a2 United States Patent

Kuhn

US011175826B2

US 11,175,826 B2
Nov. 16, 2021

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

DIAGONAL NODE DATA BLOCK MATRIX
FOR ADDING HASH-LINKED RECORDS
AND DELETING ARBITRARY RECORDS
WHILE PRESERVING HASH-BASED
INTEGRITY ASSURANCE

Applicant: Government of the United States of
America, as represented by the
Secretary of Commerce, Gaithersburg,
MD (US)

Inventor: David Richard Kuhn, Columbia, MD

(US)

GOVERNMENT OF THE UNITED
STATES OF AMERICA, AS
REPRESENTED BY THE
SECRETARY OF COMMERCE,
Gaithersburg, MD (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 16/861,309

Filed: Apr. 29, 2020

Prior Publication Data
US 2020/0348841 Al Nov. 5, 2020
Related U.S. Application Data

Provisional application No. 62/842,616, filed on May
3, 2019.

Int. CL.

GO6F 3/06 (2006.01)

GO6F 21/62 (2013.01)

U.S. CL

CPC GO6F 3/0604 (2013.01); GO6F 3/067

(2013.01); GO6F 3/0652 (2013.01); GO6F
3/0659 (2013.01); GOGF 21/6218 (2013.01)

(58) Field of Classification Search
CPC GO6F 3/0604; GOGF 21/6218; GO6F 3/067,
GOG6F 3/0659; GO6F 3/0652; GO6F
3/0623; GO6F 3/064; GO6F 21/602
USPC ... 713/176, 189, 193; 714/100, 699, 752;
711/154
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2014/0304569 Al* 10/2014 Blasco Claret ... HO3M 13/6362
714/776
9/2018 Monahan GO6F 16/90

(Continued)

2018/0254888 Al*

OTHER PUBLICATIONS

Accenture, et al., “Accenture debuts prototype of “editable” blockchain
for enterprise and permissioned systems”, Accenture Newsroom,
Sep. 30, 2016, doi:https://newsroom.accenture.com/news/accenture-
debuts-prototype-of-editable-blockchain-for-enterprise-and-
permissioned-systems.htm.

Primary Examiner — Hong C Kim
(74) Attorney, Agent, or Firm — Office of Chief Counsel
for National Institute of Standards and Technology

(57) ABSTRACT

Provided is a process including: initializing a data block
matrix; making supra-diagonal nodes that include at most
one more node than sub-diagonal nodes; making a hash
nodes with a hash sequence length that is proportional to a
number of nodes in the row or column of nodes in which the
hash node is arranged; and writing data blocks in nodes of
the data block matrix such that a number of data blocks in
nodes in the data block matrix is less than (N°*-N) for N
number of nodes in the data block matrix, wherein the data
block matrix has dispersed data blocks.

8 Claims, 16 Drawing Sheets

2111
200 \\211 212
20t \E 2‘(51 215
, i ‘ ~214
/___:\M' ?.ash
: ~-218
L4210
2094 :
200, 1~ ;]\'gde /‘\:x_;, 114Iash
205 T :
- Node DLl Hash
21371 Hs0 Y T
)
917~ T'Tgsh ‘

US 11,175,826 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2019/0377498 Al* 12/2019 Dasccccovevveeenenn GOG6F 3/064

2020/0259634 Al* 8/2020 Wilke HO3M 13/091

* cited by examiner

U.S. Patent

Nov. 16, 2021

Sheet 1 of 16

Client computing device

US 11,175,826 B2

applivation

Client computing device

.28

/

30

application

Security
driver

/

Out-parser

™36

Security
driver

5

44
¢

Out-parser

~12

v

validator

Data demux

v

A

vali

A

Data demux

)

dator

v

Data demux

v

Data

N\

fn-parser

demux

X

— /

Db driver

N /

e

A

34
{

Y

Db driver

Y

Network interface

A

Y

Y

22

\

Network interface

=9

/

DNS

A

Lower-trust
database

7

Storage compute node

Storage compute node

va

Storage compute node

Storage compute node

&
3

Storage compute node

Storage compute node

P

Storage compute node

Storage compute node

Storage compute node

US 11,175,826 B2

Sheet 2 of 16

Nov. 16, 2021

U.S. Patent

: YsvH gseH ysey ~L1%

T “!u.\.ni, N e K I 7!
i A _ w i m A mm
! 1 T ‘\‘J/’nlr\ []
| - m . “ : 9pPON mm 1 A4
| B S |
e |
Pl :

815~
m 0

prasl P

US 11,175,826 B2

Sheet 3 of 16

Nov. 16, 2021

U.S. Patent

e Dld

!
e
i

3
¥
3
7

81

/L,,...,,..,m..,,..m..,mw o o o e o o o

N

soxapll
UOLITBI0] WNjoN

S8poU [BUOSBIP.gNS
Uy} Yoo[q e1Ep oJ0ul
SUO JSOU 18 SUTBTUOD
sopou [ruodeip.vidns
ATISUCIO 90Ue[Eq

saXopul

e OTBIO] MOY

sopou
O} UoAM
348 SHOU[q

IR By JOpLO

US 11,175,826 B2

Sheet 4 of 16

Nov. 16, 2021

U.S. Patent

b uwnoo
Ul §300[q e1Ep |8

Jo enjea ysey gyum -

Apou YsSBY Uwnjo;

e

1 M0d UL 8Y00[q
viEp {18 JO anjra ysey
giim opou Ysey Moy

() M0J UL $Y20]q

BED {18 JO anra ysey
M BPOU UYSBY M0}

. ;
i”ﬁ“'t"‘"""!

UOTJOBIIP [BUOSRIP-ISTUNO])

¥ O

T

/o soxapul
UOLTEN0] N0y

() Hwnjos

Ul $)00]q BiBp [[©
Jo enjea ysuy yum
SpoU YSBY UWIN0O))

goXapul
. U0IIeI0] MOy

UO013091Ip [euodvi(]

US 11,175,826 B2

Sheet 5 of 16

,2021

16

Nov.

U.S. Patent

(OTLITT00000T0001TI0T0MYS®Y
SO RA Ho01g BIED [0 UoNEUauilios oo

.

¢ Old

o
ayseqsey iy 1 HIOTTT T000 00TO 0OTT TOTO

%

uorjeinduros ysey Arerduroxry

US 11,175,826 B2

Sheet 6 of 16

, 2021

16

Nov.

U.S. Patent

saysey

9 Old

UOTIRUSIROUOD §1 | | adaym
{ {OTTTIYsRY
P {TO00)sey
P {ODIOYsey
L1 O0TDYSeY
L (T0TOS®BY yysey =
50]¢ [ENPIATPUI JO UOTIEUSIEIUOD
v 81 Jeif} enjra ysey sey Ty

uonyenduod ysey Arejduwexy

US 11,175,826 B2

Sheet 7 of 16

Nov. 16, 2021

U.S. Patent

(=1 aejod

gyt sapou any T su uastd apdwexe
sTy3 Ly 1 gegurod gy anjea owes
Y} L3LA §BPOU JO SIUSTION 047 JO
UOTIBUeIRINoD 2yl wogy pendues
81 enyea ysey smgderdopdian
‘roryryusmepduy suy uy

LD

Leangeeynare aeyndwmno Burdpepun oyl uo
juspuadep st sjqeries yuted v Jo JUsUos pue
TRTLIOT [RN0R 9y, ‘eipediqi Ul peiou 8y

A ju oBeins AJOUWISNE 0] X WG] onlIaIalal v $1
A 01 X wmayasmuiod B ‘ST 3By Y, pepps

Be) [TIM JRUT 5POU 1910 0F SPOI 81]3

WOA] $YUI] 10 sisyuiod S1enipuUl SA0LTY

1 Taeuiod o UIBLO LT SepOU

0 ysel suIBoes 1 asund

JO UTED X0} 00[q USBH
uvonpdo Yooyq S8l

0] g0
ysey apoN

N

I'o 0
aPON apPON

US 11,175,826 B2

Sheet 8 of 16

Nov. 16, 2021

U.S. Patent

,.wiﬂwwﬁﬁwgm,\mm_mm&mmmwﬁmﬁ
S 10 patols pur pendos s1 seysey
ENPIAIPUL @3 Jo ysey juenbasqgns

Y {0 = 1 Tasyutod Yt sepot 20 T

se uoatd apdmexe sty uny 1 asnd
0] SUIBA PHIBOIPUT 511 Y114 8POU 10ws
J0] Ajppnpratpur pajruluioo sy engwa ysvy
syderdod A "uonsyuewepduy sty uy

8 OId

L sanoeyare Jepndwod Burdjaepun) uo

yuspusdep 51 sjqeLiea dsyputod ¥ Jo JUSILOD pUR
Jemao] yengar 9y, ‘erpadiyip UL pojou sy

A g 2383038 SI0WENT 03 X WIOJY s0UaIjed B 1
A 01 X woay geqpmrod v ST IR, peppe

S TIA 18T SHPOTLINIO 03 SPOU #i)y

IO} YU 0 sasjiod e1esipul sM0LIY

M?mm A 1 Taepuod
b R JO TRy Ul 9poU 1088 J0 $oUs8Y

| 1o P TRNPLATPUL JO USRI STUIRIHo
YREH | . ¢ aagud 10 Yool YseH

20, e — uotydo yoopq ysvH

YSBE | R T

¥}......k..\ o,x.:w..(..{.?.s.\.)z... | ../};\s}a.:.ea.{ s,

3) ————— =iy ;

5o p— 60 e o, 00

M.Me. \m SOTIUORN: 1 m\m\..w.m“w\”rls }.....ai.k}.ks. i mw‘ms.wg% k,.J.;.{.e _ «..WMWAWW’M

US 11,175,826 B2

Sheet 9 of 16

Nov. 16, 2021

U.S. Patent

6 Old

pBal 03 201q BIR(] /

g 7 0"

ysey ysey ysey

e e Lo] 0z
ysey 9PON 9pON 9pON
...“M A\\ll'//lm\l\\\ NnM A\.Mf.’/l!\l\ ﬂ?ﬁ ‘\\l'/l\ Oﬁﬁ
gse : apoN | ; apoN apoN
Ol] 1) P TOlg] 0'0
ysey APON BPON BPON

pBad ¥o0[q BIB(]

U.S. Patent Nov. 16, 2021 Sheet 10 of 16 US 11,175,826 B2

Read command for reading data block

receive g command to read block

e .
/’/ ™ .
,“’/ « ‘ \ .

