IEC 62093 – PV INVERTER RELIABILITY TEST STANDARD 11/14/13

PURPOSE OF IEC 62093

- Identify a suite of accelerated tests to identify potential reliability weaknesses in PV inverters
- Develop recommendations for how tests are to be performed including sample size, environmental test conditions, duration, power and monitor, etc.
- Provide baseline for comparison of reliability performance between PV inverter manufacturers

<u>Not</u> intended to demonstrate useful life

TEST SUBCOMMITTEE PARTICIPANTS

- Greg Ball IEC 62093 committee chair, Leader of WG6
- Paul Parker SolarBridge, Accelerated Test subcommittee chair
- Peter Hacke NREL
- Chris Deline NREL
- Jon Kalfus Independent Consultant
- Harry McLean Enecsys
- Mike Fife PV Powered
- Mike Silverman Ops A La Carte
- Sig Gonzalez Sandia
- Team first assembled Feb '12
- 2nd Edition completed Feb '13

CONTRIBUTIONS FROM OTHER STANDARDS

- IPC 9592: Requirements for Power Conversion Devices for the Computer and Telecommunications Industries
 - 3 categories of products related to functionality
 - 2 classes of products related to application, lifetime
 - Design for Reliability (DfR) best practices
 - Design Verification Testing
 - Accelerated Reliability Testing
 - Quality Processes
 - Manufacturing Best Practices
- IEC 61215
 - Thermal Cycle (TC): -40° C to 85° C
 - Humidity Freeze (HF): 85° C / 85% RH; -40° C

2012 CONFIDENTIAL | 4

• Damp Heat (DH): 85° C / 85% RH

HIGHLIGHTS OF 62093 ED 2

- Four categories of PV inverters
 - Category 1: Inverter and DC-DC converters < 700W AC
 - Category 2: Wall mounted assemblies, eg., string inverters and small 3-phase inverters
 - Category 3: Free-standing single bay assemblies up to 100 kW AC
 - Category 4: Free-standing multi-bay assemblies over 100 kW AC
- Two Levels of test requirements
 - Level 1: minimum set of requirements, currently applied to Categories 2-4
 - Level 2: more aggressive requirement, currently applied to Category 1

CRITICAL ASPECT OF IEC 62093

- Powering and real time monitoring critical
 - Many failure mechanisms require voltage / load to activate
 - Frequent functional monitoring (<= 1minute intervals)
 - Many failure modes are intermittent, e.g., fail at extremes, pass test at 25° C
 - Health monitoring, identify negative trends, e.g., efficiency degradation
 - AC and DC power cycling required
- Test beyond specification
 - Required to accelerate failure mechanisms
 - Level 1: + 10° C beyond spec
 - Level 2: + 20° C above spec

FAILURE CATEGORIES

- Prioritizing failure modes
 - Class 1: Safety related
 - Class 2: Non safety related hardware failure. Unit under test fails to produce power under all test conditions
 - Class 3: Failure requiring an AC and / or DC power cycle to return to normal operation
 - Class 4: Soft failure, includes intermittent loss of power
 - Class 5: Error in data reporting accuracy

ENVIRONMENTAL TESTS

- Highly Accelerated Life Test (HALT)
 - Test beyond spec, step stress to failure
 - Purpose: identify design margin
 - Tests to be performed:
 - Cold Step Stress
 - Hot Step Stress
 - Rapid Thermal Cycling
 - Vibration Step Stress
 - Combined Environments
- Damp Heat (DH)
 - 85C / 85% RH
 - Purpose: identifies corrosion related mechanisms such as Electrochemical Migration (ECM), PCB Conductive Anodic Filament (CAF)

ENVIRONMENTAL TESTS

- Humidity Freeze (HF)
 - 85° C / 85% RH followed by -40C
 - Purpose: identifies weaknesses in environmental protection, moisture ingress paths
- High Temperature Operating Bias (HTOB)
 - 85° C RH
 - Purpose: identifies thermally activated mechanisms such as Electrolytic Capacitor electrolyte evaporation
- Thermal Cycle (TC)
 - -40° C to 85° C
 - Purpose: identifies mechanisms related to thermo mechanical cyclic fatigue such as solder joints and PCB vias

