides, electrical compo-
nents such as resistors, capacitors, inductors, superconduct-
ing circuit elements, Josephson junctions, electrical wires,
light sources such as light-emitting diodes and lasers.

In neuromimetic circuit 200, threshold signal 242 can
include photonic signals, electrical currents, electrical volt-
ages to communicate that a threshold has been reached and
can be photonic pulses, electrical current pulses, or electrical
voltage pulses.

In neuromimetic circuit 200, superconducting wire 244
can include superconducting wires, films, and materials to
transmit electrical signals and can be Nb, WSi, NbN,
NbTiN, Al, or other superconducting materials.

In neuromimetic circuit 200, transmitter 246 can include
semiconductor lasers, semiconductor light emitting diodes,
other semiconductor light sources, modulators, or switches
to produce or redirect light and can be semiconductor
light-emitting diodes or semiconducting switches.

In neuromimetic circuit 200, superconducting photon
detector 250 can include semiconducting or superconduct-
ing photon detectors to produce electrical signals due to the
presence of photons and can be superconducting nanowire
single photon detectors or semiconducting photodiodes
operating in photovoltaic or photoconductive mode.

In neuromimetic circuit 200, superconducting transfer
synapse 252 can include electrical circuits to convert a
photonic signal to the electrical domain and can be resistors,
inductors, capacitors, Josephson junctions, or other super-
conducting circuit elements.

In neuromimetic circuit 200, synaptic signal 254 can
include an electronic signal to communicate the output of
superconducting transfer synapse 252 to integrator 258 and
can be a photonic or electrical signal.

In neuromimetic circuit 200, integrator 258 can include
electrical components to integrate the electrical signals 254
and can be superconducting wires, capacitors, inductors, or
superconducting loops.

In neuromimetic circuit 200, integrator 268 can include
electrical components to integrate the electrical signals 258
and can be superconducting wires, capacitors, inductors, or
superconducting loops.
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In neuromimetic circuit 200, integrated signal 260 can
include an electrical supercurrent to store the inputs 254 and
can be a superconducting electrical device such as a super-
conducting loop or wire.

In neuromimetic circuit 200, thresholding member 264
can include superconducting devices to detect a current or
voltage threshold corresponding to a number of received
photons or photonic detection events and can be a Josephson
junction, nTron, yTron, superconducting wire, constriction,
capacitor, or thermal sensor.

In neuromimetic circuit 200, photonic transfer synapse
266 can include photonic absorbers, generators, or switches
to modify the axonic photonic signal 230 and can be an
electro-absorption modulator, phase change material, quan-
tum well structure, graphene, semiconductor gain medium,
mechanically tunable coupler, or electrooptic modulator or
switch.

In neuromimetic circuit 200, synaptic axon waveguide
270 can include a propagation path in free space or a
dielectric medium, a dielectric waveguide made of silicon,
silicon nitride, or other dielectric, insulating, metallic, or
superconducting waveguide material to communicate opti-
cal signals and can be a propagation path in free space or a
dielectric medium, a dielectric waveguide made of silicon,
silicon nitride, or other dielectric, insulating, metallic, or
superconducting waveguide material.

In neuromimetic circuit 200, synaptic dendrite waveguide
272 can include a propagation path in free space or a
dielectric medium, a dielectric waveguide made of silicon,
silicon nitride, or other dielectric, insulating, metallic, or
superconducting waveguide material to route light and can
be a propagation path in free space or a dielectric medium,
a dielectric waveguide made of silicon, silicon nitride, or
other dielectric, insulating, metallic, or superconducting
waveguide material.

In neuromimetic circuit 200, superconducting voltage
amplifier 280 can include superconducting and semicon-
ducting circuit elements to produce sufficient voltage to
generate or route light and can be a Suzuki stack, an hTron,
an nTron, a yTron, or other circuit elements.

In neuromimetic circuit 200, transmitter electrical signal
282 can include electrical voltage or current pulses to drive
the photon emitter 284 and can be an electrical voltage or
current pulse.

In neuromimetic circuit 200, photon emitter 284 can
include semiconducting light emitters such as LEDs and
lasers, optical modulators, switches, and microwave sources
to produce electromagnetic radiation and can be any source
of electromagnetic radiation.

In an embodiment, a process for making neuromimetic
circuit 200 includes a wafer on which devices will be
fabricated; lithography; deposition; etching; cleaning; and
packaging. In an embodiment, a process for making neuro-
mimetic circuit 200 includes producing photon emitter 284;
disposing axonic waveguides 220 and axonal waveguide
arbor 221 on photon emitter 284 on substrate; disposing
superconducting photon detector 250 on axonic waveguides;
stacking and interspersing waveguiding and superconduct-
ing device layers with cladding layers in between; disposing
superconducting wiring layers for superconducting wires
244, integrator 258/268, thresholding member 264, and
superconducting voltage amplifier 280 on or in between
waveguide and superconducting photon detector layers;
packaging of devices with electrical and/or photonic con-
nectivity.

Producing photon emitter 284 includes creating a p-n or
p-i-n junction in a semiconducting material such as Si,
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GaAs, InGaAs, or other material with similar properties.
Creating junction includes implanting of dopants and
annealing. Producing emitter includes making electrical
contact with metals or superconductors.

Disposing axonic waveguides 220 and axonal waveguide
arbor 221 includes depositing dielectric waveguide material
and optional cladding material on wafer containing photon
emitter 284. Depositing materials can be performed at a
temperature from 20° C. to 400° C. using plasma-enhanced
chemical vapor deposition or sputtering. Disposing axonic
waveguides 220 can include etching a selected shape or
pattern in the deposited materials. Etching can include
patterning with photolithography or electron-beam lithog-
raphy followed by pattern transfer via reactive ion etching.

Disposing superconducting photon detector 250 on
axonic waveguides includes depositing superconducting
material and can be performed at a temperature from 20° C.
and 400° C. using sputtering. Disposing 250 can include
etching specific shapes and patterns in the deposited mate-
rials. Etching can include patterning with photolithography
or electron-beam lithography followed by pattern transfer
via reactive ion etching. Disposing axonic waveguides 220
and superconducting photon detectors 250 can be repeated
multiple times, achieving multiple layers of waveguides and
detectors, optionally with cladding layers in between. Pla-
narizing between layers using chemical mechanical polish-
ing can be performed.

Disposing superconducting wiring layers for supercon-
ducting wires 244, integrator 258/268, thresholding member
264, and superconducting voltage amplifier 280 on or in
between waveguide and superconducting photon detector
layers can include deposition of wire materials using sput-
tering or electron-beam evaporation. Patterning will utilize
lift-off or etching lithographic techniques.

Packaging of devices with electrical or photonic connec-
tivity can include mounting chips in packages with electrical
or photonic connectivity. Making electrical or photonic
connections to the devices on the chip can be performed.

Neuromimetic circuit 200 has numerous beneficial uses,
including performing neuromimetic computing. According
to an embodiment, a process for performing neuromimetic
computing includes: receiving primary signal 212 by pri-
mary single photon optoelectronic neuron 210; producing
axonic photonic signal 218 by primary single photon opto-
electronic neuron 210; communicating axonic photonic sig-
nal 218 to synapse 222; receiving axonic photonic signal
218 by synapse 222; producing dendritic signal 224 in
response to receipt of axonic photonic signal 218; commu-
nicating dendritic signal 224 from synapse 222 to secondary
single photon optoelectronic neuron 228; receiving dendritic
signal 224 by secondary single photon optoelectronic neuron
228; producing axonic photonic signal 230 in response to
receipt of dendritic signal 224 to perform neuromimetic
computing.

The process for performing neuromimetic computing
further can include producing, by receiver 240, threshold
signal 242 in response to receipt of primary signal 212.

In the process for performing neuromimetic computing,
producing, by receiver 240, threshold signal 242 can include
detecting, by superconducting photon detector 250, a pho-
ton; producing synaptic signal 254 based on detection of the
photon; integrating synaptic signal 254 to produce integrated
signal 260; and producing threshold signal 242 based on
integrated signal 260.

In the process for performing neuromimetic computing,
producing, by receiver 240, threshold signal 242 can include
detecting, by photonic transfer synapse 266, primary signal
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212; producing a photon in response to detection of primary
signal 212; detecting, by superconducting photon detector
250, the photon; producing a signal based on detecting the
photon; and producing threshold signal 242 based on the
signal from superconducting photon detector 250.

The process for performing neuromimetic computing
further can include receiving, by transmitter 246, threshold
signal 242; and producing axonic photonic signal 218 in
response to receipt of threshold signal 242.

The process for performing neuromimetic computing
further can include amplifying, by transmitter 246, threshold
signal 242; producing transmitter electrical signal 282 from
threshold signal 242; and emitting axonic photonic signal
218 based on production of transmitter electrical signal 282.

In the process for performing neuromimetic computing,
producing dendritic signal 224 in response to receipt of
axonic photonic signal 218 can include receiving, by syn-
aptic axon waveguide 270, axonic photonic signal 218;
communicating axonic photonic signal 218 from synaptic
axon waveguide 270 to synaptic dendrite waveguide 272;
and producing dendritic signal 224 in response to receipt of
axonic photonic signal 218 by synaptic dendrite waveguide
272.

The articles and processes herein are illustrated further by
the following Examples, which are non-limiting.

EXAMPLES

Example 1. Superconducting Optoelectronic
Circuits for Neuromorphic Computing

Neural networks have proven effective for solving many
difficult computational problems, yet implementing com-
plex neural networks in software is computationally expen-
sive. To explore the limits of information processing, it is
necessary to implement new hardware platforms with large
numbers of neurons, each with a large number of connec-
tions to other neurons. Here, a hybrid semiconductor-super-
conductor hardware platform for the implementation of
neural networks and large-scale neuromorphic computing is
described. The platform combines semiconducting few-
photon light-emitting diodes with superconducting-nanow-
ire single-photon detectors to behave as spiking neurons.
These processing units are connected via a network of
optical waveguides, and variable weights of connection can
be implemented using several approaches. The use of light
as a signaling mechanism overcomes fanout and parasitic
constraints on electrical signals while simultaneously intro-
ducing physical degrees of freedom which can be employed
for computation. The use of supercurrents achieves the low
power density (1 mW/cm?® at 20-MHz firing rate) necessary
to scale to systems with enormous entropy. Estimates com-
paring the proposed hardware platform to a human brain
show that with the same number of neurons (1011) and 700
independent connections per neuron, the hardware presented
here may achieve an order of magnitude improvement in
synaptic events per second per watt.

Photons, based on their noninteracting bosonic nature,
provide advantages over electrons for achieving spike-based
communication over networks with a large number of con-
nections between nodes. That is to say, photonic fanout
overcomes limitations of electronic fanout. Superconducting
circuits provide lower power densities than semiconducting
circuits for systems with a larger number of processing units
and greater total complexity. In a hardware platform, inte-
grating photonic with superconducting devices includes a
highly scaled, multiphysical system for computing complex-
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ity and experiments in information physics. A representation
of such a device is shown in FIG. 14.

The optoelectronic hardware platform is based on wave-
guide-integrated semiconductor light emitters working with
superconducting detectors and electronics to implement
weighted, directed networks. Optical signals between neu-
rons are communicated through reconfigurable nanopho-
tonic waveguides. Utilization of light-emitting semiconduc-
tors allows efficient access to photonic degrees of freedom
(frequency, polarization, mode index, intensity, statistics,
and coherence), which achieve complex functionality analo-
gous to chemical signaling in biological organisms and
possibly with information-processing capabilities far
beyond. Light enables massive interconnectivity with no
need for time-multiplexing schemes that can limit the event
rates of complementary metal-oxide-semiconductor
(CMOS) systems. Photonic signals are received and inte-
grated by superconducting single-photon detectors. Firing
thresholds and gain are controlled by a dynamic supercon-
ducting network, and neuron-generated photonic signals can
reconfigure this current-distribution network. By employing
superconducting electronics, we can approach zero static
power dissipation, extraordinary device efficiencies, and
utilize Josephson-junction circuits including single-flux-
quantum devices.

Within this hardware platform, memory can be imple-
mented via several means. These include temporally fixed
synapses achieved with branching waveguides, synaptic
weight variation via the actuation of locally suspended
waveguides or through the use of magnetic Josephson
junctions, or other magnetic and flux-storage components.
The suspended waveguides that we explore in more detail in
this work are reconfigurable on a time scale of 1 ps. None
of these approaches draw power in the steady state.

The combination of efficient faint-light sources and super-
conducting-nanowire single-photon detectors interacting in
an integrated-photonics environment enables neuronal
operation with excellent energy efficiency, enormous intra-
and inter-chip communication bandwidth, light-speed-lim-
ited latency, compact footprint, and relatively simple fabri-
cation. The optoelectronic hardware platform is predicted to
achieve 20 al/synapse event. By comparison, many CMOS
systems are on the order of 20 pJ/synapse event, or in more
recent work, hundreds of femtojoules per synapse event. For
these reasons, the proposed platform appears promising for
advanced neuromorphic computing at the highest level of
performance, while the compact nature and room-tempera-
ture operation of CMOS circuits will inevitably remain
better suited for a wide range of neuromorphic applications.