< Supra-diagonal data ™

e

block? o

///
/"/
S e No
\/’/
Upper half computation of Lower half computation of
pointer_i, pointer_)j pointer i, pointer_j

AN L

Follow pointer_i chain to pointer_j indexed node

3

Retrieve data in data block at target node

FIG. 10

US 11,175,826 B2

Sheet 11 of 16

Nov. 16, 2021

U.S. Patent

11 DId

CHE +1T-Lh - =1

{(gybsyioo)f = 8

-apo Alpidurexy]

-9POU TRUOHBIP NS W YOOIy V18D 1]

.

DOTEINaues Jel oMo]

CHI - L g =1

T+ b8 00 = §
apon Arerdmexy

2T+~) - gy =1

I+ 518,54 F»ge

§

o,

gi m =

-

Spot Teuodeip-vadns U1 Yooy B1Bp 10]

BOTIBINGIon ey mw&w@_ {1

US 11,175,826 B2

Sheet 12 of 16

Nov. 16, 2021

U.S. Patent

J[00[q BIBP PaIR[ep 10

PaYIpow Yilm apou ol [0
J0y [Crojurod yimm USEH L UseH YseH
9pou YSBY UUInjo))
] Gl Vol] 0%
ysey APON BPON BpPON
JO0[q BIED pPoIS[ep
10 patjIpow
YA 9pON b
71 A\r/.\\ Ul] 01
opoN | apoN apoON
S00[(BIRp poIs[ep
10 POYJIPOWT YITM
apou J0j T Iojurod 5 | 70 — | 0 P 00
Y3m OPpou S8y Moy yseH BPON] SPON BPON

[P0[q BIRP JO (SUI0ISZ YSNOAYF) UOTS[OP I0 UOTIBIYIPOIA

U.S. Patent Nov. 16, 2021 Sheet 13 of 16 US 11,175,826 B2

Computer system
1000
Processor Network
10‘1~VUL21 «> > Interface * » network
1040
Processor | R I{Stgref;fj ’ IO device(s)
1010b N ST 1030 ‘ D 4 1060
: VO Sy?teln memory
® Interface 1020
1050 Program
Processor | Instructions
10100 [] - 1100
Data
1116

FIG. 13

U.S. Patent Nov. 16, 2021 Sheet 14 of 16 US 11,175,826 B2

F1G. 14

U.S. Patent Nov. 16, 2021 Sheet 15 of 16 US 11,175,826 B2

FIG. 15

US 11,175,826 B2

Sheet 16 of 16

Nov. 16, 2021

U.S. Patent

91 D14

;
|
e A 0 : 7 T 0
ﬂwﬁm cmm,,,mwm Hmﬂ\mwm m ﬁwﬂwm Awmwwm ﬂ.mmm
i
1
e | Tl [TBle [0% m e [€0l [TEle [0%
ysBy OPON 9PON 9pON ysey 9pON SPON 9PON
e, W
=T ; ZT et T1 o1 " =1 Z1 T'T 01
e [opon [epon [opont goey [spon [opon [T opon
...... |
0 50 10 00 ; =0 z°0 10 00
ysey apon [apon [spon m gsep [opon [spon [opox
“ A
7oz ! 7004
m
. A\ A
apoy Ul wiep EAMEIDTILA u pIooad 7 pIonad 1 pIooax xugeur -
I1d suedwnisd e MWS %Mzm BIBP VLT fe s e BlRp [BL} |e— BlEp (UL i« ¥00]q BIRP Ul BIRD ’ SEM R
ata18(y [EH TUOTHEED juedpiiegg juedpiaeg yuedionae g 114 3usdionaed Jequy B

XLITBIU YOO[(BIBP B YILm [BLT) [edTUr[o © 10f ejep SuiSsusy

US 11,175,826 B2

1
DIAGONAL NODE DATA BLOCK MATRIX
FOR ADDING HASH-LINKED RECORDS
AND DELETING ARBITRARY RECORDS
WHILE PRESERVING HASH-BASED
INTEGRITY ASSURANCE

CROSS REFERENCE TO RELATED
APPLICATIONS

The application claims priority to U.S. Provisional Patent
Application Ser. No. 62/842,616 filed May 3, 2019, the
disclosure of which is incorporated herein by reference in its
entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This invention was made with United States Government
support from the National Institute of Standards and Tech-
nology (NIST), an agency of the United States Department
of Commerce. The Government has certain rights in the
invention. Licensing inquiries can be directed to the Tech-
nology Partnerships Office, NIST, Gaithersburg, Md.,
20899; voice (301)-975-2573; email tpo@nist.gov.

BRIEF DESCRIPTION

Disclosed is a tangible, non-transitory, machine-readable
medium storing instructions that when executed by one or
more processors effectuate operations comprising: perform-
ing, with one or more processors, initialization for making a
data block matrix and writing data blocks in nodes of the
data block matrix, wherein: the data block matrix holds
nodes that are arranged in rows and columns of the data
block matrix; a size of the data block matrix is nxm with the
number of rows is n, and the number of columns is m each
node has location indexes location row.r and location col-
umn.c and pointer indexes pointer row.i and pointer col-
umn.j, wherein r, ¢, 1, and j independently are integers; the
location indexes provide a row indicated by integer r and
column indicated by integer ¢ at which the node is located
in the data block matrix, and the pointer indexes provide
references, from a selected node to a first node and a second
node, with pointer row.i being a pointer from the selected
node to the first node that is in the same location row.r=i as
the selected node and with pointer column.j being a pointer
from the selected node to the second node that is in the same
location column.c=j as the node; (location row.0, location
column.0) of the data block matrix holds a primary node;
each (location row.0, location column.1 . . . m-1) of the data
block matrix holds a column edge node; each (location
row.l . . . n-1, location column.0) of the data block matrix
holds a row edge node; the data block matrix holds diagonal
nodes at each (location row.r=c, location column.c) except
for (location row.r=n, location column.m, for n=m) and;
each row r of the data block matrix terminates at (location
row.r, location column.m) that holds a hash row node r,_;
and each column c of the data block matrix terminates at
(location row.n, location column.c) that holds a hash row
node_,c, the initialization comprising: receiving, with one or
more processors, an initialization command to prepare the
one or more processors for writing the primary node at
(location row.0, location column.0) as a first diagonal node;
producing, with one or more processors in response to
receiving the initialization command, the primary node at
(location row.0, location column.0) and having pointers
comprising (pointer row.0, pointer column.0), wherein the

10

15

20

25

30

35

40

45

50

55

60

65

2

primary node does not include a null data block; and storing
the primary node in memory; writing, with one or more
processors, a first null data block comprising: receiving a
write command to write a first null data block; writing the
first null data block to the primary node; making edges nodes
by: making a first column edge node proximate to the row
edge node and writing a first data block to the first column
edge node; and making a first row edge node proximate to
the row edge node and writing a second data block to the first
row edge node; making additional diagonal nodes with null
data blocks and additional edge nodes and interior nodes
with data blocks by iteratively: firstly making another edge
column node and writing another data block to said edge
column node; secondly making another edge row node and
writing another data block to said edge row node; thirdly and
successively making interior nodes along a counter-diagonal
direction of the data block matrix and writing another data
block to each of the interior nodes upon creation of each of
said interior node; and fourthly making another diagonal
node and writing another null data block to said diagonal
node; making a hash row node r,_ at location column.m at
a terminus of each row and writing another data block to
each said hash row node r,_ and making a hash column
node_,c at location row.n at a terminus of each column and
writing another data block to said hash column node_c,
wherein: each hash row node comprises a hash of nodes in
the row containing said hash row node; each hash column
node comprises a hash of nodes in the column containing
said hash column node; the data block matrix provides
deletion of an arbitrary data block while preserving hash-
based integrity assurance that other data blocks are
unchanged; and the data block matrix provides modification,
with hash values, of an arbitrary data block.

Disclosed is a method comprising: performing, with one
or more processors, initialization for making a data block
matrix and writing data blocks in nodes of the data block
matrix, wherein: the data block matrix holds nodes that are
arranged in rows and columns of the data block matrix; a
size of the data block matrix is nxm with the number of rows
is n, and the number of columns is m each node has location
indexes location row.r and location column.c and pointer
indexes pointer row.i and pointer column.j, wherein r, c, i,
and j independently are integers; the location indexes pro-
vide a row indicated by integer r and column indicated by
integer ¢ at which the node is located in the data block
matrix, and the pointer indexes provide references, from a
selected node to a first node and a second node, with pointer
row.1 being a pointer from the selected node to the first node
that is in the same location row.r=i as the selected node and
with pointer column.j being a pointer from the selected node
to the second node that is in the same location column.c=j
as the node; (location row.0, location column.0) of the data
block matrix holds a primary node; each (location row.0,
location column.1 . . . m-1) of the data block matrix holds
a column edge node; each (location row.1 . . . n-1, location
column.0) of the data block matrix holds a row edge node;
the data block matrix holds diagonal nodes at each (location
row.r=c, location column.c) except for (location row.r=n,
location column.m, for n=m) and; each row r of the data
block matrix terminates at (location row.r, location col-
umn.m) that holds a hash row node r,_; and each column ¢
of the data block matrix terminates at (location row.n,
location column.c) that holds a hash row node_,c, the
initialization comprising: receiving, with one or more pro-
cessors, an initialization command to prepare the one or
more processors for writing the primary node at (location
row.0, location column.0) as a first diagonal node; produc-

US 11,175,826 B2

3

ing, with one or more processors in response to receiving the
initialization command, the primary node at (location row.0,
location column.0) and having pointers comprising (pointer
row.0, pointer column.0), wherein the primary node does not
include a null data block; and storing the primary node in
memory; writing, with one or more processors, a first null
data block comprising: receiving a write command to write
a first null data block; writing the first null data block to the
primary node; making edges nodes by: making a first
column edge node proximate to the row edge node and
writing a first data block to the first column edge node; and
making a first row edge node proximate to the row edge
node and writing a second data block to the first row edge
node; making additional diagonal nodes with null data
blocks and additional edge nodes and interior nodes with
data blocks by iteratively: firstly making another edge
column node and writing another data block to said edge
column node; secondly making another edge row node and
writing another data block to said edge row node; thirdly and
successively making interior nodes along a counter-diagonal
direction of the data block matrix and writing another data
block to each of the interior nodes upon creation of each of
said interior nodes; and fourthly making another diagonal
node and writing another null data block to said diagonal
node; making a hash row node r,_ at location column.m at
a terminus of each row and writing another data block to
each said hash row node r,_; and making a hash column
node_,c at location row.n at a terminus of each column and
writing another data block to said hash column node_,c,
wherein: each hash row node comprises a hash of nodes in
the row containing said hash row node; each hash column
node comprises a hash of nodes in the column containing
said hash column node; the data block matrix provides
deletion of an arbitrary data block while preserving hash-
based integrity assurance that other data blocks are
unchanged; and the data block matrix provides modification,
with hash values, of an arbitrary data block.