2012 CONFIDENTIAL | 9

ENVIRONMENTAL TESTS

- Salt Mist
 - Follow test procedure in IEC 60068-2-52
 - Unpowered, pre and post functional test, visual
 - Purpose: Identifies corrosion typical of coastal areas
- UV
 - Follow test procedure in IEC 60904-3
 - Unpowered, pre and post functional test, visual
 - Purpose: Identifies vulnerabilities to UV degradation such as cables, connectors, labels, etc.

SAMPLE SIZE

	Environmental Stress Test Requirements by Product Category and Level Sample Size Requirements							
	Category 1		Category 2		Category 3		Category 4	
Test	Level 1	Level 2	Level 1	Level 2	Level 1	Level 2	Level 1	Level 2
HALT	NA	4	2	NA	1	NA	1	NA
DH	NA	8	2	NA	1	NA	1	NA
HF	NA	8	2	NA	1	NA	1	NA
HTOB	NA	8	2	NA	1	NA	1	NA
PTC	NA	8	2	NA	1	NA	1	NA
SF	NA	1	0	NA	0	NA	0	NA
UV	NA	1	0	NA	0	NA	0	NA

HALT - Highly Accelerated Stress Test

DH - Damp Heat

HF - Humidity Freeze

HTOB - High Temperature Operating Bias

PTC - Powered Thermal Cycle

QUESTIONS / CONCERNS / AREAS FOR IMPROVEMENT

- Design Verification Testing section not yet started
- Need additional participants, especially from larger power inverter companies and customers
- Tests not well correlated to field use conditions
- Concerns with testing beyond spec, inducing failures not representative of use conditions
- No good source of field failure data for reference
- Enforcement guideline or standard?

QUESTIONS / CONCERNS / AREAS FOR IMPROVEMENT

- Manufacturer concerns
 - Cost of performing tests, large capital investment
 - Time to perform test delayed time to market
 - Cost and availability of test samples, especially for large systems
- Fault Coverage:
 - Insufficient sample size to expose all failures
 - Limited breadth of stress conditions
 - Software / Firmware
- Ramifications of failure Delay all shipments until all tests pass?
- Who performs test (in house vs 3rd party lab)
 - Sufficient expertise and test equipment at 3rd party labs?
 - Accountability when performed by manufacturer?

US DOE "PREDICTS" PROJECT

- PREDICTS: Physics of Reliability (PoR): Evaluating Design Insights for Component Technologies
- 3 year project to create reliability qualification test standard for Microinverters and DC-DC Microconverters
 - Focus on intrinsic failure mechanisms
 - Extensive use of PoR modeling
 - Use existing field data to identify at risk mechanisms
 - Predict lifetime
- Sandia awarded project
 - Jack Flicker Pl
 - TUV, Bosch, ViaSol, University of Utah, Arizona State University
 - Support from Enphase, SolarBridge, SolarEdge, Tigo, and others
 - ANSI standard
 - TUV-R 71830: Microinverters and Microconverters Design Qualification and Type Approval,

2012 CONFIDENTIAL | 14

PREDICTS PROJECT CHALLENGES

- Young industry, 5 years of field experience for 25+ year intended life
- Many wearout mechanisms have not yet appeared
- Field failure statistics hard to come by, data very sensitive to manufacturers
- Many field failures are extrinsic, difficult to model
- Some intrinsic models have been in development for decades without consensus (solder joint)
- Models are dependent on MI/MC design, difficult to make generic, especially for potted products

IEC 62093 NEXT STEPS

- WG 6 initial feedback completed
- Soliciting feedback from other industry participants
- Expand committee to include more manufactures, users
- Schedule:
 - CD Dec '13
 - CDV May '14
 - Implementation Q1 '15