Information in neural systems is often referred to as
“spike encoded,” as interconnected neurons transmit infor-
mation to one another in pulses. An individual neuron (also
referred to as a “processing unit,” or simply, “unit”) receives
pulses from a number of upstream neurons. The neuron’s
input-output relation will be nonlinear, and if the integrated
upstream signals exceed a certain threshold, the neuron may
itself fire a pulse to its downstream connections. Supercon-
ducting optoelectronic circuits emulate several biological
neural responses. These circuits use integrated light-emitting
diodes (LEDs) as transmitters with optical detectors as
receivers. Detectors and LEDs are included in this platform,
and energy per firing event is calculated.

With regard to detector, a neuron that uses photonic
signals requires both a source of photons and a photon
detector. The choice of detector involves design and analysis
consideration of the hardware platform. The hardware plat-
form achieves massive scaling to large numbers of interact-
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ing neurons. Therefore, simple waveguide integration,
extreme energy efficiency, high yield, and small size are
concerns. Superconductors detectors provide single-photon
detection in the infrared with zero static power dissipation
and single-photon sensitivity to provide operation at the
shot-noise limit. Because a system based on superconduct-
ing detectors provides operation in this limit, it offers a
useful platform to test noise in learning and evolution of
complex, dynamical systems.

There is an additional energy cost associated with cooling
superconducting detectors to cryogenic temperatures for
operation. Therefore, an alternative is to move away from
low-light levels and use integrated detectors such as Si, Si
defect, Ge-on-Si, or 111V detectors, either bonded to Si or on
a fully III-V platform. Such detectors have low signal-to-
noise ratio requiring operation with significantly higher
optical powers than if superconducting detectors are
employed. We choose superconducting-nanowire single-
photon detectors (SNSPDs) due to the high efficiencies
(>90%) at wavelengths below the Si band gap, simple
on-chip waveguide integration, compact size, and speed.
While operation at cryogenic temperatures imparts a fixed
energy cost, the energy cost per operation is significantly
decreased by allowing integration with superconducting
electronics. Therefore, cryogenic systems are of use in a
subset of neuromorphic applications where the required
system size is sufficiently large that the savings in chip
power outweigh the cryocooling cost. Additionally, low-
temperature operation allows the use of certain LED designs
that are not possible at room temperature.

With regard to an integrate-and-fire circuit, to encode
information, the nodes of a neural network must have a
nonlinear input-output relationship. In the system, that non-
linearity is achieved via the transition of wires from the
superconducting phase to the normal-metal phase. These
phase transitions can be induced by absorption of a photon
or by exceeding the critical current. A single SNSPD can be
designed to fire with close to unity efficiency upon absorbing
a single photon. We can think of this as an integrate-and-fire
neuron in the limit of a single-photon threshold. In order to
obtain an integrate-and-fire response with a threshold photon
number larger than one, SNSPDs can be configured in
parallel (step response) or series (continuous response). In
FIG. 154, we show a circuit diagram of the parallel SNSPD
array referred to as a parallel nanowire detector (PND). One
example of an integrate-and-fire circuit is accomplished by
placing the PND in parallel with a LED. The thresholding
mechanism is explained pictorially in FIG. 15(b)-(e). In the
steady state, the PND is superconducting and has zero
resistance. The semiconducting LED has finite resistance,
and, therefore, all current from the source Ib flows through
the PND. When a sufficient number of nanowires in the PND
has been driven to the normal state by the absorption of
photons, the critical current of the array is exceeded, the
array becomes resistive, and current is diverted to the LED.
This diversion of current and the subsequent production of
light via carrier recombination constitutes the firing event.
The LED fires with a step response, meaning that the LED
output is independent of the exact number of photons
absorbed and depends only on whether or not the threshold
is exceeded. The diversion of current to the LED allows the
PND to return to the superconducting state. Once this
occurs, current ceases to flow through the LED, the produc-
tion of light stops, and the device is reset.
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The minimum duration of a spike event is determined by
the emitter lifetime. The integration time of the neuron can
be engineered to be within the range of a few hundred
picoseconds up to seconds.

To model the spike probability of this circuit, we conduct
Monte Carlo simulations of the device. The critical number
of absorbed photons nc is given by

ne=NNW-Ibic, (€8]

where NNW is the number of nanowires in the array, Ib is
the bias current for the entire array, and ic is the critical
current of a single wire. Although each individual firing
event generates the same current pulse across the LED (i.e.,
a step response), a given number of input photons causes
only the neuron to fire with some probability. This is due to
the stochastic nature of the photon-absorption events. The
results of these simulations are shown in FIG. 16. The
probability of a spike occurring is plotted as a function of the
number of photons incident on the device for various bias
currents ranging from 0.01 of the array critical current (Ic)
to 0.99 Ic in steps of 0.01 Ic. In FIG. 16a, we show the
behavior of an array with ten SNSPDs in parallel. FIG. 165
shows the spike probability versus the number of incident
photons for four values of bias current; these data are a
subset of that shown in FIG. 16a, plotted separately to
illustrate the shape of the traces. The Monte Carlo simula-
tions which produce these plots are conceptually based on
the neuron design of FIG. 17 and proceed as follows. A
given number of photons is assumed to be incident on a PND
array. The pulse is assumed to pass each nanowire of the
array in sequence. At each pass, a random number between
zero and one is generated. If this random number is less than
or equal to the assumed absorption probability (1% in these
calculations), the number of photons in the pulse is reduced
by one, and the state of that nanowire is set to non-
superconducting. The photon pulse is allowed to pass each
nanowire of the array 100 times. The number of photons in
the pulse which cause Eq. (1) to be satisfied is recorded for
each bias current. The result of 1000 such simulations is
averaged to calculate the probability for spiking to occur.

In FIG. 16a and FIG. 165, we observe that by adjusting
the bias current, we can adjust the shape of the firing
function versus photon number. Yet, adjusting the bias
current cannot tune the threshold with arbitrary accuracy. In
FIG. 16a, it is evident that the spike probability for a PND
array with ten nanowires separates into ten bands. Therefore,
to achieve higher-photon-number differentiation, more wires
must be integrated. This point is illustrated in FIG. 16c¢.
Simulations similar to that of FIG. 16a are conducted for
PND arrays with 20 and 40 nanowires, and the number of
absorbed photons (nabs) for which the spike probability
reaches 50% is plotted versus the bias current. This figure
further illustrates that the resolution of the PND array is
limited by the number of nanowires in the array, resulting in
discrete steps in the number of photons required for a spike
event as a function of bias current. Because nc and NNW in
Eq. (1) are both integers, the floor of the ratio Ib/ic is
effectively taken, and the utility of the current for setting the
threshold is discretized. For the case of NNW=40, the steps
become quite small, and the curve is approximately con-
tinuous.

The simple model of FIG. 16 reveals that the PND array
can achieve a high dynamic range in that the threshold can
be tuned broadly in hardware by changing the number of
wires in the array (from a single nanowire up to potentially
thousands) as well as actively during operation by changing
the bias current. The state space of the receiver, which scales
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as 2NNW, can be made quite large in the regime where
thousands of nanowires comprise the PND.

FIG. 17 presents a neuron design well suited to a system
with a few tens and possibly hundreds of connections. We
refer to this device as the spider web neuron. In this design,
all upstream signals are combined on a single waveguide.
This waveguide enters a spiral region in which it passes a
number of SNSPDs which can be wired in series or parallel.
Photon wave packets can pass several tens of SNSPDs
several tens of times. The system can, thus, be engineered to
spread the absorption probability evenly over the SNSPDs.
In FIG. 16, the photons are assumed to pass each nanowire
100 times with a probability of absorption of 1% at each
pass. The size of the detector portion of this neuron can be
made as small as 10x10 um? and depends on the threshold-
ing number of photons. For a threshold of 1000 photons, the
device is approximately 35x35 um?. In the calculations of
FIG. 16, all photons arrive in a short pulse, so nanowire
re-biasing dynamics can be neglected. The complex dynam-
ics of the PND receiver array in the case of arbitrary
photon-arrival times is the subject of future investigation.

With regard to a differentiable response circuit, in bio-
logical systems, the neuron response is not that of a step
function but rather a nonlinear response taking the form of
a sigmoid. For certain neural-network back-propagation
algorithms, the response is continuous and differentiable.
FIG. 18a shows the series-nanowire-detector (SND) circuit
that achieves a continuous and differentiable nonlinear
response. In FIG. 185, we define a general optoelectronic
circuit element symbolizing either the PND (FIG. 15) or the
SND (FIG. 18). We envision the SND as a single length of
superconducting wire with incident photons spread along the
length of the wire. As in FIG. 15a, the detector array is in
parallel with the LED. When a single photon is absorbed by
the SND, a length of normal wire called a hot spot emerges
in series with the superconductor, leading to current redis-
tribution between the two branches of the circuit. For
common SNSPD materials, this resistance is approximately
1 kQ for the typical wire width, while the length of the single
hot spot is on the order of 100 nm. As more photons are
absorbed, more hot spots are created, and the resistance of
the SNSPD increases. This resistance causes the voltage
across the LED to increase, and sufficient current can be
driven through the diode to produce an optical signal.

We use this circuit in a very different operating regime to
detect a single photon with near-unity efficiency, wherein an
SNSPD is driven close to its critical current, and the ensuing
voltage pulse is measured across a 50-£2 resistor in parallel
with the SNSPD. When a photon is absorbed, a 1-kQ hot
spot is produced, and nearly all current is diverted to the
50-Q load. For the application at hand, the device is not
intended to observe events of one or a few photons but rather
hundreds to thousands. Thus, diverting the current through
a high-impedance diode with I-V relationship approximated
by Eq. (D1) enables thresholding with some dynamic range
for higher numbers of absorbed photons. The model of this
SND-based neuron considers simple joule heating behavior
in that each photon-absorption event results in the same
hot-spot resistance, when in reality, the hotspot resistance
depends on the current through that branch of the circuit,
which depends on the temporal dynamics of the preceding
absorption events. A thorough study of these dynamics is the
subject of future work.

The electro-optic performance of the SND is analyzed in
FIG. 19. The nanowire resistance as a function of the
number of absorbed photons is shown in FIG. 19a. In this
model, we assume the photons are incident upon a length of
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out-and-back nanowire with 100-um attenuation length, and
it is assumed that two photons absorbed at the same location
along the nanowire give rise to the same resistance as a
single photon absorbed at that location. For this reason, the
nanowire resistance levels off as a function of the number of
absorbed photons. The current-voltage relationship of the
LED is highly nonlinear, as shown in the inset, but above a
certain number of absorbed photons, the entire length of the
absorbing region of the superconductor is driven normal,
and the absorption of additional photons results in no
additional resistance, as shown in FIG. 194 and FIG. 19¢.
Hence, the device has an input-output relationship with an
exponential turn-on when a threshold number of photons is
absorbed followed by a flattening of the output when the
entire SND is driven normal. Figures FIG. 19¢ and FIG. 19¢
show the photon input-output relationship for two different
nanowire designs with critical currents of 4 and 8 pA,
respectively, demonstrating the ability to tune the response
in hardware. Note that the photon input-output relationship
depends on the refractory period.

Based on the analysis of FIG. 19, in the SND-based
neuron, the normal-state resistance of the SND and the
applied bias determine the maximum voltage that can be
achieved across the LED. This resistance and bias, in
conjunction with the optoelectronic design of the LED,
determines the number of photons generated, in contrast to
the case of the PND where the number of photons generated
is a step response determined by the bias current.

Both the PND-based integrate-and-fire circuit of FIG. 15a
and (the SND-based continuous-response circuit of FIG. 18a
may offer utility for neuromorphic computing. For the case
of the PND, the number of nanowires in the array is on the
order of the number of photons required for threshold. This
is also the order of the number of connections each process-
ing unit makes to other units. Biological systems reveal that
scaling to systems with thousands of connections per neuron
is desirable. To achieve this number of parallel receiver
elements, several geometrical configurations can be utilized
to arrange approximately 1000 micron-scale SNSPD ele-
ments, and the exploration of this design space is the subject
of future work.

The SND device lends itself to hundreds or thousands of
connections. In this case, we can expect the thresholding
number of photons to be approximately 1000, and, therefore,
we select a nanowire with the length of 1000 hot spots.
Given the hot-spot length of 100 nm, the entire length of the
nanowire is on the order of 100 um, as simulated in FIG. 19.
Such a length becomes compact when coiled in a spiral [see
FIG. 245], and this configuration is well suited to receive
inputs from hundreds to thousands of waveguides.

With regard to an nTron current amplifier, introducing an
amplifier into the circuits decouples firing threshold and
LED gain. In a superconducting circuit, amplification can be
achieved using the nTron, a three-terminal supercurrent
amplifier. When the current in the gate terminal exceeds the
critical current, the path from the source to drain is driven
normal, diverting the bias current to the parallel load. This
recently developed device has been used to drive loads of
tens of kilohms, making it suitable for this application.