BRIEF DESCRIPTION OF THE DRAWINGS

The following description cannot be considered limiting
in any way. With reference to the accompanying drawings,
like elements are numbered alike.

FIG. 1 shows a logical and physical architecture block
diagram for a computing environment in which operations
herein can be implemented;

FIG. 2 shows data block matrix 200;

FIG. 3 shows an order of writing data blocks in data block
matrix 200;

FIG. 4 shows a plurality of hash node 214 that includes
hash row node 218 and hash column node 217,

FIG. 5 shows details for computation of a hash;

FIG. 6 shows details for computation of a hash;

FIG. 7 shows details for computation of a hash;

FIG. 8 shows details for computation of a hash;

FIG. 9 shows details for reading a data block in a node;

FIG. 10 shows reading a data block in a node;

FIG. 11 shows details for reading a data block in a node;

FIG. 12 shows details for modifying or deleting a data
block in a node;

FIG. 13 shows is a physical architecture block diagram of
a computing device to implement operations herein;

FIG. 14 shows a data block matrix;

FIG. 15 shows details for modifying or deleting a data
block in a node; and

40

45

55

65

4

FIG. 16 shows managing data for a clinical trial with a
data block matrix.

DETAILED DESCRIPTION

A detailed description of one or more embodiments is
presented herein by way of exemplification and not limita-
tion.

It has been discovered that a data block matrix herein
provides a data structure that supports addition of hash-
linked data blocks and deletion of arbitrary data blocks from
the data block matrix, preserving hash-based integrity assur-
ance that other data blocks are unchanged. The data block
matrix includes an array of nodes that include the data
blocks, and the rows and columns of the data block matrix
each terminate in a hash node. The hash nodes have hash
values for the data in the data blocks for the particular row
or column that the hash node terminates so that a selected
data block can be deleted or modified, assuring that other
blocks have not been affected. Advantageously, the data
block matrix can be implemented in a decentralized system
to provide data replication among peers and can be incor-
porated in an application for integrity protection that con-
ventionally uses a permissioned blockchain.

The data block matrix provides deletion or modification
of a selected data block with hash values, assuring that other
data blocks are unaffected. Accordingly, integrity of data
blocks that have not been deleted or modified is assured. A
data block can be deleted by overwriting data in a node with
zeroes or other values. Moreover, the data block matrix has
data balance, wherein supra-diagonal nodes include at most
one more node than sub-diagonal nodes. It is contemplated
that a hash sequence length can be a number of blocks in a
row or column hash that is proportional to N for a matrix
with N data blocks by a balance property of writing data
blocks to the nodes. Moreover, a total number of data blocks
in the data block matrix can be N*>-N because data in
diagonal nodes are null. Further, the data block matrix
provides data block dispersal in the nodes, wherein no
consecutively written data blocks are written in nodes that
are in the same row or column of the data block matrix.

It should be appreciated that conventional blockchain or
other distributed ledger technology provide data manage-
ment with cryptographically-based integrity guarantees.
However, conventional blockchains and DLT do not allow
for changes or deletions of information in data blocks such
that conventional technologies can prevent implementation
in privacy-sensitive applications or systems that adhere to
privacy regulations that involve provision of data modifica-
tion. Data block matrix 200 provides for modification or
deletion of data blocks via hash nodes. In an embodiment,
with reference to FIG. 1 and FIG. 2, data block matrix 200
can be implemented by computing environment 10. Here,
computing environment 10 is an exemplary computing
architecture in which the present operations can be imple-
mented. In some embodiments, the present operations are
implemented as a multi-tenant distributed application in
which some computing hardware is shared by multiple
tenants that access resources on the computing hardware in
computing devices controlled by those tenants, e.g., on
various local area networks operated by the tenants. In some
embodiments, a single tenant executes the computational
entities on privately-controlled hardware with multiple
instances of computing environment 10 existing for different
organizations. Some embodiments implement a hybrid
approach in which multi-tenant computing resources (e.g.,
computers, virtual machines, containers, microkernels, or

US 11,175,826 B2

5

the like) are combined with on-premises computing
resources or private cloud resources. In some embodiments,
computing environment 10 include or extend upon security
features of a computing environment.

In an embodiment, computing environment 10 includes a
plurality of client computing devices 12, lower-trust data-
base 14, secure distributed storage 16, domain name service
18, and translator server 20 (or elastically scalable collection
of instances of translator servers disposed behind a load
balancer). In some embodiments, these components can
communicate with one another via Internet 22 and various
local area networks in some cases. In some embodiments,
communication can be via virtual private networks overlaid
on top of the public Internet. In some embodiments, the
illustrated components can be geographically distributed,
e.g., more than 1 kilometer apart, more than 100 kilometers
apart, more than 1000 kilometers apart, or further, e.g.,
distributed over the content event of North America or the
world. In some embodiments, the components are co-located
and hosted within an air-gapped or non-air-gapped private
network. In some embodiments, the illustrated blocks that
connects to Internet 22 can be implemented with computing
devices described below with reference to FIG. 13.

In some embodiments, client computing devices 12 inde-
pendently can be one of a plurality of computing devices
operated by users or applications of an entity that wishes to
securely store data. For example, a given business or gov-
ernmental organization can have more than 10, more than
100, more than 1,000, or more than 10,000 users and
applications, each having associated computing devices that
access data stored in lower-trust database 14 (or a collection
of such databases or other types of datastores) and secure
distributed storage 16. In some embodiments, multiple enti-
ties access the system in environment 10, e.g. more than five,
more than 50, more than 500, or more than 5000 different
entities access shared resources with respective client com-
puting devices or can have their own instance of computing
environment 10. In some embodiments, some client com-
puting devices 12 are end-user devices, e.g., executing a
client-side component of a distributed application that stores
data in lower-trust database 14 and secure distributed stor-
age 16, or reads such data. Client computing devices can be
laptops, desktops, tablets, smartphones, or rack-mounted
computing devices such as servers. In some embodiments,
the client-computing devices are Internet-of-things appli-
ances, like smart televisions, set-top media payers, security
cameras, smart locks, self-driving cars, autonomous drones,
industrial sensors, industrial actuators such as electric
motors, in-store kiosks, or the like. In some embodiments,
some client computing devices 12 are headless computing
entities, such as containers, microkernels, virtual machines,
or rack-mounted servers that execute a monolithic applica-
tion or one or more services in a service-oriented applica-
tion, such as a micro services architecture, that stores or
otherwise accesses data in lower-trust database 14 or secure
distributed storage 16.

In some embodiments, lower-trust database 14 and secure
distributed storage 16 each store a portion of data accessed
with client computing devices 12, in some cases with
pointers therebetween stored in one or both of these data-
stores. In some embodiments, as described below, this data
is stored in a manner that abstracts away secure distributed
storage 16 from a workload application through which data
is accessed (e.g., read or written). In some embodiments,
data access operations store or access data in lower-trust
database 14 and secure distributed storage 16 with a work-
load application that is not specifically configured to access

10

15

20

25

30

35

40

45

50

55

60

65

6

data in secure distributed storage 16, e.g., one that is
configured to operate without regard to whether secure
distributed storage 16 is present, and for which the storage
of data in secure distributed storage 16 is transparent to the
workload application storing content in lower-trust database
14 and secure distributed storage 16. In some embodiments,
such a workload application can be configured to, and
otherwise designed to, interface only with lower-trust data-
base 14 when storing this data and, in some embodiments,
wrap interfaces for lower-trust database 14 with additional
logic that routes some of data to secure distributed storage
16 and retrieves that data from secure distributed storage 16
in a manner that is transparent to the workload application
accessing content, i.e., data written or read by the workload
application.

Content stored in lower-trust database 14 and secure
distributed storage 16 can be created or accessed with a
variety of different types of applications, such as monolithic
applications or multi-service distributed applications (e.g.,
implementing a microservices architecture in which each
service is hosted by one of client computing devices 12).
Examples include email, word processing systems, spread-
sheet applications, version control systems, customer rela-
tionship management systems, human resources computer
systems, accounting systems, enterprise resource manage-
ment systems, inventory management systems, logistics
systems, secure chat computer systems, industrial process
controls and monitoring, trading platforms, banking sys-
tems, and the like. Such applications that generate or access
content in database 14 for purposes of serving the applica-
tion’s functionality are referred to herein as “workload
applications,” to distinguish those applications from infra-
structure code by which present operations are implemented,
which is not to suggest that these bodies of code cannot be
integrated in some embodiments into a single workload
application having infrastructure functionality. In an
embodiment, several workload applications (e.g., more than
2, more than 10, or more than 50), such as selected among
those in the preceding list, share resources provided by the
infrastructure code and functionality described herein.

