Required Doses: Variability and Refining Measurements

John M. Boyce¹

¹J.M. Boyce Consulting, LLC, Middletown, CT

*Corresponding author: jmboyce69@gmail.com

In recent years, multiple UV devices designed to improve disinfection of hard surfaces in healthcare facilities have been introduced to the marketplace, and there is a trend of increasing adoption of such devices among acute care hospitals in the United States. However, selection of the most appropriate device is difficult due to the lack of information regarding the doses (fluence) of UV that is required to achieve desired log₁₀ reductions of healthcare pathogens, and data on the ability of devices to deliver adequate doses to various hard surfaces in patient rooms. Although substantial data are available on UV-C doses needed to reduce various microorganisms by 2-3 log₁₀, most studies were conducted in liquid media and did not address healthcare-associated pathogens [1].

Only a few studies have evaluated UV-C doses necessary to reduce pathogens such as methicillin-resistant S. aureus (MRSA), vancomycin-resistant enterococci (VRE) and *Clostridioides difficile* by 3 log₁₀, and the doses reported to be necessary to achieve such reductions have varied widely. For example, investigators have reported that doses that reduced *C. difficile* by 3 log₁₀ ranged from 16,000 uJ/cm² to >300,000 uJ/cm² [2-5]. A recent study that used UV-C doses ranging from 10,000 to 100,000 uJ/cm² found that a dose of 46,000 uJ/cm² yielded a 3 log₁₀ reduction of *C. difficile* [6]. The same study found that 10,000 uJ/cm² yielded a 3 log₁₀ reduction of MRSA, while other studies found similar log₁₀ reductions required 8,800 to 11,727 uJ/cm² of UV-C [4, 7]. UV-C doses required to reduce VRE by 3 log₁₀ have been reported to range from 11,228 to 29,000 uJ/cm² [4, 7] Very few studies have evaluated the log₁₀ reductions of Gram-negative bacilli such as *Acinetobacter* or *Klebsiella* achieved with measured doses of UV-C [2]. Several studies have evaluated log₁₀ reductions of MRSA, VRE and *C. difficile* that resulted following use of an automated pulsed xenon mobile device, but reporting of UV doses in such studies is problematic due to the wide spectrum light emitted by such devices [8, 9].

The wide disparity in UV-C doses needed to achieve 3 log₁₀ reductions of healthcare-associated pathogens is due in large part to variations in the methods utilized (Table). For example, testing different strains of *C. difficile* which can vary in their degree of susceptibility to UV-C may be responsible in part for the reported differences in doses needed to yield 3 log₁₀ reductions [5, 10]. Of note, the emerging fungal pathogen *Candida auris* is less susceptible to UV-C than other *Candida* species [11]. Larger doses of UV-C may be required to achieve similar reductions if investigators use large inocula, or small-sized (e.g., 10-mm) carriers, or simply drop inocula onto carriers instead of spreading it over the entire surface of the carrier [12]. The presence of an organic load has in some studies increased slightly the doses necessary to achieve a given log₁₀ reduction [6, 12]. However, additional research is needed to develop a standard organic load that more closely mimics that found on hospital surfaces [13]. Higher humidity and lower

temperatures may yield decreased sensitivity to UV-C. The potential impact varying radiometer design and accuracy on UV doses that yield 3 log₁₀ reductions has not been determined.

In order for end-users to understand if a UV device will adequately reduce pathogens in patient care areas, it should be helpful to know the doses of UV light that are required to yield desired reductions, and to have practical methods of measuring doses delivered to surfaces located at different distances and orientations relative to the device. Standardization of variables used in determining UV doses necessary to achieve desired log₁₀ reductions of healthcare-associated pathogens is needed [14-16].

Pathogen strain studied	Various strains of C. difficile; methicillin-resistant S. aureus
	(MRSA); vancomycin-resistant enterococci (VRE); E. coli
Spore-forming pathogen	C. difficile; Bacillus subtilis
Inoculum preparation	Variable, especially for C. difficile spores
Inoculum size (# colonies)	$10^4 - 10^5$; 10^5 ; 10^6 ; $10^5 - 10^7$
Carrier material & size	Laminate; stainless steel; glass; plastic; aluminum
	Size (diameter in mm): 10; 20; 40 Area (cm ²): 25, 35
Presence/type of organic load	None; 5% or 10% fetal calf serum; 0.03%, 0.3% or 10%
	bovine serum albumin; ASTM E2197 multi-component load
Placing inoculum on carrier	Inoculum dropped onto carrier; spread to cover carrier surface
UV exposure conditions	Inoculum on agar surface; on dried hard surface
Exposure (cycle) time	Highly variable, from 4 min to ~50 min
Relative temperature &	Various ambient temperatures and humidity levels
humidity	
Method of recovering	Carriers submerged in liquid; RODAC plate: swab
pathogen from carriers	
Type of radiometer	ILT-254; ILT-1700; ILT-2000; General Tools-UV254SC

Table. Variability in test methods used to evaluate UV-C efficacy against healthcare pathogens

References

- 1. Malayeri AH et al. IUVA News Sept 2016;18
- 2. Moore G et al. BMC Infect Dis 2012;12:174
- 3. Rutala WA et al. Infect Control Hosp Epidemiol 2014;35:1070
- 4. Mitchell JB et al. J Appl Microbiol 2019;126:58
- 5. Boyce JM, Donskey CJ. Infect Control Hosp Epidemiol 2019;40:1030
- 6. Cadnum JL et al. IDWeek 2019, Abstract #1215
- 7. Boyce JM et al. Infect Control Hosp Epidemiol 2016;37:667
- 8. Nerandzic MM et al. Infect Control Hosp Epidemiol 2015;36:192
- 9. Cadnum JL et al. Infect Control Hosp Epidemiol 2019;40:158
- 10. Nerandzic MM et al. BMD Infect Dis 2010;10:197
- 11. Cadnum JL et al. Infect Control Hosp Epidemiol 2018;39:94
- 12. Cadnum JL et al. Infect Control Hosp Epidemiol 2016;37:555
- 13. Zhang A et al. Infect Control Hosp Epidemiol 2013;34:1106
- 14. Cowan T. Infect Control Hosp Epidemiol 2016;37:1000
- 15. Martinello RA. IUVA News 2018;20:12
- 16. Bolton JR. IUVA News 2018;20:27