In FIG. 20a, we show a variation of the circuit of FIG.
154, but instead of driving the same current 11 through the
LED after firing, this circuit utilizes a nTron current ampli-
fier to provide gain to the light emitter. The nTron allows us
to decouple the current used to bias the receiver from the
number of photons produced in the firing event. Note that in
this configuration, 12 can be less than 11, making it possible
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to cover a broad range of input-output responses. The circuit
of FIG. 20a also expands the state space in which informa-
tion can be encoded.

With regard to other neuromorphic circuits, we introduce
several variants on those cells which enable diverse func-
tionality desirable for neuromorphic computing. FIG. 205
shows an alternate configuration in which the LED is driven
by current 12 until a firing event occurs and cuts off the
current supply. This circuit is shown with the LED below the
nTron, but it can also be implemented without a nTron. This
circuit is an example of an integrate-and-stop-firing neuron
which can be useful in neuromorphic architectures to pro-
vide a means of stimulating various regions of the cortex
until a certain level of activity is reached, at which point the
firing neuron is quenched.

Another functionality of neuromorphic circuits is that of
inhibitory connections. Most neuronal connections provide
feedforward excitation wherein an action potential produced
by upstream neurons increases the probability of action
potentials being produced by downstream neurons. But
biological systems also exhibit connections wherein the
firing of upstream neurons suppresses the probability of
firing events by downstream neurons. FIG. 20¢ shows a
configuration which achieves this. The lower portion of the
circuit is identical to that of FIG. 20a, but the current 11
feeding the receiver first passes through a preliminary
nanowire array. Absorption of photons in this region of the
circuit reduces the current through the primary receiver,
increasing the threshold photon number. Waveguides from
different upstream neurons can be routed to these two
different ports to establish inhibitory or excitatory connec-
tions. In FIG. 20c, the inputs to the two receivers are drawn
with different colors, emphasizing the possibility that inte-
grated-photonic filters placed before the neuron can be
employed to route different frequencies to the two receivers.
With this approach, we can employ the use of color to
perform inhibitory or excitatory functionality in much the
same way that different neurotransmitters perform inhibitory
or excitatory functions in biological systems. We note that
low-loss spectral filters performing this function are com-
monplace in many integrated-photonic applications.

From an architectural standpoint, it may also be useful to
establish purely electrical inhibitory connections. In FIG.
20d, we show a circuit in which two neurons, each with only
a single excitatory port, are connected in series. In this
configuration, firing events in the upper neuron inhibit firing
events in the lower neuron. Such a configuration is useful for
moderating the net filing activity of groups of neurons.

It is also advantageous to have a means by which a single
neuron can moderate its own firing activity. Such behavior
is straightforward to implement, as is shown in FIG. 20e. A
power tap is added to the output of the LED, and some
fraction of the produced light is incident upon a receiver in
series with the current supply to the receiver array. The
superconducting wire in this location may be wider than the
integrating receiver, and it, therefore, may be designed to
quench the current only when a large number of photons
drives the superconducting wire normal.

In addition to self-feedback, biological neurons send both
downstream signals as well as upstream signals when an
action potential fires. The upstream signals are believed to
be critical for spike-timing-dependent plasticity and syn-
chronization of circuit behavior via threshold modification.
To briefly hint at how self-feedback may be implemented in
the proposed platform, the green arrow leaving the LED in
FIG. 20e indicates that a power tap can also be used for
upstream feedback. The color of this arrow is meant to
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remind us that it may be advantageous to use different
frequencies of light for downstream and upstream signaling.
A LED can be fabricated to emit at two distinct wavelengths
or across some region of bandwidth, and integrated spectral
filters can be employed to route the two signals. Alterna-
tively, two different LEDs coupled to two different wave-
guides can be utilized.

We describe several superconducting optoelectronic neu-
romorphic circuits covering a wide range of functions. We
refer to members of this class of circuits as single-photon
optoelectronic neurons (SPONs). We now proceed to discuss
additional aspects of their performance.

With regard to energy consumption, SPON circuits are
included in the neuromorphic computing platform, and we
estimate the energy required for a firing event. A neuron
firing event includes supplying current to the inductors
associated with superconducting wires (including the detec-
tors), charging the capacitor associated with the LED p-i-n
junction, and driving current through the LED to produce
light. For the case of the PND circuit of FIG. 20a, we
analyze the energy consumption of each of these three
contributions.

In this model, we assume one inductor LSNSPD in the
PND array for each photon, as well as a series inductance to
achieve the desired temporal response. We assume each
element of the PND is 500 squares, while the entire receiver
array is in series with 5000 squares of inductance. At low
photon numbers, the energy consumption from inductance is
dominated by the series inductance, but for higher numbers,
it is dominated by the PND array and grows linearly. The
energy required for photon production is calculated simply
as Egnv/r, where Eg is the band gap of Si, nv is the number
of photons created, and 1) is the efficiency. Thus, within this
model, the contribution to energy consumption due to pho-
ton creation is linear throughout. We use Eg in this model
because it is an upper bound on the photon energy. Any
photon transmitted through a Si waveguide will have energy
below the band gap. We assume a superconducting material
with a sheet inductance of 400 pHL/Y (such as WSi), and a
parallel-plate capacitive model for the LED.

In FIG. 21a, we plot the total energy per photon as a
function of the number of photons emitted for four values of
LED efficiency. We find that with a unity-efficiency LED,
the energy per photon can be as low as 2 al when larger
photon numbers are created. This remarkably low number is
still an order of magnitude greater than the 0.16 al stored in
the hv of the light quantum itself (assuming A=1.22 pm),
with the extra energy going to supplying current to the
inductors and charge to the capacitor. The figure reveals that
producing LEDs with efficiency above 10% has only a
modest benefit, as the contribution to energy consumption
from inductance will become the limiting factor. However,
for thresholding on larger photon numbers, as is desirable
for neurons with more connections, the inductance per
photon can likely be reduced. While a 100% efficient LED
may not be realized, even a 1% efficient LED leads to 20
al/synapse event. This energy efficiency illustrates the prom-
ise of superconducting electronics and faint-light signals.

In FIG. 215, we show the contribution to the total energy
from the various circuit elements for the case of a 10%
efficient LED. This efficiency is chosen for this plot because
it is the value at which the contributions from inductance and
photon production are nearly equal for photon numbers near
or above 100. For low photon numbers, the dominant
contribution is in charging the LED capacitor. Because of
the highly nonlinear LED current-voltage relationship, a
small increase in the voltage across the LED leads to a large
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gain in current. The capacitive energy is nearly constant
across the range of photon numbers considered here, and for
larger photon numbers, it makes a negligible contribution.

In the case of the SND circuit of FIG. 18 with parameters
as shown in FIG. 195 driven at 0.6 Ic and receiving 103
photons, and assuming a hot-spot recovery time of 50 ns and
a LED with 1% efficiency, the device achieves 100 al/syn-
apse event. While not as efficient as the PND neuron, this
device design still lends itself to massive scaling.

An LED with 1% system efficiency operates in a nano-
photonic environment at cryogenic temperature and with
faint-light levels. We use 20 al/photon as a representative
number for what this platform may achieve. We use the
energy per photon as the energy per firing event per synapse
(commonly referred to as the energy per synapse event)
because the system produces neurons that threshold on a
number of photons roughly equivalent to the number of
connections made by the neuron. A neuron receiving 100
signals from upstream will threshold on 100 photons. It will
produce 100 photons in a firing event and distribute them
amongst 100 downstream synapses. Therefore, the energy
per synapse event is calculated as the total energy of the
firing event divided by the number of connections. In our
case, for systems with 100 to 10 000 connections per unit,
20 al/synapse event is a realistic number.

The second law of thermodynamics informs us that to
keep a system at 2 K, 150 W of cooling power is used per
watt of power dissipated at 2 K. Assuming a 15% efficient
cooling system, this gives an estimate of 1 kW of cooling
power per watt of device power. Multiplying our conserva-
tive estimate of 20 aJ/synapse event by this factor of 10, the
hardware achieves an energy consumption of 20 fJ/synapse
event. Similarly, while the human brain uses 20 W to
perform roughly 10'* synapse events per second, a power
budget of 20 W corresponding to 20 mW of device power
will enable our system to achieve 1015 synapse events per
second. Success in developing LEDs with higher efficiency,
reduction of the device inductance, and utilization of super-
conducting materials operating at higher temperatures will
further increase the advantage. Additionally, while transistor
technologies inevitably leak current, superconducting
devices can be engineered to draw no power in the steady
state and can be dc biased without loss using Josephson
junctions.

With regard to an electrically injected light source, we
analyze the operation and performance of the LED. We
target operation efficiencies of around 10%. This efficiency
is relatively easy to attain in III-V semiconductors such as
GaAs and InP. However, for the application at hand, massive
scaling is a priority, and massive scaling involves photonic
electronic process integration. A single source with 100%
efficiency is less desirable than the ability to scale to millions
(and eventually billions) of sources each with 1% efficiency.
We also use low-loss waveguides with the potential for
reconfigurability.

One option is to implement these devices on a GaAs or
InP substrate. These have been the materials of choice for
photonic integrated circuits where light sources are of the
utmost importance. Quantum-dot-well LED lasers can be
electrically injected with high efficiency on this platform and
combined with high-index (III-V) waveguides to form the
synaptic connections. Another option is to implement the
light sources in the III-V material and then couple to
low-temperature deposited materials with low-loss wave-
guides such as a-Si or SiN. A III-V platform has the
advantage of high-efficiency light sources, but massive
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scaling on III-V substrates has historically been more diffi-
cult and expensive than on Si substrates.

Another option is hybrid III-V silicon integration. Hybrid
II1-V silicon has followed one of three approaches: direct
mounting, wafer bonding, or III-V material grown on Si.
While direct mounting or wafer bonding are currently the
preferred methods for optical interconnect applications,
these applications typically require a single source that can
be diverted to multiple components. For the proposed neu-
romorphic computing platform, we desire a separate elec-
trically injected source for each neuron. Direct mounting,
therefore, is not an option, but wafer bonding may be able
to achieve the yield and reproducibility required for this
application. Direct heteroepitaxial growth offers the most
promise for hybrid integration with this system. In this case,
the desired light source is templated III-V quantum dots
grown in the intrinsic region of a lateral Si p-i-n junction.
Promisingly, electrically injected single-photon emission
has been demonstrated in these materials. While single-
photon emission is not a requirement for the present appli-
cation, a desirable property of the emitters is that they have
low-photon-number variance (defined as the standard devia-
tion of the number of photons output for a given input
current pulse over an ensemble of measurements).

A light source is emissive centers in Si. These have proved
unattractive for optical interconnects due to very low effi-
ciencies at room temperature. Much work in this area was
motivated by the prospect of room-temperature light sources
for CMOS and telecommunications and, in particular, room-
temperature lasers. This includes various point defects in Si
including Er and other emissive centers giving rise to
electric-dipole-mediated transitions as well as band-edge or
Si nanocrystal-based emission processes. While the efficien-
cies of many of these emitters fall off exponentially with
increasing temperature, the SNSPDs required for this appli-
cation operate at cryogenic temperatures where many point
defects have suitable efficiencies. A large number of emis-
sive centers are under consideration for this application.

A challenge is integration of large numbers of emitters
with the ultimate goal being billions integrated in a system.
Many emissive centers can be easily fabricated in a CMOS-
compatible process via ion implantation and annealing. A
schematic of the desired device is depicted in FIG. 22. A
p-i-n junction is created in a ridge waveguide. Emitters are
located only in the ridge (intrinsic) region via lithographic
patterning, and light is obtained from forward biasing the
junction. While this is a relatively standard configuration of
a LED, for the application at hand it is important to keep the
emitters localized only in the intrinsic region of the LED, as
their presence elsewhere in the waveguides leads to intol-
erable loss. Thus, the ability to lithographically control the
location of emitters is a factor.

With co-implantation of multiple impurities, additional
(color) degrees of freedom can be included in the platform.
Similarly, on a III-V platform, we can take advantage of
inhomogeneous broadening of the quantum-dot spectrum
and tuning of dot size via templating or growth conditions.

The neuromorphic computing platform is not tied to any
one of these light sources, and other possible light sources
can be used that we have not discussed. For the calculations
throughout the present work, we assume LEDs with 1%
efficiency at 1.22 pum in a waveguiding medium with index
of 3.52 with a cladding of 1.46 above and below.

A network of waveguides connects the processing units.
Optical waveguides can provide improved performance over
electrical connections by allowing individual neurons to
integrate signals from many sources without the need for
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time multiplexing. Because of the additional energy cost
associated with the capacitance of additional wires, electri-
cal neurons use shared wires. Voltage pulses from different
neurons on the same bus will interact. To prevent this, pulses
can be delayed in time.