In some embodiments, lower-trust database 14 is one of
various types of datastores described above. In an embodi-
ment, lower-trust database 14 is a relational database, having
a plurality of tables, each with a set of columns correspond-
ing to different fields, or types of values, stored in rows, or
records (e.g., a row in some implementations) in the table,
in some embodiments, each record, corresponding to a row
can be a tuple with a primary key that is unique within that
respective table, one or more foreign keys that are primary
keys in other tables, and one or more other values corre-
sponding to different columns that specity different fields in
the tuple. According to an embodiment, the database is a
column-oriented database in which records are stored in
columns with different rows corresponding to different
fields. In some embodiments, lower-trust database 14 is a
relational database configured to be accessed with structured
query language (SQL) commands such as commands to
select records satisfying criteria specified in the command,
commands to join records from multiple tables, or com-
mands to write values to records in these tables.

In an embodiment, lower-trust database 14 is another type
of database, such as a noSQL database, like various types of
non-relational databases. In some embodiments, lower-trust
database 14 is a document-oriented database such as a
database storing a plurality of serialized hierarchical data
format documents, like JAVASCRIPT object notation
(JSON) documents, or extensible markup language (XML)

US 11,175,826 B2

7

documents. Access requests can be an xpath or JSON-path
command. In some embodiments, lower-trust database 14 is
a key-value data store having a collection of key-value pairs
in which data is stored. According to an embodiment,
lower-trust database 14 is any of a variety of other types of
datastores, e.g., instances of documents in a version control
system, memory images, a distributed or non-distributed
file-system, or the like. A single lower-trust database 14 is
shown but other some embodiments include more instances,
such as more than two, more than five, or more than 10
different databases. In some embodiments, some of lower-
trust databases 14 are a database of a software-as-a-service
application hosted by a third party and accessed via a
third-party application program interface via exchanges with
a user’s web browser or another application. In some
embodiments, lower-trust database 14 is a mutable data store
or an immutable data store.

In an embodiment, access to data in lower-trust database
14 and corresponding access to corresponding records in the
secure distributed storage 16 is designated in part with roles
and permissions stored in association with various user
accounts of an application used to access that data. In some
embodiments, these permissions are modified, e.g., revoked,
or otherwise adjusted.

Database 14 is labeled as “lower-trust.” The term “lower-
trust” does not require an absolute measure of trust or a
particular state of mind with respect to a party but distin-
guishes database 14 from secure distributed storage 16 that
has certain security features in some embodiments that can
be referred to as a “higher-trust” database.

In an embodiment, some of the data that an application
writes to or has written to in lower-trust database 14 is
intercepted or moved to secure distributed storage 16. Fur-
ther, access requests from a workload application to lower-
trust database 14 can be intercepted, or responses from such
access request can be intercepted so that data from lower-
trust database 14 can be merged with data from secure
distributed storage 16 that is responsive to the request before
being presented to the application. Further, read requests can
be intercepted, modified, and iteratively executed in a man-
ner that limits how much information in the secure distrib-
uted storage is revealed to a client computing device at any
one time, as described below.

In an embodiment, secure distributed storage 16 includes
data centers 24 that are distributed geographically and are
heterogeneous architectures. In an embodiment, data centers
24 are various public or private clouds or on-premises data
centers for organization-users, such as tenants of computing
environment 10. In an embodiment, data centers 24 are
geographically distributed over the United States, North
America, or the world, in some embodiments with different
data centers more than 100 or 1,000 kilometers apart, and in
some embodiments with different data centers 24 in different
jurisdictions. In an embodiment, each of data centers 24
include a distinct private subnet through which computing
devices, such as rack-mounted computing devices in the
subnet communicate, e.g., via wrap top-of-rack switches
within a data center, behind a firewall relative to Internet 22.
In some embodiments, each of data centers 24, or different
subsets of data centers 24, are operated by a different entity,
implementing a different security architecture and having a
different application program interface to access computing
resources, examples including AMAZON WEB SER-
VICES, AZURE from Microsoft, and RACK SPACE. Three
different data centers 24 are shown, but embodiments can
include more data centers, such as more than five, more than

20

25

40

45

55

8

15, or more than 50. In an embodiment, the datacenters are
from the same provider but in different regions.

In an embodiment, each of data centers 24 includes a
plurality of different hosts exposed by different computa-
tional entities, like microkemels, containers, virtual
machines, or computing devices executing a non-virtualized
operating system. Each host can have an Internet Protocol
address on the subnet of respective data center 24 and can
listen to and transmit via a port assigned to an instance of an
application by which data is stored in a distributed ledger. In
an embodiment, each storage compute node 26 can corre-
spond to a different network hosts, each network coast
having a server that monitors a port, and configured to
implement an instance of with hash pointers, examples of
which include block chains and related data structures. In
some cases, these storage compute nodes 26 can be repli-
cated, in some cases across data centers 24, e.g., with three
or more instances serving as replicated instances, and some
embodiments can implement operations to determine con-
sensus among these replicated instances as to state of stored
data. Further, an embodiment can elastically scale the num-
ber of such instances based on amount of data stored,
amounts of access requests, or the like.

In an embodiment, a domain name service (DNS) 18,
such as a private DNS, maps uniform resource identifiers
(such as uniform resource locators) to Internet Protocol
address/port number pairs, e.g., of storage compute nodes
26, translator 20, and in some cases other client computing
devices 12 or other resources in computing environment 10.
In an embodiment, client computing device 12, storage
compute node 16, database 14, or translator 20 encounters a
uniform resource identifier, such as a uniform resource
locator, and that computing entity can be configured to
access DNS 18 at an IP address and port number pair of
DNSs 18. The entity can send a request to DNS 18 with the
uniform resource identifier, and DNS 18 can respond with a
network and process address, such as Internet Protocol
address and port number pair corresponding to the uniform
resource identifier. As a result, underlying computing
devices can be replaced, replicated, moved, or otherwise
adjusted, without impairing cross-references between infor-
mation stored on different computing devices. In an embodi-
ment, computing environments achieve such flexibility
without using domain name service 18, e.g., by implement-
ing a distributed hash table or load-balancing that consis-
tently maps data based on data content, e.g., based on a
prefix or suffix of a hash based on data or identifiers of data
to the appropriate computing device or host. In an embodi-
ment, a load balancer routes requests to storage compute
nodes 26 based on a prefix of a node identifier, such as a
preceding or trailing threshold number of characters.

In an embodiment, a virtual machine or container man-
ager is configured to orchestrate or otherwise elastically
scale instances of compute nodes and instances of translator
20, e.g., automatically applying corresponding images to
provisioned resources within data center 24 responsive to
need and spinning down instances as need diminishes.

In an embodiment, translator 20 is configured to execute
a routine that translates between an address space of lower-
trust database 14 and an address space of secure distributed
storage 16. In an embodiment, translator 20 can receive one
or more records from client computing device 12 that is
going to be written to lower-trust database 14, or can receive
such records from lower-trust database 14, and those records
can be mapped to segment identifiers or other pointers, such
as other node identifiers in secure distributed storage 16.
Translator 20 can then cause those records to be stored in

US 11,175,826 B2

9

secure distributed storage 16 and segment identifiers to be
stored in place of those records in lower-trust database 14,
such as in place of individual values in records. In an
embodiment, translation occurs at the level of individual
values corresponding to individual fields in individual
records, like rows of a table in database 14. In an embodi-
ment, larger collections of data, e.g., accepting entire
records, like entire rows, or plurality of columns, like a
primary key and an individual value other than the primary
key in a given row are translated. In an embodiment, files or
other binary larger objects (BLOBS) are accepted. Transla-
tor 20 can replace those values in lower-trust database 14
with a pointer, like a segment identifier in the secure
distributed storage and then cause data to be stored in secure
distributed storage 16. In an embodiment, documents are
stored, which can be relatively small stand-alone values to
binary large objects encoding file-system objects like word-
processing files, audio files, video files, chat logs, com-
pressed directories, and the like. According to an embodi-
ment, a document corresponds to an individual value within
a database, or a document corresponds to a file or other
binary large object. In an embodiment, documents are larger
than one byte, 100 bytes, 1 kB, 100 kB, 1 MB, or 1 GB. In
an embodiment, documents correspond to messages in a
messaging system, or printable document format docu-
ments, text-editable documents, audio files, video files or the
like.

In an embodiment, translator 20 includes code that
receives requests from drivers and facilitates translation of
data. In an embodiment, translator 20 is an elastically scaled
set of translators 20 remotely hosted in a public or private
cloud.

According to an embodiment, with reference to FIG. 1,
FIG. 2, FIG. 3, FIG. 4, FIG. 5, FIG. 6, FIG. 7, FIG. 8, FIG.
9, FIG. 10, FIG. 11, FIG. 12, and FIG. 13, translator 20 or
other component of the environment shown in FIG. 1
includes a tangible, non-transitory, machine-readable
medium that stores instructions that, when executed by one
or more processors, effectuate operations including: per-
forming, with one or more processors, initialization for
making data block matrix 200 and writing data blocks 216
in nodes of data block matrix 200, wherein: data block
matrix 200 holds nodes that are arranged in rows and
columns of data block matrix 200; a size of data block
matrix 200 is nxm with the number of rows is n, and the
number of columns is m; each node has location indexes
location row.r and location column.c and pointer indexes
pointer row.i and pointer column.j, wherein r, c, i, and j
independently are integers; the location indexes provide a
row indicated by integer r and column indicated by integer
¢ at which the node is located in data block matrix 200, and
the pointer indexes provide references, from a selected node
to a first node and a second node, with pointer row.i being
a pointer from the selected node to the first node that is in
the same location row.r=i as the selected node and with
pointer column.j being a pointer from the selected node to
the second node that is in the same location column.c=j as
the node; (location row.0, location column.0) of data block
matrix 200 holds primary node 201; each (location row.0,
location column . . . m-1) of data block matrix 200 holds
column edge node 215; each (location row.l . . . n-1,
location column.0) of data block matrix 200 holds row edge
node 209; data block matrix 200 holds diagonal nodes 211
at each (location row.r=c, location column.c) except for
(location row.r=n, location column.m, for n=m) and; each
row r of data block matrix 200 terminates at (location row.r,
location column.m) that holds hash row node r,_ 218; and

