

Best Practices in PHM and Application to Manufacturing 19 November 2014

Carl Byington, P.E. carl.byington@impact-tek.com 585-729-0782

IMPACT CORE TECHNOLOGY AREAS

Impact Technologies

SOME EXAMPLE PHM SUCCESSES

Impact Technologies A Sikorsky Innovations Company

This Page Contains No Technical Data Controlled by the ITAR or EAR. © Sikorsky Aircraft Corporation 2014 3

TOTAL PRODUCTIVE MAINTENANCE

	World Class Results		 <u>The 5S (or 6S) Foundation</u> Sort (eliminate anything that is not
Autonomous Maintenance		Early Equipment Management	truly needed in work area)Set in Order (organize remaining
Planned Maintenance	Трм	Training and Education I items) • Shine (clean and inspect wor	 items) Shine (clean and inspect work area)
Quality Maintenance		Safety, Health, Environment	 Standardize (create standards for performing above three activities)
Focused Improvement	\sim	TPM in Administration	 Sustain (ensure the standards are regularly applied)
	5S Foundation		 Safety (Job 1)

Component	TPM Goal	Type of Productivity Loss	
Availability	No Breakdowns	Availability takes into account Down Time Loss , which includes all events that stop planned production for an appreciable length of time (typically several minutes or longer).	
Performance	No Small Stops or Slow Running	Performance takes into account Speed Loss , which includes all factors that cause production to operate at less than the maximum possible speed when running.	
Quality	No Defects	Quality takes into account Quality Loss , which factors out manufactured pieces that do not meet quality standards, including pieces that require rework.	
Overall Equip. Effective. (OEE)	Perfect Production	OEE takes into account all losses (Down Time Loss, Speed Loss, and Quality Loss), resulting in a measure of truly productive manufacturing time. >85% considered WC	

Impact Technologies

A Sikorsky Innovations Company

This Page Contains No Technical Data Controlled by the ITAR or EAR. © http://www.leanproduction.com/tpm.html

OVERALL EQUIPMENT EFFECTIVENESS

<u>Six Big</u> Losses	OEE Category	<u>Examples</u>	<u>Comments</u>
Breakdowns	Down Time Loss	Tooling FailureUnplanned MaintenanceBearing/Motor Failure	There is flexibility on where to set the threshold between a Breakdown (Down Time Loss) and a Small Stop (Speed Loss).
Setup and Adjustments	Down Time Loss	 Setup/Changeover Material Shortage Operator Shortage Adjustments/Warm-Up 	This loss is often addressed through setup time reduction programs such as SMED (Single-Minute Exchange of Die).
Small Stops	Speed Loss	 Component Jam Minor Adjustment Sensor Blocked Delivery Blocked Cleaning/Checking 	Typically only includes stops that are less than five minutes and that do not require maintenance personnel.
Slow Running	Speed Loss	Incorrect SettingEquipment WearAlignment Problem	Anything that keeps the equipment from running at its theoretical maximum speed.
Startup Defects	Quality Loss	•Scrap •Rework	Rejects during warm-up, startup or other early production.
Production Defects	Quality Loss	•Scrap •Rework	Rejects during steady-state production.

OEE = (Good Pieces x Ideal Cycle Time) / Planned Production Time

Impact Technologies

A Sikorsky Innovations Company

COMPARING PHM/CBM WITH OTHER APPROACHES

Number of Maintenance Actions

VALUE OF PROGNOSTICS & CONDITION MONITORING

PROGNOSIS AND CBM

With Condition-Based Maintenance + Prognostics (CBM+)

ELEMENTS OF A CBM SOLUTION

A DISTRIBUTED ARCHITECTURE

This Page Contains No Technical Data Controlled by the ITAR or EAR. © Sikorsky Aircraft Corporation 2014

Impact Technologies

GENERAL PROGNOSTICS CLASSES/APPROACHES

Usage-based Prognostics

This approach incorporates reliability data, life usage models and varying degrees of measured or proxy data. Forecast based on actual usage when possible. Incipient fault detection may not be available due to sensor or fault mode coverage limitations.

Condition (Health)-based Prognostics

This approach involves utilizing the assessed health or diagnostic fault classifier output to predict a failure evolution. Feature trending or physics-of-failure based prediction may then be used. Incipient fault detection and diagnostic isolation is absolutely necessary.

*Hybrid techniques or fusion approaches may also be used.

A Sikorsky Innovations Company

Impact Technologies

DETECTION THROUGH PROGNOSTICS

A Sikorsky Innovations Company

MAN-PHM SUMMARY AND CHALLENGES

- Typical manufacturing environments have rich data potential to develop greater prognostics using usage, health, and hybrid modeling approaches
- A wide range of prognostic approaches is available with selection depending upon available system information and data quality
- Predicting future events is difficult and the accuracy is highly influenced by multiple sources of uncertainty making a probabilistic approach vital
 - Signal noise, operating modes, actual effective usage capture
 - Condition indicators not fully characterized for failure mode identification
 - Tracking of design life / wear / damage progression
 - Uncertainty in data, system parameters, models, etc.
 - Insufficient data, case studies, diagnostic/prognostic validation
- Combining both physics of failure and health based approaches often aid in managing these limitations and uncertainties
- Goal is to reduce unscheduled maintenance to "near zero" and minimize scheduled maintenance to "truly" on-condition to produce highest uptime at lowest overall maintenance cost
- Translate these capabilities to key manufacturing metrics such as OEE (Overall Equipment Effectiveness) and possibly others?