A network of optical waveguides can be implemented to
form the connections between the SPON circuits presented.
Each neuron has a waveguide exiting the LED and leading
to many branching waveguides, which we liken to the axon
and its arbor, and another set of integrating waveguides
combining signals received from upstream neurons, which
we liken to the dendritic arbor, as shown schematically in
FIG. 14. The connections between these input and output
waveguides act as synapses in this network. We outline a
mechanism for varying the strength of the connections
between various input and output waveguides, which is
similar to varying synaptic weights in biological systems.
Other methods of connecting neurons in three dimensions
using the same optoelectronic neurons are possible. One can
envision using gratings, flat lenses, metasurfaces, or optical
phased arrays to direct signals between neurons. Addition-
ally, electrical means of changing synaptic weights at the
receivers may prove useful.

With regard to a dendritic arbor, the dendritic arbor of a
neuron collects signals from upstream neurons. For opto-
electronic neurons, the equivalent of this is a waveguide
network that combines optical signals from many other
neurons to the neuron for detection. At each neuron, the
device must be designed to combine the modes from a large
number of waveguides on a PND or SND with low loss.

A schematic of the first approach is presented in FIG. 23a
that shows the spiral waveguide receiver of the spider web
SPON, the nTron, and the LED emitter. The major challenge
of this device design is the merging of many single-mode
waveguides into one multimode waveguide which enters the
spiral. The proposed technique for accomplishing this is
shown in FIG. 235. Two single-mode waveguides cannot be
combined into one single-mode waveguide without signifi-
cant loss. However, two single-mode waveguides can be
combined into one dual-mode waveguide nearly losslessly.
In FIG. 234, several single-mode waveguides combine their
power on a given main spine. That spine can receive at its
input one single mode. As it continues to receive more
modes, its width must grow. The lower-order modes of this
adiabatically tapering multimode waveguide can pass each
new single-mode input nearly losslessly as long as the width
of the spine has grown to support an additional mode by the
location of the next input waveguide. Modal simulations
reveal that a waveguide width of 2 pm in 200-nm-thick Si is
sufficient to support several tens of modes at 1220-nm
wavelength, each with tolerably small bending loss with a
10-um radius of curvature. Therefore, this dendritic arbor
and receiver design is suitable for the compact combining
signals from approximately 40 upstream neurons.

The second proposed design is better suited to scaling to
larger numbers of inputs. It is shown in FIG. 24. In this
design referred to as the stingray SPON, the input wave-
guides are directly combined on a landing pad housing the
PND or SND array. The implementation with a PND is
shown in FIG. 24¢. A minimum spacing to avoid modal
coupling is 600 nm at the input of the cell. From these input
ports, the waveguides enter an array of sine bends where
their spacing is reduced to enter the smaller landing pad
containing the nanowires. In this sine region, intermodal
coupling is tolerated (and perhaps even desirable to spread
the photons across the nanowires), as all waveguides ulti-
mately terminate on the detector array. FIG. 246 and FIG.
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24¢ show 2D finite-difference time-domain (FDTD) simu-
lations of the structure. FIG. 245 shows the propagation of
light into the receiver body in the presence of absorbing
nanowires, while FIG. 24¢ shows propagation without the
absorbing nanowires. Here, 100 waveguides terminate on a
receiver body with less than 0.2-dB insertion loss from any
port, with the outermost ports giving the most loss, and the
innermost ports achieving near-zero insertion loss. In this
context, insertion loss refers to light entering and leaving the
simulation without being absorbed in the nanowire array.
Calculated quantitatively with pulsed excitation, we find the
majority of loss is due to light scattering and not entering the
detector array rather than being transmitted through the
receiver due to inadequate absorption. The entire receiver of
FIG. 24b occupies 30x30 um>. A design with 204 input
waveguides and less than 1-dB insertion loss with a footprint
of 60x60 um? is also found. For larger numbers of inputs, the
simulations become cumbersome. Yet, scaling to larger
systems is dearly possible.

For threshold-based computation, processing units with
large numbers of connections are advantageous. Biological
systems achieve massive interconnectivity with 3D branch-
ing networks and dedicated wires for each connection. To
achieve this level of massive interconnectivity, we can use
multilayer photonics. For massive scaling, we can use
waveguide routing networks and dendritic arbors spanning
several—and up to tens—of photonic and superconducting
layers. A hybrid of the aforementioned spider web and
stingray neuron designs can be implemented in which higher
vertical-mode orders are utilized as well as higher lateral-
mode orders, and massively multimode waveguides deliver
their photon pulses to SNSPD receivers. These receivers can
be implemented between waveguiding layers. The fully 3D
multilayer photonic approach can be included in the neuro-
morphic platform for scaling, but such sophisticated pro-
cessing can be included in advanced systems with 2D
interconnectivity supporting hundreds of high-bandwidth
connections per unit.

With regard to the axon and its arborization, the output
waveguide (axon) from a unit’s LED can split into as many
branches as there are connections to be made. While such a
power splitter may seem to be the time-reversed case of the
dendritic arbor, the initial conditions make this device
significantly easier to implement. In the case of the dendritic
arbor, one cannot assume the optical field will populate the
arbor modes in a particular manner. Thus, while a power
splitter can readily couple from a single-mode waveguide
into many other single-mode waveguides, multiple single-
mode waveguides cannot simply merge their power into a
single-mode waveguide unless a particular distribution of
power is present in the input waveguides. Such power
splitters can be made with a small footprint and low loss.
Power splitters can be made in the third dimension with
multilayer photonics, and such an implementation provides
thousands of synapses with a volume of 10 um>/synapse.

With regard to learning, reconfiguration, and plasticity, a
neuromorphic computing system includes a strength of
interaction between the connected units. These connection
strengths, often referred to as the weight matrix, affect
memory and learning. This weight matrix determines how
much light from the firing of a particular neuron is coupled
into any other neuron, analogous to the synaptic strength
between two neurons in a biological system.

As a first implementation, fixed connection weights are
useful for computing applications. This can be accomplished
by branching the output waveguide from one neuron and
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routing those waveguide branches to various downstream
target-neuron input waveguides.

While fixed interaction weights are useful, we develop a
system in which the interaction strengths are variable. At
cryogenic temperatures, modulators that rely on the thermo-
optic effect or free-carrier injection may be ineffective, while
electro-optic switches use a lot of space for this application.
We include the electromechanically actuated waveguide
couplers shown in FIG. 254 and FIG. 25b. The amount of
light coupled from one waveguide to the other is determined
by the distance between them. These waveguides can be
coupled vertically [FIG. 25q] or laterally [FIG. 255]. This
distance can be controlled electromechanically, and any-
where from 0% to 100% of the light can be coupled from one
waveguide to the other. The minimum coupling will be set
in hardware, as the gap at 0 V is the maximum. Any applied
voltage (positive or negative) produces an attractive force
between the two waveguides. We then want activity within
the circuits to build up voltage between the waveguides and
increase the strength of the synapse. Such couplers have
been demonstrated in a highly scaled configuration with
4096 such switches operated with >60-dB extinction ratio
and actuation voltage of 40 V. Because of the relaxed
visibility requirements for this application, lower voltages
are used.

To assess the utility of such synapses for neuromorphic
computing, one can specify a target application. Two classes
of applications include supervised and unsupervised sys-
tems. For supervised systems, an input stimulus is injected
into the system, the output is recorded, and the weight matrix
is updated through a training algorithm to improve the
output relative to a target. For such an application, one
anticipates using control electronics to interface with the
neuromorphic system, and arbitrary voltages can be applied
to the various synaptic elements.

For more highly scaled implementations emulating the
behavior of biological organisms, we turn our attention to
unsupervised systems. Each synapse can be small as pos-
sible to enable massive scaling, but voltages can be modest
because we want the activity in the circuits to be capable of
reconfiguring the synapses. In particular, we want firing
events from upstream neurons followed closely by firing
events by downstream neurons to place charge on this
MEMS capacitor (waveguide coupler) and thereby decrease
the gap between the two waveguides and increase the optical
coupling and, therefore, the synaptic strength. This coordi-
nated charging of the membrane will accomplish spike-
timing-dependent plasticity, an important learning and
memory reinforcement mechanism in biological neural sys-
tems. In this mode of operation, we envision eliminating
external control circuits and achieving the capacitor charg-
ing using integrated superconducting circuits to distribute
current based on photon-absorption events. The storage of
charge on a capacitor required for this device operation is
very similar to dynamic random-access memory (DRAM),
which is a mature technology. While implementing what is
essentially spike-timing-dependent DRAM with suspended
waveguide membranes presents a technical challenge, it
offers a promising means to implement truly neuromorphic
learning within this optoelectronic platform.

While the size of mechanical waveguide couplers and the
voltages required for their operation are commensurate with
the requirements for scaling this technology, an implemen-
tation of variable synaptic weights which does not rely on
mechanically mobile components will be advantageous. It
may be possible to implement synapses in the electronic
domain by making use of superconducting circuit elements
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or magnetic elements such as magnetic tunnel junctions or
magnetic Josephson junctions. Such an approach to memory
will be investigated in future work. Additionally, we note
that a variable weight can be achieved with a tunable
Mach-Zehnder interferometer. However, the size of such
devices makes them poorly suited to highly scaled systems.

With regard to networks and scaling, in FIG. 26, we again
show the inhibitory SPON and introduce an abstract symbol
to represent the circuit labeled No, which is used in the
following sections as an element in networks. We refer to
networks comprising interconnected SPONs as supercon-
ducting optoelectronic networks (SOENSs). In this and the
following schematics, we represent electrical inputs and
outputs as black arrows running vertically and optical inputs
and outputs as colored wavy arrows running horizontally. In
FIG. 26, we emphasize that the optical processing unit can
receive and transmit electrical and optical signals each in
two ports. The electrical signals affect SPON threshold and
gain, while the optical ports are either excitatory or inhibi-
tory. This full functionality need not be employed, and as
few as one optical input and output and one electrical input
can be utilized.

We now illustrate how the circuits can be used in systems
by considering multilayer perceptron (MLP) and a general
discussion of SOEN scaling.

With regard to multilayer perceptron, MLP provides
insight into other applications of this platform in terms of
quantities such as speed, size, and dynamic range. The MLP
can include inputs incident on a weight matrix (array of
synapses) that feed into a layer of neurons. The output of this
layer of neurons projects to at least one more layer of
weights and neurons, and often several, before being output
from the system. In FIG. 274, we show a schematic diagram
ofhow such a MLP is likely to be implemented. Such a MLP
can be achieved with a single plane of routing waveguides
or many such planes. Here, we use “plane” to refer to
vertically stacked dielectric layers to avoid confusion with
the processing layers of the MLP progressing horizontally in
FIG. 27a. The processing layers of the MLP are labeled in
FIG. 27a, and the cross-sectional view of planes of routing
waveguides is shown in FIG. 27b. Stacked sheets of die are
illustrated in FIG. 27c¢.

Several factors determine the functionality of a MLP.
These include the dynamic range of the inputs, the speed
with which the inputs can be received, the bit depth of the
synaptic weights, and the speed with which the weights can
be reconfigured. From FIG. 19¢, we see that for 0.7 Ic, the
response turns on at around 500 photons, and it roughly
levels out by 3000 photons. For this case, the dynamic range
of the inputs is, therefore, log 2(2500)=11 bits. The speed
with which inputs can be received is limited by the device
reset time of 50 ns, so a 20-MHz input rate is achievable.
The bit depth of the weights depends on the number of
discrete values of coupling achievable between the two
waveguides involved in a synapse, and further investigation
is required to report a valid estimate for this number. The
speed with which the weights can be changed is at least 1
MHz.

The number of inputs, the number of connections per
neuron, and the number of MLP layers all affect the size and
complexity of MLP that can be fabricated on a given die. In
FIG. 28a and F1G. 284, we consider a model of these factors
to estimate what may be achieved with reasonable size. FI1G.
28a assesses the length [.1 and width W1 of a single MLP
layer, as given by Eq. (F1) as a function of the number of
neurons in a MLP layer Nn for two different values of the
number of vertically stacked waveguide planes NWG. The
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model assumes a feedforward configuration wherein every
neuron in a given MLP layer is connected to every neuron
in the next MLP layer with a variable-weight connection.
The total width of a MLP layer is also plotted. If we assume
that a 10x10 cm? die is the largest we want to fabricate, we
find the width limits the number of connections per neurons
to 700, and we are, thus, considering MLP layers with 700
inputs and 700 neurons per layer. For the case with
NWG=10, the length of a MLP layer with 700 connections
per neuron is 1 mm. We can, therefore, fit 100 such MLP
layers on the 10x10 cm? die. The total number of neurons is
70000. A MLP or CNN with 700 inputs, 700 connections per
neuron, and 100 layers receiving inputs at 20 MHz with
weight reconfiguration speed of 1 MHz is a very powerful
tool. While it is not necessarily optimal to work with a neural
network of 100 layers, as shallower networks are advanta-
geous for several reasons, we present this model to quantify
SOEN spatial scaling keeping in mind that network depth
can be traded for a larger number of inputs or larger
connectivity. As a point of comparison, the recent demon-
stration of a computer defeating the world champion Go
player input the state of the board as a 19x19 matrix (361
inputs) to the 13-layer-deep neural network. The bit depth of
the synapses proposed here is unlikely to reach the 32 bits
utilized in software implementations running on modern
graphics processing units, but there are likely many appli-
cations in which such a constraint is minor compared to the
system advantages of speed, complexity, and connectivity.