10

15

20

25

30

35

40

45

50

55

60

65

10

each column c¢ of data block matrix 200 terminates at
(location row.n, location column.c) that holds hash column
node_,c 217, the initialization including: receiving, with one
or more processors, an initialization command to prepare the
one or more processors for writing primary node 201 at
(location row.0, location column.0) as first diagonal node
211.1; producing, with one or more processors in response
to receiving the initialization command, primary node 201 at
(location row.0, location column.0) and having pointers 206
comprising (pointer row.0, pointer column.0), wherein pri-
mary node 201 does not include null data block 204; and
storing primary node 201 in memory; writing, with one or
more processors, first null data block 204.1 including:
receiving a write command to write first null data block
204.1; writing first null data block 204.1 to primary node
201; making edges nodes (209, 215) by: making first column
edge node 215.1 proximate to primary node 201 and writing
first data block 216.1 to first column edge node 215.1; and
making a first row edge node 209.1 proximate to primary
node 201 and writing second data block 216.2 to first row
edge node 209.1; making additional diagonal nodes 211 with
null data blocks 204 and additional edge nodes (209, 215)
and interior nodes 210 with data blocks 216 by iteratively:
firstly making another edge column node 215 and writing
another data block 216 to said edge column node 215;
secondly making another edge row node 209 and writing
another data block 216 to said edge row node 209; thirdly
and successively making interior nodes 211 along a counter-
diagonal direction of data block matrix 200 and writing
another data block 216 to each of interior nodes 211 upon
creation of each of said interior node 211; and fourthly
making another diagonal node 211 and writing another null
data block 204 to said diagonal node 211; making hash row
node r,_ 217 at location column.m at a terminus of each row
and writing another data block 216 to each of said hash row
node r,_ 217; and making a hash column node_,c 217 at
location row.n at a terminus of each column and writing
another data block 216 to said hash column node_.,c 217,
wherein: each hash row node 218 includes a hash of the
nodes in the row containing said hash row node 218; each
hash column node 217 includes a hash of the nodes in the
column containing said hash column node 217; data block
matrix 200 provides deletion of an arbitrary data block 216
while preserving hash-based integrity assurance that other
data blocks 216 are unchanged; and data block matrix 200
provides modification, with hash values, of an arbitrary data
block.

In an embodiment, in the medium, the operations further
include: receiving a delete command to delete the arbitrary
data block 216; and deleting the arbitrary data block 216
while preserving hash-based integrity assurance that other
data blocks 216 are unchanged. According to an embodi-
ment, in the medium, the operations further include: receiv-
ing a modification command to modify the arbitrary data
block 216; and modifying the arbitrary data block 216 while
preserving hash-based integrity assurance that other data
blocks 216 are unchanged.

In an embodiment, in the medium, the operations further
include: receiving a read command to read data block 216;
determining a node in which data block 216 is written;
computing a pointer row index and a pointer column index
for the node in which data block 216 is written; and
following the pointer row index and the pointer column
index for the node in which data block 216 is written to a
target node linked by the pointer row index and the pointer
column index; and retrieving data block 216 written in the
target node.

US 11,175,826 B2

11

Data block matrix 200 has numerous advantageous and
unexpected benefits and uses. In an embodiment, a process
for providing arbitrary modification or deletion of a data
block in includes: performing, with one or more processors,
initialization for making data block matrix 200 and writing
data blocks 216 in nodes of data block matrix 200, wherein:
data block matrix 200 holds nodes that are arranged in rows
and columns of data block matrix 200; a size of data block
matrix 200 is nxm with the number of rows is n, and the
number of columns is m; each node has location indexes
location row.r and location column.c and pointer indexes
pointer row.i and pointer column.j, wherein r, c, i, and j
independently are integers; the location indexes provide a
row indicated by integer r and column indicated by integer
¢ at which the node is located in data block matrix 200, and
the pointer indexes provide references, from a selected node
to a first node and a second node, with pointer row.i being
a pointer from the selected node to the first node that is in
the same location row.r=i as the selected node and with
pointer column.j being a pointer from the selected node to
the second node that is in the same location column.c=j as
the node; (location row.0, location column.0) of data block
matrix 200 holds primary node 201; each (location row.0,
location column . . . m-1) of data block matrix 200 holds
column edge node 215; each (location row.l . . . n-1,
location column.0) of data block matrix 200 holds row edge
node 209; data block matrix 200 holds diagonal nodes 211
at each (location row.r=c, location column.c) except for
(location row.r=n, location column.m, for n=m) and; each
row r of data block matrix 200 terminates at (location row.r,
location column.m) that holds hash row node r,_ 218; and
each column c of data block matrix 200 terminates at
(location row.n, location column.c) that holds hash column
node_c 217, the initialization including: receiving, with one
or more processors, an initialization command to prepare the
one or more processors for writing primary node 201 at
(location row.0, location column.0) as first diagonal node
211.1; producing, with one or more processors in response
to receiving the initialization command, primary node 201 at
(location row.0, location column.0) and having pointers 206
comprising (pointer row.0, pointer column.0), wherein pri-
mary node 201 does not include null data block 204; and
storing primary node 201 in memory; writing, with one or
more processors, first null data block 204.1 including:
receiving a write command to write first null data block
204.1; writing first null data block 204.1 to primary node
201; making edges nodes (209, 215) by: making first column
edge node 215.1 proximate to primary node 201 and writing
first data block 216.1 to first column edge node 215.1; and
making a first row edge node 209.1 proximate to primary
node 201 and writing second data block 216.2 to first row
edge node 209.1; making additional diagonal nodes 211 with
null data blocks 204 and additional edge nodes (209, 215)
and interior nodes 210 with data blocks 216 by iteratively:
firstly making another edge column node 215 and writing
another data block 216 to said edge column node 215;
secondly making another edge row node 209 and writing
another data block 216 to said edge row node 209; thirdly
and successively making interior nodes 211 along a counter-
diagonal direction of data block matrix 200 and writing
another data block 216 to each of interior nodes 211 upon
creation of each of said interior node 211; and fourthly
making another diagonal node 211 and writing another null
data block 204 to said diagonal node 211; making hash row
node r,_ 217 at location column.m at a terminus of each row
and writing another data block 216 to each of said hash row
node r,_ 217; and making a hash column node_,c 217 at

10

20

25

30

35

40

45

50

55

60

65

12

location row.n at a terminus of each column and writing
another data block 216 to said hash column node_.,c 217,
wherein: each hash row node 218 includes a hash of the
nodes in the row containing said hash row node 218; each
hash column node 217 includes a hash of the nodes in the
column containing said hash column node 217; data block
matrix 200 provides deletion of an arbitrary data block 216
while preserving hash-based integrity assurance that other
data blocks 216 are unchanged; and data block matrix 200
provides modification, with hash values, of an arbitrary data
block.

With reference to FIG. 13, it is contemplated that com-
puting system 1000 operates in accordance with embodi-
ments of the present operations, medium, and methods.
Various portions of systems and methods described herein,
can include or be executed on one or more computer systems
similar to computing system 1000. Further, processes and
modules described herein can be executed by one or more
processing systems similar to that of computing system
1000.

Computing system 1000 can include one or more proces-
sors (e.g., processors 1010 ¢-1010 ») coupled to system
memory 1020, an input/output 1/O device interface 1030,
and a network interface 1040 via an input/output (1/O)
interface 1050. A processor can include a single processor or
a plurality of processors (e.g., distributed processors). A
processor can be any suitable processor capable of executing
or otherwise performing instructions. A processor can
include a central processing unit (CPU) that carries out
program instructions to perform the arithmetical, logical,
and input/output operations of computing system 1000. A
processor can execute code (e.g., processor firmware, a
protocol stack, a database management system, an operating
system, or a combination thereof) that creates an execution
environment for program instructions. A processor can
include a programmable processor. A processor can include
general or special purpose microprocessors. A processor can
receive instructions and data from a memory (e.g., system
memory 1020). Computing system 1000 can be a uni-
processor system including one processor (e.g., processor
1010 a), or a multi-processor system including any number
of suitable processors (e.g., 1010 a-1010 7). Multiple pro-
cessors can be employed to provide for parallel or sequential
execution of one or more portions of the techniques
described herein. Processes, such as logic flows, described
herein can be performed by one or more programmable
processors executing one or more computer programs to
perform functions by operating on input data and generating
corresponding output. Processes described herein can be
performed by, and apparatus can also be implemented as,
special purpose logic circuitry, e.g., an FPGA (field pro-
grammable gate array) or an ASIC (application specific
integrated circuit). Computing system 1000 can include a
plurality of computing devices (e.g., distributed computer
systems) to implement various processing functions.

1/0 device interface 1030 can provide an interface for
connection of one or more I/O devices 1060 to computer
system 1000. /O devices can include devices that receive
input (e.g., from a user) or output information (e.g., to a
user). I/O devices 1060 can include, for example, graphical
user interface presented on displays (e.g., a cathode ray tube
(CRT) or liquid crystal display (LCD) monitor), pointing
devices (e.g., a computer mouse or trackball), keyboards,
keypads, touchpads, scanning devices, voice recognition
devices, gesture recognition devices, printers, audio speak-
ers, microphones, cameras, or the like. I/O devices 1060 can
be connected to computer system 1000 through a wired or

US 11,175,826 B2

13

wireless connection. /O devices 1060 can be connected to
computer system 1000 from a remote location. /O devices
1060 located on remote computer system, for example, can
be connected to computer system 1000 via a network and
network interface 1040.

Network interface 1040 can include a network adapter
that provides for connection of computer system 1000 to a
network. Network interface can 1040 can facilitate data
exchange between computer system 1000 and other devices
connected to the network. Network interface 1040 can
support wired or wireless communication. The network can
include an electronic communication network, such as the
Internet, a local area network (LAN), a wide area network
(WAN), a cellular communications network, or the like.

System memory 1020 can be configured to store program
instructions 1100 or data 1110. Program instructions 1100
can be executable by a processor (e.g., one or more of
processors 1010 ¢-1010) to implement one or more
embodiments of the present techniques. Instructions 1100
can include modules of computer program instructions for
implementing one or more techniques described herein with
regard to various processing modules. Program instructions
can include a computer program (which in certain forms is
known as a program, software, software application, script,
or code). A computer program can be written in a program-
ming language, including compiled or interpreted lan-
guages, or declarative or procedural languages. A computer
program can include a unit suitable for use in a computing
environment, including as a stand-alone program, a module,
a component, or a subroutine. A computer program may or
may not correspond to a file in a file system. A program can
be stored in a portion of a file that holds other programs or
data (e.g., one or more scripts stored in a markup language
document), in a single file dedicated to the program in
question, or in multiple coordinated files (e.g., files that store
one or more modules, sub programs, or portions of code). A
computer program can be deployed to be executed on one or
more computer processors located locally at one site or
distributed across multiple remote sites and interconnected
by a communication network.