With regard to scaling of the MLP (or other similar
neuromorphic computing systems), we consider the number
of neurons in an area of 1 cm? versus the number of
connections per neuron, Nconn. FIG. 285 shows the results
of the model of Eq. (F1) for NWG=1, 10, and 100. If
Nconn=10 is sufficient for a given application, we can
achieve a neuron density of 400 000 neurons per centimeter
squared. Because of the size of the interlayer couplers, this
is achieved more compactly with NWG=1 than with
NWG=10. For Nconn in the range of 100 to 1000, it
becomes advantageous to utilize NWG=10. For Nconn=100,
over 10 000 neurons will fit within a centimeter squared, and
for Nconn=1000, 300 neurons fit within a centimeter
squared. It does not become advantageous to use NWG=100
until Nconn=2000, and even then, the gain is modest. To
achieve 10000 connections per neuron (comparable to a
mammalian brain), only a few devices fit within a centimeter
squared (given the present model), and we are left in awe of
the massive interconnectivity and scaling achieved by the
bottom-up nanofabrication of biological organisms.

While the scaling to 10000 connections per neuron is
formidable, the range of Nconn=100-1000 is promising and
technologically consequential. As is the case for scaling
CMOS neuromorphic platforms, utilization of die tiling
plays a role in this technology. For this purpose, the SOEN
platform is in an excellent position. Die can be tiled in 2D
with several types of connectivity to adjacent die including
electrical, single-flux-quantum, and photonic communica-
tion over interdie bridge waveguides. Additionally, tiling in
the third dimension is possible with the usual bump-bonding
approach for electrical connectivity as well as with free-
space optical signals sent from one chip using vertical
grating couplers and received by a chip above or below
using SNSPD arrays. Information over such links can be
encoded temporally, spatially, or in frequency with forgiving
alignment tolerances. From FIG. 28b, we find that 700
neurons with 700 connections per neuron can fit on a 1x1
cm? die if ten waveguiding planes are utilized.
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To analyze long-term scaling, we consider a system on the
scale of the human brain. To this end, we envision tiling a
215%215 array of these die in a sheet to build a system with
32x106 neurons. Such a sheet will be approximately 1 mm
thick. To achieve the scale of the brain, 2150 such sheets
need to be stacked with inter-sheet coupling to construct a
cube 2.15 m on a side and with a total volume of 10 m>. The
system then comprises 7x10'° neurons or roughly the num-
ber contained in the human brain.

To achieve such a system, we envision sheets of die
mounted in trays with in-plane fiber-optic connections leav-
ing from the perimeter of the trays and out-of-plane free-
space grating-to-SNSPD interconnects, thus, enabling the
trays to slide laterally. Achieving inter-sheet connectivity
without physical bonds enables access to die within the
volume of the cube for diagnostics, repair, and local iteration
and evolution. Massive interconnectivity between neurons
on different die can be accomplished using such grating
interconnects.

Of greater importance than the size of highly scaled
systems is the power consumption. We again consider a
system of SPONs with 700 connections each. Such a device
consumes 2x107'7 J/synapse event, and with 700 connec-
tions, each firing event consists of 700 synapse events.
Information processing in neuromorphic systems requires
sparse event rates, so for the SOEN hardware wherein 20
MHz is achievable based on device limitations, 20 kHz
represents a sparse rate. Note that this rate is a factor from
(2x10%) to (2x10°) faster than biological event rates and a
factor of 1000 faster than the CMOS demonstration which
achieved 26 pl/synapse event and was limited by time
multiplexing. For the system under consideration, we have
7x10"° processing units which we consider to be firing at
this rate with this energy per firing event, giving a total
device power consumption of 20 W. These numbers give
5x10'% synapse events per second per watt. The system must
be kept around 2 K, so we also include an additional 1 kW
of cooling power per watt of device power. While this
cooling power does not affect the power density (which
ultimately limits scaling), and this 20 kW is minuscule
compared to the tens of megawatts of a modern supercom-
puter, if we include this additional power in the calculation,
we find that we achieve 5x1013 synapse events per second
per watt.

To put this in perspective, the human brain also uses 20
W of device power, but by analogy to the inclusion of the
cooling power in the above calculation, one must include the
human’s total power of 100 W which is necessary to sustain
the brain’s operational state. The brain has roughly 10
neurons with roughly 7x10° synapses per neuron firing
between 0.1 and 1 Hz. For the purposes of this calculation,
we generously assume the rate is 1 Hz. This equates to
7x1012 synapse events per second per watt. Even with the
1-kW/W cooling power of the cryostat, we find that the
number of synapse events per second per watt of the SOEN
system exceeds that of the brain by an order of magnitude.
The size of the SOEN system (10 m>, 2.15 m on a side) is,
however, much larger than the biological brain.

Because signaling occurs predominantly in the optical
domain, firing events can be directly imaged with a camera.
For massively scaled systems, this direct optical imaging
becomes a powerful metrological tool. Such a measurement
technique can be used to monitor device and system per-
formance across spatial and temporal scales in a manner
analogous to functional magnetic resonance imaging of
biological organisms.
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With regard to cryogenics for a 1-m> SOEN system. We
seek a “He sorption refrigerator capable of cooling a 1 m*
volume to 2 K with 20 W of cooling power. While this is a
relatively large cryostat, it is certainly well within the realm
of possibility. No new physical principles of operation need
to be developed; it is simply a question of scaling up existing
“He cryogenic systems. Additionally, if suitable SNSPD
materials can be found which operate at 4 K with high yield,
20 W of cooling power is straightforward to achieve. We are
of the opinion that with the advancement of single-flux-
quantum processors, superconducting qubit devices, and
SOENS, large-scale cryogenic technology will advance sig-
nificantly in the coming years. Presently, many conversa-
tions in advanced computing debate whether the technology
which proves victorious will operate within a cryostat or at
room temperature. A supercomputer can leverage optoelec-
tronic devices on various material platforms to employ
quantum principles, neuromorphic principles, and digital
logic principles across various temperature stages. The
device designer is faced with the task of optimizing hard-
ware performance at each temperature stage.

With regard to advantages of optoelectronic neural net-
works, the unparalleled performance of the brain emerges
from the enormous number of connections between neurons
and the numerous complex signaling mechanisms available
to the neurons. Optical signaling has an advantage over
electronics in terms of the ability to route noninteracting
signals in three dimensions without wiring parasitics.

The two components to enable photonic fanout and rout-
ing at an intradie level are multilayer waveguide power
dividers and in-plane waveguide crossings. Both of these
devices occupy a small area and operate with low loss and
no RC penalty. Implementing these devices with roughly ten
waveguiding layers appears optimal, comparable to the
number of back-end-of-line metal layers used in CMOS for
interconnect. With ten waveguiding layers, the desired rout-
ing between optoelectronic neurons involves in-plane wave-
guide crossings. The ability to implement multilayer power
dividers and in-plane waveguide crossings with low loss and
low cross talk allows dedicated communication lines for
each interneuron connection.

On the receiving end, signals from an arbitrary number of
SPONS5s can be received simultaneously, and time multiplex-
ing is unnecessary. The system is conducive to encoding of
information in both spike rate and timing. On an electronic
platform, the length of an electronic signal line increases as
the number of connections grows, resulting in a larger RC
time constant. This increase in RC time constant with
number of connections forces a speed or connectivity trade-
off, leading most electronic neuromorphic implementations
to share communication lines. Such a shared interconnect
can transmit only a single voltage pulse within a time
window, and this involves the number of connections
between neurons and the firing rate of each neuron.

Other approaches that leverage phenomena unique to
optics for neuromorphic computing have employed optical
devices such as lasers and integrated microresonators. Laser
cavities with strong light-matter interaction can be leveraged
to realize complex nonlinear dynamics which can emulate
the behavior of neurons. The frequency selectivity of inte-
grated ring resonators can be used to achieve synaptic
weights. Optical neural networks and spiking neurons based
on these effects have been proposed and demonstrated. The
SOEN platform operates in the few-photon regime with
compact, energy-efficient components, enabling a large
degree of scalability.
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With regard to a visual cortex, a simple neural network
(the MLP) can be built with SPONs, and the SOEN platform
can be used in complex systems. The visual cortex is the
most thoroughly studied region of the mammalian brain, yet
there is still a great deal to be understood about information
encoding from the retina through the thalamus and on to the
visual cortex. A nonbiological experimental test bed is
highly desirable to explore hypotheses. Biologically realistic
supercomputer simulations of the brain can simulate only a
small fraction of the brain cells in a small mammal at
significantly reduced speed. The massive parallelism
enabled by a scalable, biologically realistic hardware imple-
mentation of the many thousands of neurons involved in the
visual system can provide more quick and efficient simula-
tions, which may give further insight into the visual system,
while also offering potential for image-processing applica-
tions.

An exemplary application of the hardware platform is a
built-in retina that includes integrated SNSPDs, which are
used as a pixel array for monolithic image acquisition and
analysis. In FIG. 29, we show an SNSPD array integrated
with a multilayer neural network as a visual system. The
visual system includes a retina, a thalamus, and a primary
visual cortex. In biological systems, the primary visual
cortex is highly sophisticated, being organized into six
layers each with their own sublayers. Our primary visual
cortex includes two layers that are referred to as a granular
layer and a supragranular layer.

At the left of FIG. 29, the SNSPD array receives light
from the environment and converts it to signals to be sent to
the first layer of neurons in the thalamus, in direct analogy
with a biological retina. Much like the cones in a human eye,
the pixels of the SNSPD array can be designed to be more
sensitive to particular frequencies simply by varying the
thickness of an antireflection coating locally above each
pixel.

From the retina, a small number of pixels project to each
neuron in the thalamus without a large amount of branching.
Similarly, the neurons of the thalamus project to the first
layer of the visual cortex with minimal branching. Impor-
tantly, some of these connections are inhibitory and some are
excitatory. While inhibitory connections are known to play
a central role in information encoding in the visual system,
the full scope of that role remains the subject of investiga-
tion. The biologically realistic mechanism for implementing
inhibitory connections, as illustrated in FIG. 20c¢ is of great
utility in using SOENSs to study information encoding in the
visual system. In the thalamus, there is little if any recur-
rence, meaning the neurons in that layer project forward but
do not form synapses on each other. The thalamic neurons
do, however, receive feedback from the granular layer of the
visual cortex. The ability to straightforwardly implement
feedback with SOENS, as illustrated in FIG. 20e, is another
feature in using SOENSs as the visual system.

The granular layer receives feedforward signals from the
thalamus, projects feedforward signals to the supragranular
layer, and receives feedback from the supragranular layer.
While still only minimally recurrent, neurons in the granular
layer branch more heavily to form a larger number of
connections across more neurons in the supragranular layer.
The supragranular layer projects its output to other regions
of the cortex and is also heavily recurrent. At the right of
FIG. 29, we show the neurons in the supragranular layer
making connections with other neurons within the layer.

For an initial SOEN visual system, we envision imple-
menting the retina and thalamus on a single die, with a
separate chip of 700 neurons being employed for the granu-
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lar layer and a third chip of 700 mutually interacting neurons
representing the supragranular layer. This experimental test
bed may offer insight into outstanding questions such as how
and why concentric circular patterns of retinal response are
mapped to bars for processing in the visual cortex. With a
simple system like that illustrated in FIG. 29, experiments
relate to object recognition, edge detection, the perception of
motion and spatial frequency, as well as many other subjects
in contemporary visual system research.

It is contemplated that neuromorphic systems can find
trends and extract features from large and noisy data sets,
reducing the dimensionality of those data sets. They can
learn over time based on the temporal evolution of the data
under consideration. Several societal challenges require this
type of analysis of large numbers of complex, interacting
units—exactly the type of system for which neuromorphic
computing excels. These applications include monitoring of
markets, Internet traffic metrology, detection of hacking
attacks, modeling of climate systems, and phenotypic pre-
diction from genomic data. For these applications, super-
computers at the limit of what is possible with CMOS
implementations of the von Neumann architecture are pres-
ently in use. For many computational tasks, massively
scaled systems employing parallel computation in a neuro-
morphic architecture can play a role in which the system can
be used.

Another likely solution to the current bottlenecks facing
supercomputers is superconducting electronics. In particu-
lar, Josephson-junction processors with single-flux-quantum
logic are poised for use in the next generation of supercom-
puters. These processors can provide an improvement over
CMOS in speed by roughly a factor of 100 with extremely
high-energy efficiency. Our platform integrates into super-
computers, offering neuromorphic capability to von Neu-
mann implementations and additional degrees of freedom to
neuromorphic Josephson-junction systems, which are purely
electronic. In addition, the SOEN platform may offer a
means to transduce single-flux quantum pulses to the optical
domain, for interconnects between chips and with the out-
side world (cryostat 1/0) via photonic signaling.