System memory 1020 can include a tangible program
carrier having program instructions stored thereon. A tan-
gible program carrier can include a non-transitory computer
readable storage medium. A non-transitory computer read-
able storage medium can include a machine-readable storage
device, a machine-readable storage substrate, a memory
device, or any combination thereof. Non-transitory com-
puter readable storage medium can include non-volatile
memory (e.g., flash memory, ROM, PROM, EPROM,
EEPROM memory), volatile memory (e.g., random access
memory (RAM), static random access memory (SRAM),
synchronous dynamic RAM (SDRAM)), bulk storage
memory (e.g., CD-ROM and/or DVD-ROM, hard-drives),
or the like. System memory 1020 can include a non-
transitory computer readable storage medium that can have
program instructions stored thereon that are executable by a
computer processor (e.g., one or more of processors 1010
a-1010 ») to cause the subject matter and the functional
operations described herein. A memory (e.g., system
memory 1020) can include a single memory device and/or a
plurality of memory devices (e.g., distributed memory
devices). Instructions or other program code to provide the
functionality described herein can be stored on a tangible,
non-transitory computer readable media. In an embodiment,
the entire set of instructions can be stored concurrently on
the media, or in some cases, different parts of the instruc-
tions can be stored on the same media at different times.

30

35

40

45

14

1/0 interface 1050 can be configured to coordinate 1/O
traffic between processors 1010 a-1010 7, system memory
1020, network interface 1040, I/O devices 1060, and/or
other peripheral devices. /O interface 1050 can perform
protocol, timing, or other data transformations to convert
data signals from one component (e.g., system memory
1020) into a format suitable for use by another component
(e.g., processors 1010 ¢-1010 7). /O interface 1050 can
include support for devices attached through various types
of peripheral buses, such as a variant of the Peripheral
Component Interconnect (PCI) bus standard or the Universal
Serial Bus (USB) standard.

Embodiments of the operations described herein can be
implemented using a single instance of computer system
1000 or multiple computer systems 1000 configured to host
different portions or instances of embodiments. Multiple
computer systems 1000 can provide for parallel or sequen-
tial processing or execution of one or more portions of the
operations described herein.

Those skilled in the art will appreciate that computer
system 1000 is merely illustrative and is not intended to limit
the scope of the techniques described herein. Computer
system 1000 can include any combination of devices or
software that can perform or otherwise provide for the
performance of the techniques described herein. For
example, computer system 1000 can include or be a com-
bination of a cloud-computing system, a data center, a server
rack, a server, a virtual server, a desktop computer, a laptop
computer, a tablet computer, a server device, a client device,
a mobile telephone, a personal digital assistant (PDA), a
mobile audio or video player, a game console, a vehicle-
mounted computer, or a Global Positioning System (GPS),
or the like. Computer system 1000 can also be connected to
other devices that are not illustrated or can operate as a
stand-alone system. In addition, the functionality provided
by the illustrated components can in some embodiments be
combined in fewer components or distributed in additional
components. Similarly, in some embodiments, the function-
ality of some of the illustrated components may not be
provided or other additional functionality can be available.

Data block matrix 200 and processes disclosed herein
have numerous beneficial uses, including financial services,
patient care and clinical trials, electronic commerce, and as
a component or building block for distributed data manage-
ment applications of many types. Advantageously, data
block matrix 200 overcomes limitations of technical defi-
ciencies of conventional technologies such as meeting pri-
vacy requirements such as the European Union General Data
Protection Regulation (GDPR), which provides that organi-
zations delete information related to a particular individual
at that person’s request. This requirement is incompatible
with current blockchain data structures, including private
(permissioned) blockchains because blockchains are
designed to ensure that block contents are immutable. Any
change in a blockchain will invalidate subsequent hashes in
following blocks, losing integrity protection. The block
matrix structure retains cryptographic hash-based integrity
protection for non-deleted blocks. Further, certain conven-
tional methods for meeting privacy-sensitive data deletion
requirements in a blockchain environment introduce serious
risks because such conventional methods rely on storing
encrypted data in the blockchain and erasing a separately
stored key to prevent access to the data. This introduces risks
for privacy-sensitive data because private data relating to
individuals must be secured for decades, but progress in
cryptography can result in the ability to decipher data stored
a few decades earlier using new methods. Private data stored

US 11,175,826 B2

15

on a blockchain permanently may be readable in 30 years’
time, even if the key is deleted, violating privacy require-
ments. The block data matrix allows data to be permanently
deleted rather than secured for some period of time until
encoded data becomes readable as cryptographic methods
improve. The block data matrix data structure can be
extended into more than two dimensions to an arbitrary
number of dimensions to increase storage capacity without
sacrificing integrity protection.

Data block matrix 200 and processes herein unexpectedly
allows for deletion or modification of data blocks without
losing hash protection for data integrity Moreover, data
block matrix 200 also provides use of standardized and
internationally accepted hash algorithms to protect data.

The articles and processes herein are illustrated further by
the following Examples, which is non-limiting.

EXAMPLES

Example 1. Data Block Matrix for Integrity
Protection and Provision of Modification

A data block matrix is a data structure that supports the
ongoing addition of hash-linked records while also allowing
the deletion of arbitrary records, preserving hash-based
integrity assurance that other blocks are unchanged. The
data block matrix can be part of applications for integrity
protection that conventionally use permissioned block-
chains. This capability can meet privacy requirements such
as the European Union General Data Protection Regulation
(GDPR), wherein an organization can delete information
related to a particular individual. Here, the data block matrix
supports on-going addition of hash-linked records, deletion
of arbitrary records, and preservation of hash-based integrity
assurance that other blocks are unchanged.

A data block matrix is shown in FIG. 14 with rows and
columns numbered for indexing nodes that in which are
written data blocks, wherein a data block can include
unspecified data (e.g., a single record or multiple transac-
tions). Each row and column is terminated with a hash node
that has a hash of data blocks written in the nodes in that row
or column, e.g., H, is a hash node of row 0. Alternatively,
the hash value can be stored in the last block of the row or
column. A second alternative could be to concatenate hashes
of each block in a row or column and use the hash of this
concatenation as the hash value for that row or column.

To delete the block labeled “X”, write all zeroes to that
data block or change the data block in another manner such
as replacing or adding data to the data block. This change
disrupts the hash values of H;. and H-, for row 3 and
column 2. However, the integrity of all data blocks except
the one containing “X” is still ensured by the other hash
values. That is, other data blocks of row 3 are included in the
hashes for columns 0, 1, 3, and 4. Similarly, other data
blocks of column 2 are included in the hashes for rows 0, 1,
2, and 4. Thus the integrity of data blocks that have not been
deleted is assured.

Blocks are numbered 1 . . . k and are added to the block
data matrix starting with the node at cell 0,1. It is contem-
plated to keep diagonal nodes null while new blocks are
written as follows:

// 1, j = row, column indices
if (i == j) {add null block; i = 0; j++;}
else if (i <) {add block(i,j); swap(i,j);}

10

15

20

25

35

40

45

50

55

60

65

16

-continued

else if (i > j) {add block(i,j); j++; swap(i,j);{

wherein swap(i,j) exchanges the values of i and j, i.e., i'5j
and j'=i. With this operation, nodes are filled with data
blocks as shown in FIG. 3.

The data block matrix maintain selected properties such
as data balance in the nodes of the supra-diagonal nodes and
sub-diagonal nodes. Regarding data balance, nodes are filled
in a balanced manner, wherein the upper half(above diago-
nal), supra-diagonal nodes contain at most one additional
cell more than the lower half (below diagonal), sub-diagonal
nodes. The following invariant is maintained for each itera-
tion of the loop:

(=PI Nu=l\/i>j u=1+1

wherein u=number of nodes above the diagonal nodes of the
data block matrix, and l=number of nodes below the diago-
nal nodes of the data block matrix. Further, with regard to
the hash chain length, the number of blocks in a row or
column hash chain is proportional to VN for a matrix with N
blocks, by the balance property. As used herein, row hash
chain refers to a hash value for the respective row. As used
herein, column hash chain refers to a hash value for the
respective column. Moreover, the data block matrix pro-
vides data block dispersal, wherein no consecutive data
blocks are written in nodes in the same row or column. That
is, for any two data blocks numbered a, b, where b=a+1, in
rows ia and ib, and columns ja and jb respectively, ia=ib and
jazjb. This can be shown by considering cases below.

1. If i<y, then block a will be written to node (ia,ja) and
then i and j swapped so that in the next iteration, i>j,
and data block b is written to node (ib,jb). Since ib=ja
and jb=ia, and i=j, ia=ib and ja=jb.

2. If i>}, then data block a is be written to node (ia,ja), j
is incremented, and then i and j swapped. Then either
the relationship is unchanged, with i>j, or i=j.

If i=j, then no data block will be written in the next
iteration, but i will be set to 0 and j will be incre-
mented such that i<j, and the next data block written
with ib=0 and jb=ja+1, ensuring that ia=ib and ja=jb.

If i>, then on the next iteration, block b will be written
with ib=ja and jb=ia, and i}, so that ia=ib and ja=jb.

Because no two consecutive data blocks appear in the
same row or column, a user can delete two consecutive data
blocks simultaneously without disturbing integrity protec-
tion for other data blocks because diagonal nodes include
null data blocks. Without this property, for example, the
following

In FIG. 15, if data blocks 7 and 8 are deleted, then
integrity protection for data blocks 4 and 9 is lost because
hashes would be invalidated for row 1, column 2, and row
2, column 1. Then nodes (1,1) and (2,2) have neither row nor
column hashes.

With regard to a number of data blocks, the total number
of data blocks in the data block matrix is N>-N since
diagonal nodes contain null data blocks. Thus, the last
numbered data block in a filled matrix of N rows and
columns is number N°-N. With rows and columns num-
bered from 0, i=N-1, and the last data block in the lower half
(below diagonal) is (i+1)*~(i+1)=i*+i, and for any row i, the
last data block in the lower half is numbered i*+i. Accord-
ingly, the last data block in row i-1 in the lower half is i>~i
and the first in row i is i*~i+2. Similarly, the last upper half
data block in column j is j*+j-1.

US 11,175,826 B2

17

With regard to a location of a data block, with the
relations above, expressions to locate a given data block
within the data block matrix is provided. For a data block B
in the lower half (B is even) of the data block matrix:

s=|VB]
i=B=s?+s?s:5+1

F=(B-(P=i+2))2

10
and for data block B in the upper half (B is odd):
=BT
J=B<s+s?s:s+1 15

i=(B-(P—j+1))2

Data blocks can be deleted by overwriting with zeroes,
with one row and one column hash recalculated. After
deleting data block i, j, row i and column j, hash values are 20
recalculated.

The data block matrix can be used for incorporation into
applications requiring integrity protection that convention-
ally use permissioned blockchains. This capability could be
used in meeting privacy policies for organizations to delete 25
information related to a particular individual. Such modifi-
cation of data in data blocks can be incompatible with
conventional blockchain data structures, including private,
i.e., permissioned, blockchains because blockchains ensure
that block contents are immutable. A change in a blockchain 30
can invalidate subsequent hashes in following blocks, losing
integrity protection. The data block matrix retains integrity
protection of non-deleted blocks and also can be extended
beyond two dimensions to an arbitrary number of dimen-
sions, with straightforward extensions to the algorithms 35
above.

Example 2. Managing Data for a Clinical Trial
with a Data Block Matrix
40
With reference to FIG. 16, a process for managing data for
a clinical trial with a data block matrix includes entry of
multiple participants in a trial, recording of their Personally
Identifiable Information (PI) data in the data block matrix,
completion of the trial and withdrawal of the participants, 45
and deletion of their PII data from the data block matrix.
Initially, as shown in 200.1, data for participant 1 is recorded
in the first data block above the diagonal, according to the
writing process described in Example 1. This block, in
location 0,1 is identified on the drawing. PI data for partici- 50
pants 2 through n will then be recorded in data blocks that
are located using the process described in Example 1. When
the trial process is completed, it is necessary to delete PI
from the data block matrix, as shown in 200.2. FIG. 16,
200.2, shows an example deletion for participant number 5. 55
The ij locations are computed according to the process
shown in FIG. 11, locating the node, for which data is to be
deleted, at location 1,2. Data will be deleted by overwriting
with zeroes. PI data for other participants is then processed
in the same manner. 60
While one or more embodiments have been shown and
described, modifications and substitutions can be made
thereto without departing from the spirit and scope of the
invention. Accordingly, it is to be understood that the present
invention has been described by way of illustrations and not 65
limitation. Embodiments herein can be used independently
or can be combined.

18

Those skilled in the art will also appreciate that while
various items are illustrated as being stored in memory or on
storage while being used, these items or portions of them can
be transferred between memory and other storage devices
for purposes of memory management and data integrity.
Alternatively, in other embodiments some or all of the
software components can execute in memory on another
device and communicate with the illustrated computer sys-
tem via inter-computer communication. Some or all of the
system components or data structures can also be stored
(e.g., as instructions or structured data) on a computer-
accessible medium or a portable article to be read by an
appropriate drive, various examples of which are described
above. In some embodiments, instructions stored on a com-
puter-accessible medium separate from computer system
1000 can be transmitted to computer system 1000 via
transmission media or signals such as electrical, electromag-
netic, or digital signals, conveyed via a communication
medium such as a network or a wireless link. Various
embodiments can further include receiving, sending, or
storing instructions or data implemented in accordance with
the foregoing description upon a computer-accessible
medium. Accordingly, the present techniques can be prac-
ticed with other computer system configurations.

In block diagrams, illustrated components are depicted as
discrete functional blocks, but embodiments are not limited
to systems in which the functionality described herein is
organized as illustrated. The functionality provided by each
of'the components can be provided by software or hardware
modules that are differently organized than is presently
depicted, for example such software or hardware can be
intermingled, conjoined, replicated, broken up, distributed
(e.g. within a data center or geographically), or otherwise
differently organized. The functionality described herein can
be provided by one or more processors of one or more
computers executing code stored on a tangible, non-transi-
tory, machine readable medium. In some cases, notwith-
standing use of the singular term “medium,” the instructions
can be distributed on different storage devices associated
with different computing devices, for instance, with each
computing device having a different subset of the instruc-
tions, an implementation consistent with usage of the sin-
gular term “medium” herein. In some cases, third party
content delivery networks can host some or all of the
information conveyed over networks, in which case, to the
extent information (e.g., content) is said to be supplied or
otherwise provided, the information can provided by send-
ing instructions to retrieve that information from a content
delivery network.

Example 3. Component for Distributed Database
Applications

With their features of providing distributed, trusted data
using no central server, conventional blockchains have some
desirable properties for many complex distributed systems,
and a number of implementations have been proposed.
However, some environments and applications are not well
suited to using blockchains. For example, cryptocurrency,
for which blockchains were designed, include pseudo-ano-
nymity, which many distributed database applications for
finance or e-commerce require legitimate identification for
government and tax purposes. Blockchains were also
designed for small transaction sizes, which while acceptable
for cryptocurrencies is not suitable for large documents or
images, or other large data that may be required in distrib-
uted systems. Additionally, the primary property of block-

US 11,175,826 B2

19

chain and conventional distributed ledger systems is the
immutability property, which prevents changes to any data
without requiring a complete recomputation of all block
hashes.

It is contemplated that the data block matrix is a compo-
nent or building block in constructing distributed database
systems because it provides integrity guarantees of block-
chain but has low resource consumption and provides revis-
ing data blocks. As a component for database applications,
the block data matrix provides numerous functions such as:

for a data block matrix

public BlockMatrix(int dimension): constructor; creates a

BlockMatrix of the specified dimension; BlockMatrix
can hold (dimension*dimension)-dimension blocks;
public void setUpSecurity(): sets up security provider in

order to use the Java Security API;

public void generate(Wallet, float value): create genesis

block, making a transaction that transfers value to
wallet;

public void addBlock(Block newBlock): adds newBlock

to a BlockMatrix;
public Block getBlock(int blockNumber): returns the
block in the BlockMatrix specified by blockNumber,
which is the number of the block in terms of when it
was inserted (e.g. 1st block, 2nd block, etc.); block
numbers begin with 1. They are not 0-indexed;

public ArrayList<Transaction>getBlockTransactions(int
blockNumber): returns a list of all transactions in the
block specified by blockNumber;
public void clearInfolnTransaction(int blockNumber, int
transactionNumber): clears the info in the transaction
specified by transactionNumber in the block specified
by blockNumber; e.g., to clear the 1st transaction in the
second block, type clearInfolnTransaction(2, 1);

public int getlnputCount(): returns the number of blocks
that have been added to the BlockMatrix;

public String[| getRowHashes(): returns an array of all

the row hashes of the BlockMatrix;

public String[| getColumnHashes(): returns an array of

all the column hashes of the BlockMatrix;
public float getMinimumTransaction(): returns the value
of the minimum transaction of the BlockMatrix;

public void setMinimumTransaction(float num): changes
the value of the minimum transaction of the BlockMa-
trix to num;

public int getDimension(): returns the dimension of the

BlockMatrix:
public ArrayList<Integer>getBlocks WithModifiedData(
): returns a list of the blocks (by number) that have had
their data cleared after being added to the BlockMatrix;
public void printRowHashes(): prints the row hashes of
the BlockMatrix;

public void printColumnHashes(): prints the row hashes

of the BlockMatrix;

public void printHashes: prints all hashes of the Block-

Matrix;

public Boolean isMatrixValid(): returns true or false

depending on whether the

BlockMatrix has been tampered with and if it is or is not

still secure;
for a block
public Block(): constructor; creates a block;
public boolean addTransaction(Transaction transaction):
adds a transaction to the block; returns true if the
transaction is added successfully, and false if not;

public Arraylist<Transaction>getTransactions(): returns
a list of all transactions in the Block;

10

15

20

25

30

35

40

45

50

55

60

65

20

public String getHash(): returns the hash of the block;

public void printBlockTransactions(): prints transaction

details of each transaction in the block;

for a transaction

public int getBlockNumber(): returns the number of the

block in which the transaction is stored;

public String getTransactionld(): returns the id of the

transaction; the id is the hash of the transaction;
public PublicKey getSender(): returns the PublicKey of
the sender of the transaction;

public PublicKey getRecipient(): returns the PublicKey

of the recipient of the transaction;

public float getValue(): returns the value of the transac-

tion, e.g., an amount being sent;

public String getlnfo(): returns the info or message being

passed along with the transaction;

public byte[| getSignature(): returns the signature of the

transaction;

public ArrayList<TransactionInput>getlnputs(): returns a

list of all inputs of the transaction;

public ArrayList<TransactionOutput>getOutputs():

returns a list of all outputs of the transaction;

Transactionlnput

public String getTransactionOutputld(): returns the id of

the TransactionOutput a Transactionlnput is referenc-
ng;

public TransactionOutput getUTXO(): returns unspent

TransactionOutput the Transactionlnput is using;
TransactionOutput
public String getTransactionOutputld(): returns the id of
the TransactionOutput the Transactionlnput is referenc-
ng;

public TransactionOutput getUTXO(): returns unspent

TransactionOutput the Transactionlnput is using;
public String getld(): returns the id of the Transaction-
Output; the id is a hash of the TransactionOutput;
public PublicKey getRecipient(): returns the PublicKey

of the recipient, the new owner of the coins from this
TransactionOutput;

public float getValue(): returns the amount of the asset in

this TransactionOutput;

public String getParentTransactionld(): returns the id of

the Transaction this output was created in; and

Wallet

public Wallet(): constructor; create a wallet;

public float getBalance(): returns the balance of this

wallet;

public Transaction sendFunds(PublicKey recipient, float

value, String info): returns a transaction that sends
value funds from this wallet to the wallet specified by
recipient, along with the message info;

public PublicKey getPublicKey(): returns the PublicKey

of this wallet;

public HashMap<String, TransactionOutput>getUTXOs(

): returns a HashMap of the unspent TransactionOut-
puts owned by this wallet; keys are the Transaction-
Output ids, whereas the values are the TransactionOut-
puts.