With regard to integration time and refractory period, an
integration time of a SPON is the time from the absorption
of a photon until the receiver no longer has a memory of that
absorption event. The behavior of integrate-and-fire devices
with integration times less than infinity are referred to as
leaky integrate-and-fire neurons. In the context of SPON
devices, in the most basic case, this integration time is
determined by the hot-spot relaxation time of the supercon-
ductor, which depends on the material quasiparticle dynam-
ics which are governed by the electron-phonon coupling and
the thermal conduction to the substrate. This thermal relax-
ation is a material-dependent quantity and can be as fast as
200 ps in NbN. In WS4, it is closer to 1 ns, and there may
be materials for which it is even slower. Additionally, the
bias current is shown to affect the quasiparticle recombina-
tion time. The choice of superconducting material and
substrate may be leveraged to tune the integration time to a
desired value in hardware, and the bias current may be used
to modify it dynamically.

Further, the PND circuit shown in FIG. 15 can be modi-
fied so that each wire in the PND array is in parallel with a
small shunt resistor. In this configuration, the [/R time
constant of each receiving wire can be chosen to set the
integration time. In this case, the hot-spot relaxation time
represents a lower limit on the integration time, but the
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integration time can be extended to very long times relative
to other time scales of the system simply by adjusting the
L/R value.

The cylindrically symmetric nanowire arrays of FIG. 17
and FIG. 32 can provide a geometry, wherein no nanowire
occupies an edge, so supercurrent is evenly distributed after
each firing event. A PND can trap flux after a photon-
absorption event. To utilize this to extend the integration
time to infinity, the geometry of FIG. 17 is used. To dissipate
flux to reduce the integration time, the topological variant of
FIG. 32 is used. The differing circuit designs of these two
devices are shown in FIG. 33. In the flux-dissipating con-
figuration shown in FIG. 32 and FIG. 335, flux-trapping
superconducting loops are avoided, and all locations where
hot spots can be created are on a boundary with the normal
environment. Therefore, vortices created during absorption
events are not trapped.

We note that in biological systems, the integration time is
set by the RC time constant of the membrane and is typically
approximately 1 ms or approximately 10-4-10-5 the firing
period. Taking the 1-ns quasiparticle lifetime as the integra-
tion time, this corresponds to operating the system with
(10-100)-kHZ event rates, a range that is straightforward to
achieve.

The refractory period of a neuron refers to the time
following a firing event during which the neuron cannot fire
again. For a standard SNSPD, this dead time is governed by
the L/R time constant of the series inductance of the SNSPD
and the resistance across which the voltage pulse is being
measured. In the case of WSi, this L/R time constant is
usually 50 ns. This resistance is usually 50Q, but in the
present case, it is the impedance of the LED, which will be
several kilohms, giving a shorter refractory period. If an
application requires a longer refractory period, an additional
series inductance can be added to achieve the desired delay.
We note that in some SNSPD material systems, the [/Rtime
constant must be chosen sufficiently large to avoid latching,
while in the present application, the feedback circuit of FIG.
20a can also be utilized to avoid latching and control the
refractory period.

With regard to threshold condition for the PND array, we
derive the expression of Eq. (1). The number of nanowires
in the PND array is denoted by NNW. The number of
nanowires driven normal by photons is denoted by nabs. The
critical number of nanowires driven normal is denoted by
nabsc. The bias current through the entire array is denoted by
Ib. The current through a single wire of the array is denoted
by i. The critical current of a single wire is denoted by ic.

In the steady state, before any photons are absorbed,
nabs=0, and i=Ib/NNW. Upon absorption of a single photon,
nabs=1 and i=Ib/(NNW-1). In the general case that n
nanowires are driven normal by photons, nabs=n and i=Ib/
(NNW-n). The condition for nabsc is i=ic=Ib/(NNW-
nabsc). Rearranging gives nabsc=NNW-(Ib/ic).

With regard to integration of superconducting and wire
detectors, the behavior of the SNSPD receivers are analyzed
by optical absorption and statistical behavior of waveguide-
integrated SNSPDs. We calculate the attenuation of light as
a function of propagation length for 200-nm-thick wave-
guides (tWGQ) in the asymptotic slab regime. The waveguide
refractive index is 3.52, the cladding index is 1.46, and our
calculations are at a wavelength of 1220 nm. The nanowire
is assumed to be 4 nm thick, 300 nm wide with a 50% fill
factor, and n=3.25+2.19i. In FIG. 30, we show the results for
the common out-and-back configuration [light propagating
parallel to the nanowire. FIG. 30qa] and the slab configura-
tion [light propagating perpendicular to the nanowire, FIG.
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305]. In each case, the various traces are for different spacer
thicknesses, (hs, refractive index 1.46) between the wave-
guide and nanowire, ranging from zero to 160 nm in steps
of 20 nm. The modal distribution is shown in the inset. The
data in FIG. 30a and FIG. 305 are fractal in nature so an
increase of the x axis by one decade is accompanied by an
increase in the y axis by a decade (on the decibel scale).
From these plots, one can see that for both the parallel and
perpendicular configurations, a wide range of attenuation
coefficients can be achieved.

In FIG. 30c¢, we show the probability of absorption after
a single pass by a nanowire as a function of spacer thickness
for waveguides with 100 and 200 nm thickness, illustrating
another degree of freedom for tuning the absorption. It is
important to be able to engineer the statistical distribution of
absorption across the SNSPD receiver. For the case of the
PND, each SNSPD should absorb an average of one photon
each, as an additional photon absorption in the same SNSPD
will not contribute to the spike event. For the case of the
SND, the requirement is less stringent, but one still wants to
spatially distribute absorption events so that hot spots do not
overlap until a certain (large) number of photons is
absorbed.

To address the design requirements of the PND, we
consider the absorption statistics as calculated via Monte
Carlo simulations. We perform 1000 trials each for different
photon numbers incident on a PND with 40 SNSPDs. FIG.
31a shows the mean number of photons absorbed (out of
1000 trials) in the PND as a function of the number of
incident photons for different absorption probabilities, in the
case where only a single pass by each nanowire occurs. This
behavior may be achieved with a design like that of FIG. 24.
For each of the 1000 simulations, the arithmetic mean of the
number of photons absorbed per nanowire is calculated for
each value of incident photon number as

wx(mnp,0)=1NNWNNWZi=1xi, (Cl)

where xi is the number of photons absorbed in the ith
nanowire. From these values, the mean number of photons
absorbed per nanowire 17X is then calculated as the mean of
the means (grand mean) in Eq. (C1).

The absorption probability in the PND has a mean number
of'absorbed photons per nanowire per pulse and the standard
deviation of this number are both less than or equal to 1. In
FIG. 31b, we show the standard deviation data for the
single-pass case. For each of the 1000 trials, the standard
deviation of the number of absorbed photons is calculated as

ox(np,0)=V INNWNNWZi=1(xi-x)2, (€2)

where ux is given by Eq. (C1). The mean of these standard
deviations over the 1000 Monte Carlo trials (07x) is calcu-
lated, as is the standard deviation of the standard deviations.
The center trace of each curve in FIG. 3156 is 0 x for a given
value of a, and the width of the trace is calculated by adding
and subtracting the standard deviation of the standard devia-
tions. The standard deviation with a=10% is roughly three
photons. Thus, such large absorption is undesirable for this
purpose, as the initial wires tend to absorb more than a single
photon, and the latter wires absorb zero photons. For the
one-pass case, 1% absorption appears to be close to ideal.
The mean number of absorbed photons is close to 1, as is the
standard deviation. The standard deviation for a=0.1% is
even lower, yet the mean number of absorbed photons is
only approximately 0.2. Therefore, many photons are pass-
ing through the array without being absorbed.

In FIG. 31c¢ and FIG. 31d, we show results for the case
where ten passes by each nanowire occur, as may be
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achieved with the spider web neuron design of FIG. 23. For
the case of ten passes, a=0.1% performs much better,
although all photons are still not absorbed.

Consider the case where 40 photons are incident. We want
all 40 of these photons to be absorbed by the 40 nanowires
of the array, and, therefore, we want X to be near unity. In
FIG. 31c, we see that we achieve this for both a=1% and
10%, yet in the case of a=10%, all photons are absorbed on
the first pass [as seen in FIG. 31a], so the mode of the
distribution is greater than 1, and the standard deviation is
larger than desired. By comparing the standard deviations
for the a=1% and a=0.1% cases in FIG. 31d, we find that
a=0.1% gives a more desirable spread of absorption events
(smaller standard deviation). From this analysis, we find that
for the PND receiver array, it is desirable to operate with low
a and a high number of passes.

With regard to p-n junction model of the light-emitting
diode, to model the performance of the emitters, we work
with an analytical model of a p-n junction. Within this
model, the current-voltage relationship for the junction is
given by

Ip-n(Vy=eA(VDpppn+VDitnnp)(eeV/kBT-1).

In Eq. (D1), the electron and hole diffusion coefficients
are given by Dn=un(kT/e) and Dp=pp(kT/e), where un (up)
is the mobility of electrons (holes). The electron and hole
lifetimes are given by tn and Tp, respectively, which we take
to be 40 ns. np is the concentration of electrons on the
p-doped side of the junction, and pn is the concentration of
holes on the n-doped side of the junction. To achieve
low-temperature operation, we assume degenerate doping,
and, therefore, a low mobility is to be expected. We use a
value of 100 cm?/(V s) for both electron and hole mobilities.
Because this value will be limited by ionized impurity
scattering, it is likely to change little as the temperature
decreases to 1 K.

From the electronic current, we calculate the photonic
current as

dn

(Vy=nip-n(Ve.

This model for the current through the diode is derived for
an abrupt p-n junction, yet for the waveguide-integrated
LED, one employs a p-i-n junction. Also, the present model
breaks down at low temperature. We use T=300 K in Eq.
(D1) because our measurements inform us that in the
degenerate doping regime, the behavior is relatively con-
stant to low temperature. Therefore, we use this model only
as an approximation, and a more thorough numerical and
experimental investigation of the devices to be used in the
platform is the subject of future investigation. With this in
mind, we approximate the capacitance of the junction using
a simple parallel-plate model where the capacitance is given
by C=eA/d, where ¢ is the material permittivity. A is the
capacitor area, and d is the distance between the plates. We
assume £=12e0. A=10 pmx100 nm, and d=300 nm. The
energy associated with charging this capacitor is then cal-
culated as Ec=1/2CV2. We note that for all values of photon
number generated by the LEDs within this model, the
applied voltage is below the built-in potential of the junc-
tion, so true forward-bias operation is not required. We
anticipate that for the case of a p-i-n junction, the voltages
required to achieve the same number of photons will
increase slightly, but this can easily be accommodated by
utilizing nanowires with larger critical currents.

With regard to waveguide design for the dendritic arbor,
in FIG. 34a, we show effective indices at 1220 nm for slab
thicknesses up to 600 nm to illustrate that many vertical

D2)
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modes can be present with high effective indices with only
modest film thicknesses. We find that for <200 thick wave-
guides, only the first vertical order TE and TM modes are
present. Therefore, a waveguide height can be 200 nm. For
massive scaling, multimode waveguides with higher vertical
as well as lateral modes and both polarizations can be used.

Having selected 200 nm as our waveguiding layer thick-
ness, we consider the lateral mode spectrum, as shown in
FIG. 34b. Here we see that the second-lateral-order TE mode
emerges above the cladding index around 350 nm; we
choose this as the single-mode width for the dendritic arbor
simulations. From FIG. 345, we also find that a large number
of higher-lateral-order modes are present with high effective
index and modest waveguide width. For the dendritic arbor
design presented in FIG. 235, a compact multimode wave-
guide can be used. From this analysis, we find that a
waveguide with tens of modes can be achieved while still
maintaining a compact bend radius.

We select a minimum inter-waveguide gap that avoids
undesired coupling of modes in space. To do this, we
calculate the supermode propagation constants as a function
of the waveguide gap, as shown in FIG. 35. We see the
splitting between the symmetric and antisymmetric modes is
quite large for a gap of 100 nm, but both modes converge to
the uncoupled value for a gap of 600 nm. The fractional
splitting AP/PO is shown in the inset. Here, AP is the
difference between the propagation constants of the sym-
metric and antisymmetric supermodes, and PO is the
uncoupled propagation constant. Based on this analysis, we
choose 600 nm to be the inter-waveguide gap for the
dendritic arbor design of FIG. 24.

With regard to scaling, a length of an MLP layer is

L1=(Lt+Lg+Lx)NaNWG+2LWGNWG+Ln, (F1)

where Lt is the length of a single tap (or synapse) taken to
be 10 um; Lg is the length of a gap between two vertically
running waveguides taken to be 5 pm, which is sufficiently
wide to allow for undercut of the mechanically mobile
synapses; [Lx is the length of an intraplane waveguide
crossing taken to be 3 pum; Nn is the number of neurons in
a MLP layer [four in FIG. 27a]; NWG is the number of
vertically stacked waveguide planes used for routing; LWG
is the length of an interplane coupler between two wave-
guiding planes taken to be 10 um. Ln is the length of a single
neuron as shown in FIG. 24. Ln is determined predomi-
nantly by the number of inputs and, therefore, is taken to be
the inter-waveguide gap, 600 nmxNn. The width of a single
neuron is taken to be equal to its length, and within this
model, we assume each neuron in a given layer has a
synapse connecting to each neuron of the next layer.

Application of Shannon’s theory of communication to
neural systems provides quantification of information-pro-
cessing capacity. The mutual information (in bits) between
a neural system and a stimulus can be represented as

Im=/dsfdrP[s]P[rls] log 2(P[rls]P[r]). (G1)

In Eq. (G1), P[r] is the probability of spike rate r occurring
given a stimulus s, P[s] is the probability of stimulus s
occurring from the set of all possible stimuli, and P[rls] is the
conditional probability of response rate r being evoked when
the system is presented with stimulus s. With a neuromor-
phic computing platform, one wants to maximize the mutual
information. Because Im within this model is calculated
simply as a double integral over stimuli and response rates,
we can maximize this quantity by increasing the limits of the
integral. Because the proposed devices can operate at 20
MHz—and potentially up to 1 GHz by employing super-

20

25

40

45

55

34

conductors with faster thermal recovery—they can achieve
response rates as well as receive stimulus across this entire
bandwidth. The intrinsic speed of SPONs is greater than
biological systems by a factor of 104, and this affects both
the stimulus and response bandwidths in the double integral.

In addition to increasing the double integral by increasing
the bandwidths, we can also maximize the bit depth. Signals
can be discretized into roughly 11 bits. However, it is
possible to increase this number further at the expense of
size and efficiency.

We discuss the s and r in Eq. (G1) with the photonic input
to the receiver array and photonic output pulse rate of the
transmitter in mind, but the neuron of FIG. 26 can receive
more stimulus and generate more output. For example, if
one considers not only the photons incident upon the
receiver as stimulus but also the current through the SNSPD,
the bit depth of the discernible stimuli increases further.

Equation (G1) is derived by considering the difference
between the entropy of a neuron’s responses to a given
stimulus and the noise entropy. As such, it is a measure of
the information content at the device level and not at the
system level. Information content of a population grows
with the size of that population. Therefore, the high band-
width of SPON devices, the ability to scale to units with
large numbers of connections, and the ability to scale to
systems with large numbers of units while maintaining a low
power density points to the potential for complex systems
with enormous information content. We note that these
attributes are enabled by photonic signaling and supercon-
ducting electronics.

Example 2. Multi-Planar Amorphous Silicon
Photonics with Compact Interplanar Couplers,
Cross Talk Mitigation, and Low Crossing Loss

A photonic routing architecture efficiently uses space of a
multi-plane (3D) photonic integration. A wafer with three
planes of amorphous silicon waveguides was fabricated and
characterized, demonstrating less than 3x10™* dB loss per
out-of-plane waveguide crossing, 0.05+0.02 per interplane
coupler, and micro-ring resonators on three planes with a
quality factors up to 8.2x10* We also explore a phase
velocity mapping strategy to mitigate the cross talk between
co-propagating waveguides on different planes. These
results expand the utility of 3D photonic integration for
applications such as optical interconnects, neuromorphic
computing and optical phased arrays.

An advantage of photonic integration is the ease with
which signals can be routed over a wide range of distances
without incurring excessive power penalties, losses, or cross
talk. Photonic interconnects are an approach for applications
including massive connectivity, such as phased arrays and
optical transceivers. The field of neuromorphic computing
using photonics may realize all-to-all connectivity at the
scale of 10® synaptic connections per neuron. The footprint
of the interconnections is minimized if signals can cross
paths at least a similar number of times. For single-plane
photonics, compact multimode waveguide crossings with
0.02 dB loss per crossing have been demonstrated, allowing
several dozen such junctions in a path without significantly
impacting the power budget. However, to achieve connec-
tivity orders of magnitude greater, multi-planar (3D) pho-
tonic integration becomes necessary to minimize the cross-
ing loss and to increase the maximum photonic waveguide
density.

Once the decision to expand vertically has been made, we
are faced with many more choices concerning the platform:
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waveguide materials, confinement strength, interplane pitch,
and interplane coupler (IPC) mechanism. These elements
are intricately related through their impact on the critical
metrics of crossing loss, cross talk, and the horizontal and
vertical waveguide density that can be attained. To minimize
the crossing loss and cross talk between out-of-plane wave-
guides, the optical modes must be sufficiently far apart to
avoid scattering or evanescent coupling. However, increas-
ing the interplane pitch also compromises size and efficiency
of the IPCs. Previous work has demonstrated a two-plane
crystalline/amorphous (c-Si/a-Si) platform with a 1.12 pm
interplane pitch. Such a large separation allows reasonable
mitigation of cross talk and crossing loss. However, it also
poses a challenge for the IPC, which suffered from high loss
(0.49 dB) and large dimensions (~200 pm length). To
overcome these penalties, smaller pitches and weaker modal
confinement can be pursued instead. A silicon-nitride two-
plane platform with a pitch of 900 nm was bridged with a
100 um long adiabatic taper with <<0.01 dB loss per
coupler. However, a consequence of the reduced inter-plane
isolation was a severe penalty of 0.167 dB loss per out-of-
plane waveguide crossing. With even smaller gaps, consid-
erably shorter couplers can be achieved with similar loss
performance, but nothing is done to address the issues of
cross talk and crossing loss. One way to circumvent these
issues is to employ an additional intermediate routing plane
to allow efficient coupling between smaller gaps, while
maintaining a large separation in crossing areas; this has
been realized with 3.1x10™> dB per crossing while co-
integrating modulators and detectors on the same platform,
showcasing the utility of 3D integration for high-density
interconnect and transceiver applications. For interconnect
applications including a few photonic planes, the need to
utilize an entire plane to augment the interplane pitch may
not significantly impact the cost or complexity of the system.
However, it does not take full advantage of the surface area
present in each layer, which could be used to attain even
greater performance. Furthermore, for interconnects requir-
ing many planes, the impact of doubling them is a consid-
eration.

Much research has focused on crossing loss mitigation,
and cross talk is generally avoided with the assumption of
perpendicular (or significantly angled) waveguide orienta-
tions at overlapped regions on the wafer, to limit evanescent
coupling-induced cross talk. Such a routing/layout scheme
inherently has poor utilization of the available surface area
and is incompatible with conventional, Manhattan-type rout-
ing layouts in which nearby paths will lie parallel to each
other for considerable distances. An interconnect layout that
prohibits co-propagation of out-of-plane waveguides will
also increase the number of crossings and thus increase the
optical loss.

The ideal 3D photonic integration architecture allows
fully packed waveguide integration (density-limited by lat-
eral coupling) on each additional plane, allows Manhattan-
style routing with both perpendicular and parallel paths for
different planes, and realizes compact, low-loss crossings
and transitions, allowing maximum flexibility to the routing
layout—a crucial consideration for further scaling. To real-
ize these goals, we propose a 3D integration strategy com-
prising an efficient IPC design and a robust optical routing
technique. We experimentally demonstrate the system’s
performance in the key performance metrics of crossing
loss, cross talk, and interplane coupling loss. Additionally, to
assess the film properties of the stack, we fabricate and
characterize micro-ring resonators on each of the three
planes. The platform is represented in FIG. 36. It employs
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200 nm-thick a-Si waveguiding planes with an interplane
pitch of 900 nm. For each a-Si plane in the stack, the
nominal width of routed waveguides is alternated between
two values, w,=470 nm and w,=550 nm. In this way,
continuous constructive interference between adjacent
planes is prevented via a phase mismatch, allowing these
waveguides to be co-propagated over arbitrary distances;
this is analogous to the use of superlattices for increasing the
horizontal packing density of a single plane of waveguides.
For this design, an intraplane horizontal waveguide pitch of
2 um is sufficient to guarantee a cross talk of <-19 dB for
a co-propagation length of 2 mm. In our platform, wave-
guides on different planes are also staggered with a hori-
zontal offset (half of the intraplane waveguide pitch) to
further limit cross talk without compromising the packing
density. In effect, these choices allow a smaller interplane
pitch and relax the demands on the IPC. The use of wave-
guide superlattices in the horizontal direction may also be
useful in reducing the in-plane spacing of waveguides, when
the set of waveguide widths is appropriately chosen.

The platform was prototyped at the Boulder Microfabri-
cation Facility at NIST. The fabrication flow is shown in
FIG. 37. Three waveguiding planes denoted P1, P2, and P3
were employed, though the process is in principle scalable
to larger numbers. The a-Si deposition was performed with
an inductively coupled plasma chemical-vapor-deposition
(ICP-CVD) system, utilizing SiH,/Ar chemistry at 150° C.
Prism-coupling measurements indicate a refractive index
value of 3.12+0.1 and a slab propagation loss in 144
nm-thick films of ~1.4 dB per cm at A=1550 nm. Patterning
was performed with electron-beam lithography. ICP reac-
tive-ion etching utilized a SF/C,Fg chemistry. Unused areas
were patterned with a periodic partial fill to homogenize the
surface and limit film stress. The fill pattern was imple-
mented on every plane for the slab areas immediately
beyond the waveguide trench isolation. To prevent inter-
plane coupling from waveguides into slabs on other planes,
any fill pattern that overlapped a device feature on another
waveguide plane was completely etched away. Images of the
finished sample after fabrication are shown in FIG. 37(g)-
FIG. 37(j). The experimental interplane pitch of ~700 nm is
smaller than the design value of 900 nm, which may be
explained by inaccuracies from using a white-light interfer-
ometer to track film thicknesses throughout the fabrication.

The fabricated devices were characterized via a tunable
laser source and detector system. Light was coupled on- and
off-chip via fully etched grating couplers and single-mode
fibers at a nominal wavelength of 1540 nm. Statistical
uncertainties are reported as the standard deviation in trans-
mitted optical power for sets of reference paths consisting of
two grating couplers and a waveguide.

With regard to micro ring resonators, the waveguiding
performance and material quality of each of the three planes
(P1-P3) was assessed by fabricating and measuring micro-
ring resonators with radii of 30 pm (FIG. 38). A ring-bus
coupling gap of 500 nm was employed, incurring minimal
loading. A set of grating couplers (input, output, and drop
ports) was fabricated with each ring. The measured and
normalized drop-port transmission for one doublet reso-
nance from each ring (waveguide width of 550 nm for all
three planes) is plotted in [FIG. 385], as well as the fitted
value based on coupled-mode theory. The loaded quality
factors (Qs) for the P1, P2, and P3 doublet pairs (with the
two peaks in the doublet denoted a and b) are as follows:

2=6.1x10* Qb=6.4x10%; P1:
o ;

a=6.2x10% 0b=8.2x10%; P2:
o ;

2=2.5x10% 0b=3.2x10%, P3:
o
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Based on the Q-factor of 8.2x10* measured from the P2
resonator, a corresponding propagation loss of 7.4 dB per cm
was observed. These values are likely predominantly limited
by pattern and etch-induced sidewall roughness (based on
the earlier observed slab propagation loss of 1.4 dB per cm),
which was not optimized in this work.

With regard to inter-plane couplers, interplane pitch of
900 nm, combined with the high-confinement a-Si core,
poses a challenge for the IPC. State-of-the-art IPCs for
similar interplane pitches exhibit typical lengths between
100 and 200 um, or compromise the efficiency for shorter
device lengths (~1 dB over a 60 um long coupler).

An effective IPC design, consisting of a tapered width
transition between two waveguides, should behave adiabati-
cally (which enhances bandwidth and tolerance to fabrica-
tion errors) but should also be designed to enhance the
evanescent coupling strength between the two waveguides.
This can be achieved with narrower waveguides to reduce
the mode confinement. For large interplane pitches, the
average waveguide width throughout the transition should
be minimized to the point that it does not introduce losses
due to sidewall roughness. However, a simple linear taper of
the waveguide width between the maximum and minimum
values results in excessively long couplers, since little
coupling occurs until the waveguide dimensions are signifi-
cantly narrowed. We have thus implemented a two-level IPC
design, making use of a “fast” initial taper to rapidly
compress the waveguide width at the outer regions, com-
bined with a “slow” extended taper region over which a
much smaller width transition occurs [FIG. 395]. The result
is strong coupling over most of the useful taper length, while
eliminating unnecessary space for bulk width adjustments at
the input/output. Compared to a simple uniform directional
coupler approach, this has increased tolerance to thickness
variations between layers. The proposed design has the
parameters L,=4 um, [,=15 pm, w,,;,=320 nm, w,,,,=350
nm, and w,,, =510 nm, with a total length of 38 pum. The
simulated insertion loss is 0.032 dB per coupler at a wave-
length of 1540 nm via 3D finite-difference time-domain
(FDTD). A series of parametric variations near these design
parameters was fabricated. Each design was tested in a
cut-back arrangement by comparing the spectral transmis-
sion of 32 successive transitions between P1/P2 to the
averaged spectral transmission of twelve reference wave-
guide paths (waveguide width=510 nm) of the same total
length, distributed across the test array. Each IPC is sepa-
rated from the next on the same plane by a 10 um-long gap,
which prevents parasitic coupling. The estimated parasitic
coupling for any residual light is estimated by FDTD to be
<0.3%. The resultant loss spectrum of the best-performing
design observed is plotted in FIG. 39¢. A minimum loss of
0.05+0.02 dB per coupler is observed at a wavelength of
1526 nm. A loss better than 0.1 dB per coupler is maintained
over a 35 nm span from A=1512 nm to 1547 nm. The
measured device has designed parameters [.,=3 um, [,=15
um, w,,. =330 nm, w,,,,~370 nm, and w,,, =510 nm, com-
prising a total length of 36 pm. The difference in optimal
design parameters likely comes from the reduced interplane
pitch in the fabricated structure, leading to stronger-than-
expected coupling.