All ranges disclosed herein are inclusive of the endpoints,
and the endpoints are independently combinable with each
other. The ranges are continuous and thus contain every
value and subset thereof in the range. Unless otherwise
stated or contextually inapplicable, all percentages, when
expressing a quantity, are weight percentages. The suffix (s)
as used herein is intended to include both the singular and
the plural of the term that it modifies, thereby including at
least one of that term (e.g., the colorant(s) includes at least

US 11,175,826 B2

21

one colorants). Optional or optionally means that the sub-
sequently described event or circumstance can or cannot
occur, and that the description includes instances where the
event occurs and instances where it does not. As used herein,
combination is inclusive of blends, mixtures, alloys, reaction
products, and the like.

As used herein, a combination thereof refers to a combi-
nation comprising at least one of the named constituents,
components, compounds, or elements, optionally together
with one or more of the same class of constituents, compo-
nents, compounds, or elements.

All references are incorporated herein by reference.

The use of the terms a and an and the and similar referents
in the context of describing the invention (especially in the
context of the following claims) are to be construed to cover
both the singular and the plural, unless otherwise indicated
herein or clearly contradicted by context. Or means and/or.
It can further be noted that the terms first, second, primary,
secondary, and the like herein do not denote any order,
quantity, or importance, but rather are used to distinguish
one element from another. The modifier about used in
connection with a quantity is inclusive of the stated value
and has the meaning dictated by the context (e.g., it includes
the degree of error associated with measurement of the
quantity). The conjunction or is used to link objects of a list
or alternatives and is not disjunctive; rather the elements can
be used separately or can be combined under appropriate
circumstances.

What is claimed is:

1. A tangible, non-transitory, machine-readable medium
storing instructions that when executed by one or more
processors effectuate operations comprising:

performing, with one or more processors, initialization for

making a data block matrix and writing data blocks in

nodes of the data block matrix, wherein:

the data block matrix holds nodes that are arranged in
rows and columns of the data block matrix; a size of
the data block matrix is nxm with the number of
rows is n, and the number of columns is m, wherein
m and n are positive integers;

each node has location indexes location row.r and
location column.c and pointer indexes pointer row.i
and pointer column.j, wherein r, ¢, i, and j indepen-
dently are positive integers; the location indexes
provide a row indicated by integer r and column
indicated by integer ¢ at which the node is located in
the data block matrix, and the pointer indexes pro-
vide references, from a selected node to a first node
and a second node, with pointer row.i being a pointer
from the selected node to the first node that is in the
same location row.r=i as the selected node and with
pointer column.j being a pointer from the selected
node to the second node that is in the same location
column.c=j as the node;

(location row.0, location column.0) of the data block
matrix holds a primary node; each (location row.0,
location column.1 . . . m-1) of the data block matrix
holds a column edge node; each (location row.1 . ..
n-1, location column.0) of the data block matrix
holds a row edge node; the data block matrix holds
diagonal nodes at each (location row.r=c, location
column.c) except for (location row.r=n, location col-
umn.m, for n=m) and; each row r of the data block
matrix terminates at (location row.r, location col-
umn.m) that holds a hash row node r,_; and each
column ¢ of the data block matrix terminates at

10

15

20

25

30

35

40

45

50

55

60

65

22

(location row.n, location column.c) that holds a hash
column node_,c, the initialization comprising:
receiving, with one or more processors, an initialization
command to prepare the one or more processors for
writing the primary node at (location row.0, location
column.0) as a first diagonal node;
producing, with one or more processors in response to
receiving the initialization command, the primary
node at (location row.0, location column.0) and
having pointers comprising (pointer row.0, pointer
column.0), wherein the primary node does not
include a null data block; and
storing the primary node in memory;
writing, with one or more processors, a first null data
block comprising:
receiving a write command to write a first null data
block;
writing the first null data block to the primary node;
making edges nodes by:
making a first column edge node proximate to the
primary node and writing a first data block to the
first column edge node; and
making a first row edge node proximate to the
primary node and writing a second data block to
the first row edge node;
making additional diagonal nodes with null data blocks
and additional edge nodes and interior nodes with data
blocks by iteratively:
firstly making another edge column node and writing
another data block to said edge column node;
secondly making another edge row node and writing
another data block to said edge row node;
thirdly and successively making interior nodes along a
counter-diagonal direction of the data block matrix
and writing another data block to each of the interior
nodes upon creation of each of said interior nodes;
and
fourthly making another diagonal node and writing
another null data block to said diagonal node;
making a hash row node r, at location column.m at a
terminus of each row and writing another data block to
each said hash row node r,_; and
making a hash column node_,c at location row.n at a
terminus of each column and writing another data block
to said hash column node_,c,
wherein:
each hash row node comprises a hash of nodes in the
row containing said hash row node;
each hash column node comprises a hash of nodes in
the column containing said hash column node;
the data block matrix provides deletion of an arbitrary
data block while preserving hash-based integrity
assurance that other data blocks are unchanged; and
the data block matrix provides modification, with hash
values, of an arbitrary data block.
2. The medium of claim 1, wherein the operations further
comprise:
receiving a delete command to delete the arbitrary data
block; and
deleting the arbitrary data block while preserving hash-
based integrity assurance that other data blocks are
unchanged.
3. The medium of claim 1, wherein the operations further
comprise:
receiving a modification command to modify the arbitrary
data block; and

US 11,175,826 B2

23

modifying the arbitrary data block while preserving hash-
based integrity assurance that other data blocks are
unchanged.

4. The medium of claim 1, wherein the operations further

comprise:

receiving a read command to read a data block;

determining a node in which the data block is written;

computing a pointer row index and a pointer column
index for the node in which the data block is written;
and

following the pointer row index and the pointer column
index for the node in which the data block is written to

a target node linked to by the pointer row index and the

pointer column index; and

retrieving a data block written in the target node.

5. A method comprising:

performing, with one or more processors, initialization for
making a data block matrix and writing data blocks in
nodes of the data block matrix, wherein:

the data block matrix holds nodes that are arranged in
rows and columns of the data block matrix; a size of
the data block matrix is nxm with the number of
rows is n, and the number of columns is m, wherein
m and n are positive integers;

each node has location indexes location row.r and
location column.c and pointer indexes pointer row.i
and pointer column.j, wherein r, ¢, i, and j indepen-
dently are positive integers; the location indexes
provide a row indicated by integer r and column
indicated by integer ¢ at which the node is located in
the data block matrix, and the pointer indexes pro-
vide references, from a selected node to a first node
and a second node, with pointer row.i being a pointer
from the selected node to the first node that is in the
same location row.r=i as the selected node and with
pointer column.j being a pointer from the selected
node to the second node that is in the same location
column.c=j as the node;

(location row.0, location column.0) of the data block
matrix holds a primary node; each (location row.0,
location column.1 . . . m-1) of the data block matrix
holds a column edge node; each (location row.1 . ..
n-1, location column.0) of the data block matrix
holds a row edge node; the data block matrix holds
diagonal nodes at each (location row.r=c, location
column.c) except for (location row.r=n, location col-
umn.m, for n=m) and; each row r of the data block
matrix terminates at (location row.r, location col-
umn.m) that holds a hash row node r,_; and each
column ¢ of the data block matrix terminates at
(location row.n, location column.c) that holds a hash
column node_,c, the initialization comprising:

receiving, with one or more processors, an initialization
command to prepare the one or more processors for
writing the primary node at (location row.0, location
column.0) as a first diagonal node;

producing, with one or more processors in response to
receiving the initialization command, the primary
node at (location row.0, location column.0) and
having pointers comprising (pointer row.0, pointer
column.0), wherein the primary node does not
include a null data block; and

storing the primary node in memory;

writing, with one or more processors, a first null data
block comprising:

10

15

20

25

30

35

40

45

50

55

60

24
receiving a write command to write a first null data
block;
writing the first null data block to the primary node;
making edges nodes by:
making a first column edge node proximate to the
row edge node and writing a first data block to the
first column edge node; and
making a first row edge node proximate to the row
edge node and writing a second data block to the
first row edge node;
making additional diagonal nodes with null data blocks
and additional edge nodes and interior nodes with data
blocks by iteratively:
firstly making another edge column node and writing
another data block to said edge column node;
secondly making another edge row node and writing
another data block to said edge row node;
thirdly and successively making interior nodes along a
counter-diagonal direction of the data block matrix
and writing another data block to each of the interior
nodes upon creation of each of said interior nodes;
and
fourthly making another diagonal node and writing
another null data block to said diagonal node;
making a hash row node r,_ at location column.m at a
terminus of each row and writing another data block to
each said hash row node r,_; and
making a hash column node_,c at location row.n at a
terminus of each column and writing another data block
to said hash column node_,c,
wherein:
each hash row node comprises a hash of nodes in the
row containing said hash row node;
each hash column node comprises a hash of nodes in
the column containing said hash column node;
the data block matrix provides deletion of an arbitrary
data block while preserving hash-based integrity
assurance that other data blocks are unchanged; and
the data block matrix provides modification, with hash
values, of an arbitrary data block.
6. The method of claim 5, further comprising:
receiving a delete command to delete the arbitrary data
block; and
deleting the arbitrary data block while preserving hash-
based integrity assurance that other data blocks are
unchanged.
7. The method of claim 5, further comprising:
receiving a modification command to modify the arbitrary
data block; and
modifying the arbitrary data block while preserving hash-
based integrity assurance that other data blocks are
unchanged.
8. The method of claim 5, further comprising:
receiving a read command to read a data block;
determining a node in which the data block is written;
computing a pointer row index and a pointer column
index for the node in which the data block is written;
and
following the pointer row index and the pointer column
index for the node in which the data block is written to
a target node linked to by the pointer row index and the
pointer column index; and
retrieving a data block written in the target node.

#* #* #* #* #*