With regard to waveguide crossings, we investigate the
performance of perpendicular out-of-plane waveguide
crossings. Test devices FIG. 40a were fabricated with N_=0,
200, 400, and 600 crossings for both P1/P2 and P1/P3 types.
The waveguide stubs acting as crossings were separated
from each other by a pitch of 3 um. The total path length in
each measurement is the same, regardless of the number of
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waveguide crossings, such that the propagation loss is
automatically subtracted from the per-crossing loss values.
For P1/P3 crossings, the loss per crossing is below the
measured standard error of 3x10™* dB per crossing. For
P1/P2 crossings, the measured value is 3.1x107+7x10~* dB
per crossing, on-par with the best measured to date, without
the need for a dedicated plane to expand the interplane pitch.
We note that a spectral scan of the insertion loss for a device
with 600 P1/P2 crossings, compared to one with zero
crossings, revealed that the waveguide stubs do not induce
a grating effect capable of affecting the loss measurement.
These results demonstrate the scalability of this integration
strategy to large waveguide packing densities.

With regard to cross talk, to effectively utilize the space
available, and to avoid dilemmas in the routing, the cross
talk between co-propagating waveguides on different planes
must be managed. We now explore the performance of phase
velocity mapping of waveguides on adjacent planes via a
small difference in waveguide width. This was done by
co-propagating P1 and P2 or P3 waveguides for a variable
distance and measuring the maximum ratio of upper-wave-
guide power to the total power from both arms. For P1/P2
devices, both cases of Aw,=0 nm and Aw, =80 nm were
considered, while the P1/P3 case utilized the same nominal
waveguide widths. Test devices [FIG. 41a] were fabricated
and measured, with the results plotted in [FIG. 415]. The
theoretically predicted cross talk behavior for the fabricated
test structures (via FDTD simulations) is also plotted to
provide a comparison. The highest values of cross talk occur
at different lengths due to differences in propagation con-
stant and coupling strengths in each case. For overlapped
P1/P2 waveguides with identical widths, a severe maximum
cross talk of —-4.8+0.7 dB was measured for a co-propagation
length of 16 um. However, using a difference of 80 nm in the
waveguide width, the cross talk was dramatically reduced to
-12.5+£0.7 dB (58 pum co-propagation length), even in the
extreme case of direct overlapping. FDTD simulations show
that a straightforward cross talk improvement (based on the
observed performance so far) to <<-33 dB is achievable for
P1/P2 phase-velocity-mapped waveguides by offsetting
them by 1 um in the horizontal direction when co-propaga-
tion is required (see FIG. 36). This would have no significant
impact on the available surface area, since the same intra-
plane pitch can still be used. Finally, for the P1/P3 over-
lapped case, a negligible cross talk value of -35+0.7 dB was
experimentally observed (at 25 um length). At the maximum
measured length of 58 um, the experimentally observed
P1/P3 cross talk is 16 dB smaller than the theoretical value.
This is most likely due to a minor difference in thickness of
~~10 nm between the P1/P3 films. As a result, there is a
small phase mismatch between them, and the waveguides
only constructively transfer power over a shorter length than
what is required for maximum coupling. To support this
conclusion, we simulated the effect of a 10 nm reduction in
the thickness of the P2 and P3 films, also considering the
experimental interplanar pitch (700 nm) in this case. In the
P1/P3 case, a maximum cross talk of -34.5 dB is predicted,
which closely agrees with the observed value of -35 dB. In
the P1/P2 case with identical waveguide widths, the pre-
dicted maximum cross talk is -2.8 dB, also in good agree-
ment with the measurement of —4.8 dB. Finally, in the case
of mismatched widths in P1/P2 waveguides, this thickness
difference partially counteracts the phase velocity engineer-
ing, resulting in a predicted cross talk of -6.7 dB. The
difference between this and the measured value of -12.5 dB
could be from a small deviation in the P1/P2 interplane pitch
or a different thickness variation.
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For efficient photonic routing in 3D-integrated systems, a
prototype implementation was experimentally realized with
three planes of amorphous silicon waveguides. Detailed
characterization reveals exceptional performance in the
critical performance metrics of out-of-plane crossing loss,
interplane coupler loss, and cross talk. Micro-ring resonators
were fabricated on all three planes, showing a quality factor
up to 8.2x10*. An out-of-plane waveguide crossing loss of
3x1073£7x10™* dB per crossing for adjacent planes (P1/P2)
was observed, and for double-spaced planes (P1/P3), the
crossing loss was below the measurement limit of 3x10™* dB
per crossing. The large interplane pitch was bridged with a
compact and efficient two-stage interplane coupler (IPC)
design, showing a peak performance of 0.05+0.02 dB per
coupler at A=1526 nm. Next, anticipating that Manhattan-
style routing will be a necessary feature of high-density 3D
optical interconnects, we investigated a means of enabling
waveguides on adjacent planes to be propagated parallel to
each other for arbitrary distances, without introducing
excessive cross talk. By slightly modifying the waveguides
on alternate planes to be 80 nm wider, continuous construc-
tive interference is disrupted. Directly overlapped wave-
guides employing this technique showed a nearly six-fold
reduction in cross talk compared to those with identical
widths. This could later be combined with a simple constant
horizontal offset (half of the intraplane pitch) that will lead
to <<-33 dB cross talk between P1/P2 waveguides. These
results, showing drastically increased layout flexibility and
space-efficiency, bolster the case for 3D integrated photon-
ics.

While one or more embodiments have been shown and
described, modifications and substitutions may be made
thereto without departing from the spirit and scope of the
invention. Accordingly, it is to be understood that the present
invention has been described by way of illustrations and not
limitation. Embodiments herein can be used independently
or can be combined.

Reference throughout this specification to “one embodi-
ment,” “particular embodiment,” “certain embodiment,” “an
embodiment,” or the like means that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one embodiment. Thus,
appearances of these phrases (e.g., “in one embodiment” or
“in an embodiment”) throughout this specification are not
necessarily all referring to the same embodiment, but may.
Furthermore, particular features, structures, or characteris-
tics may be combined in any suitable manner, as would be
apparent to one of ordinary skill in the art from this
disclosure, in one or more embodiments.

All ranges disclosed herein are inclusive of the endpoints,
and the endpoints are independently combinable with each
other. The ranges are continuous and thus contain every
value and subset thereof in the range. Unless otherwise
stated or contextually inapplicable, all percentages, when
expressing a quantity, are weight percentages. The suffix
“(s)” as used herein is intended to include both the singular
and the plural of the term that it modifies, thereby including
at least one of that term (e.g., the colorant(s) includes at least
one colorants). “Optional” or “optionally” means that the
subsequently described event or circumstance can or cannot
occur, and that the description includes instances where the
event occurs and instances where it does not. As used herein,
“combination” is inclusive of blends, mixtures, alloys, reac-
tion products, and the like.

As used herein, “a combination thereof” refers to a
combination comprising at least one of the named constitu-
ents, components, compounds, or elements, optionally
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together with one or more of the same class of constituents,
components, compounds, or elements.

All references are incorporated herein by reference.

The use of the terms “a” and “an” and “the” and similar
referents in the context of describing the invention (espe-
cially in the context of the following claims) are to be
construed to cover both the singular and the plural, unless
otherwise indicated herein or clearly contradicted by con-
text. “Or” means “and/or.” Further, the conjunction “or” is
used to link objects of a list or alternatives and is not
disjunctive; rather the elements can be used separately or
can be combined together under appropriate circumstances.
It should further be noted that the terms “first,” “second,”
“primary,” “secondary,” and the like herein do not denote
any order, quantity, or importance, but rather are used to
distinguish one element from another. The modifier “about”
used in connection with a quantity is inclusive of the stated
value and has the meaning dictated by the context (e.g., it
includes the degree of error associated with measurement of
the particular quantity).

What is claimed is:

1. A neuromimetic circuit comprising:

a primary single photon optoelectronic neuron;

a synapse in optical communication with the primary
single photon optoelectronic neuron; and

an axonic waveguide in optical communication with the
primary single photon optoelectronic neuron and the
synapse such that the axonic waveguide optically inter-
connects the primary single photon optoelectronic neu-
ron and the synapse, and primary single photon opto-
electronic neurons are interconnected by integrated
axonic waveguides, such that primary single photon
optoelectronic neurons receive photonic signals from
other primary single photon optoelectronic neurons.

2. The neuromimetic circuit of claim 1, further compris-
ing:

a primary input communication path in communication
with the primary single photon optoelectronic neuron
and that communicates a primary signal to the primary
single photon optoelectronic neuron.

3. The neuromimetic circuit of claim 2, further compris-

ing:

a secondary single photon optoelectronic neuron in opti-
cal communication with the synapse such that the
synapse interconnects the primary single photon opto-
electronic neuron and the secondary single photon
optoelectronic neuron.

4. The neuromimetic circuit of claim 3, further compris-

ing:

a dendritic communication path in communication with
the synapse and the secondary single photon optoelec-
tronic neuron,

wherein the dendritic communication path interconnects
the synapse and the secondary single photon optoelec-
tronic neuron.

5. The neuromimetic circuit of claim 4, wherein the
primary single photon optoelectronic neuron and the sec-
ondary single photon optoelectronic neuron independently
comprise:

a transmitter in communication with the synapse;

a receiver in communication with the transmitter; and

a superconducting wire that electrically interconnects the
receiver and the transmitter.



US 11,258,415 B2

41

6. The neuromimetic circuit of claim 5, wherein the

receiver comprises:

a superconducting photon detector; and

an integrator in communication with the superconducting
photon detector.

7. The neuromimetic circuit of claim 6, wherein the

receiver further comprises:

a superconducting transfer synapse in communication
with the superconducting photon detector and in elec-
trical communication with the integrator.

8. The neuromimetic circuit of claim 7, wherein the

receiver further comprises:

a thresholding member in electrical communication with
the integrator.

9. The neuromimetic circuit of claim 6, wherein the

receiver further comprises:

a photonic transfer synapse in optical communication
with the superconducting photon detector.

10. The neuromimetic circuit of claim 6, wherein the

transmitter comprises:

a superconducting voltage amplifier in communication
with the integrator of the receiver; and

a photon emitter in communication with the supercon-
ducting voltage amplifier.

11. The neuromimetic circuit of claim 1, wherein the

synapse comprises:

a synaptic axon waveguide in communication with the
axonic waveguide; and

a synaptic dendrite waveguide in communication with the
synaptic axon waveguide.

12. A process for performing neuromimetic computing,

the process comprising:

receiving a primary signal by a primary single photon
optoelectronic neuron;

producing an axonic photonic signal by the primary single
photon optoelectronic neuron;

communicating the axonic photonic signal to a synapse;

receiving the axonic photonic signal by the synapse;

producing a dendritic signal in response to receipt of the
axonic photonic signal;

communicating the dendritic signal from the synapse to a
secondary single photon optoelectronic neuron;

receiving the dendritic signal by the secondary single
photon optoelectronic neuron;

producing a second axonic photonic signal in response to
receipt of the dendritic signal to perform neuromimetic
computing.
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13. The process of claim 12, further comprising:

producing, by a receiver, a threshold signal in response to
receipt of the primary signal.

14. The process of claim 13, wherein producing, by the

5 receiver, the threshold signal comprises:
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detecting; by a superconducting photon detector; a pho-
ton;

producing a synaptic signal based on detection of the
photon;

integrating the synaptic signal to produce an integrated
signal; and

producing the threshold signal based on the integrated
signal.

15. The process of claim 13, wherein producing, by the

receiver, the threshold signal comprises:

detecting, by a photonic transfer synapse, the primary
signal;

producing a photon in response to detection of the pri-
mary signal;

detecting; by a superconducting photon detector; the
photon producing a signal based on detecting the
photon; and

producing the threshold signal based on the signal from
the superconducting photon detector.

16. The process of claim 13, further comprising:

receiving, by a superconducting voltage amplifier, the
threshold signal; and

producing the axonic photonic signal in response to
receipt of the threshold signal.

17. The process of claim 16, further comprising:

amplifying, by the superconducting voltage amplifier, the
threshold signal;

producing a transmitter electrical signal from the thresh-
old signal; and

emitting the axonic photonic signal based production of
the transmitter electrical signal.

18. The process of claim 12, wherein producing the

dendritic signal in response to receipt of the axonic photonic
signal comprises:

receiving, by a synaptic axon waveguide, the axonic
photonic signal;

communicating the axonic photonic signal from the syn-
aptic axon waveguide to a synapse; and

producing the dendritic signal in response to receipt of the
axonic photonic signal by the synapse.
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