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4 Sensitivity Analysis of MesoNet 
This section discusses a sensitivity analysis of MesoNet, along with related correlation 
and principal components analyses. Sensitivity analysis [94] varies settings of a model’s 
input parameters and assesses resulting changes in model outputs. Correlation analysis 
[90] examines the way in which two outputs vary with relation to each other when 
exposed to the same conditions. Principal components analysis generates orthogonal 
linear combinations of weighted measures that account for variance in model outputs. 
Here, we conduct a sensitivity analysis to understand the behavior of MesoNet and to 
discover the most significant model inputs that influence model response. To assess 
relationships between model inputs and outputs we use a 10-step graphical analysis 
technique developed at NIST. In addition to allowing analysis of input-output 
relationships, exercising a model over a wide range of its parameter space helps to reveal 
software implementation errors, which can be corrected prior to applying the model in 
particular studies. We use correlation and principal components analyses to identify 
significant aspects of MesoNet behavior. In general, application of correlation and 
principal components analyses can help to reduce the number of responses that must be 
used in subsequent statistical analyses. The results of our analyses serve to validate that 
MesoNet reasonably represents the macroscopic behavior of a network of TCP flows. 
The results of our analyses also help to answer some questions raised in the literature 
regarding the applicability of particular findings from small-scale simulations to a larger 
network. 

The current practice of network modeling omits the use of sensitivity analyses, 
despite the fact that network researchers understand the benefits of such analyses [70, 
72]. Why is this so? Most network simulators [76-83] are quite detailed, involving 
hundreds of parameters with potential settings that can range over many values. Running 
such simulations with large topologies and billions of TCP flows can be a daunting task, 
requiring substantial computational resources. In addition, configuring the parameter 
settings in such simulations can be time-consuming and tedious. Sensitivity analysis 
requires running a simulation through many combinations of settings. Thus, configuring 
and computing the required combinations for a detailed model with a large parameter 
space is infeasible. 

Recently, two groups of researchers developed hybrid models [71, 73] that aim to 
reduce the computational requirements and range of parameters necessary to simulate 
TCP flows in reasonably large topologies. MesoNet was motivated by the same aims: 
establishing a new class of network models that can simulate many flows operating over 
a large network topology, while maintaining reasonable configurability and 
computational requirements. For example, MesoNet has on the order of 20 fundamental 
parameters and, depending on specific parameter settings, can simulate tens of billions of 
flows in days or weeks of processing time on commercial servers using x86-compatiable 
chips with cycle speeds of 2.6 GHz to 3.66 GHz. Thus, it becomes possible to 
contemplate conducting sensitivity analyses for this new class of network models. 

Still, 20 parameters, each with a large possible range (n) of values, can suggest a 
large space of (n20) combinations to consider. To circumvent such a problem, experiment 
designs used in many scientific disciplines have long adopted an approach where the 
range of values for system parameters is limited to a small number, typically two or three, 
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referred to by experiment designers as levels. As explained previously in Chapter 2, this 
approach, when applied to MesoNet, could limit the number of combinations to 220 (just 
over a million). Still, running a million experiments would prove challenging when each 
experiment requires several days of processing time. Of course, individual combinations 
could be spread across independent processors to reduce the latency before all 
combinations are completed. For example, if 25 (32) processors were available, then 220 
simulations could be reduced to only 215 serial executions. However, if each simulation 
required two days, then these simulations would still take 216 days to complete. No one is 
willing to wait 180 years to collect data for a sensitivity analysis. Adding 32 additional 
processors to conduct the simulations would reduce the latency to around 90 years. Each 
additional 32 processors would cut the time further. Perhaps one day soon computation 
servers will offer 216 processors in an affordable package. Such a computation engine 
would allow us to complete 220 MesoNet simulations in about one month. In the 
meantime, we must adopt another approach to solve the problem. 

Many scientific disciplines face situations where the number of desired 
experiments (even when considering only two levels per parameter) is unaffordable due 
to issues of cost or time. The best available practice in such situations is to use orthogonal 
fractional factorial (OFF) experiment designs [89] tailored to provide the maximum 
possible information from an affordable number of experiments. For example, if we 
could afford to run only 28 (256) MesoNet simulations, then we would use a 220-12 OFF 
experiment design. Such a design would select 256 combinations of parameter settings 
that allow us to probe the parameter space in a balanced and orthogonal form. A balanced 
experiment design means that all combinations of parameter settings will be given an 
equal number of observations. An orthogonal experiment design means that observations 
will be spread equally throughout the space of possible parameter combinations. The 
properties of balance and orthogonality yield significant benefits when conducting 
statistical and graphical analyses of experiment data. In addition, properly selected 
combinations of parameters will limit the amount of confounding that arises when 
analyzing experiment data. When confounding arises a particular observed effect cannot 
be clearly attributed to a single factor or interaction of factors. Sometimes, domain 
knowledge can be used to resolve the uncertainty from confounding; however, one 
should strive to create an experiment design that eliminates confounding among at least 
the main effects1 and as many two-parameter and three-parameter interactions2 as 
possible. OFF experiment designs can be combined to good effect with a 10-step 
graphical analysis technique used in many scientific studies conducted at NIST. This 10-
step technique is explained in Appendix D using detailed examples drawn from this 
sensitivity analysis. 

 The remainder of this chapter is organized into eight sections. Sec. 4.1 outlines 
our method for experiment design and analysis. Sec. 4.2 describes the specific 
experiment design used for the sensitivity analysis of MesoNet. Sec. 4.3 discusses the 
execution of the simulations and the data collection techniques. Sec. 4.4 presents a 
correlation analysis of 22 responses collected from each of the experiment executions. 

                                                 
1 Main effects are changes in model response that can be attributed to changes in individual model 
parameters (or input factors). 
2 Interactions occur when changes in model responses can be attributed to simultaneous changes in multiple 
(e.g., two or three) model parameters. 
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Sec. 4.5 uses principal components analysis (PCA) as an alternate means to investigate 
relationships among the responses. Section 4.6 details the sensitivity analysis of 
MesoNet.  In Sec. 4.7 we consider the effects of buffer sizing on network behavior. We 
conclude in Sec. 4.8.  

4.1 Method 
We use a method that involves five main elements. First, we use 2-level orthogonal 
fractional factorial experiment design (Sec. 4.1.1) to yield maximum information using 
the available computing resources. Second, we select candidate responses (Sec. 4.1.2) to 
analyze. Third, we employ correlation analysis and clustering (Sec. 4.1.3) along with 
principal components analysis (Sec. 4.1.4) to identify significant behaviors represented 
within the candidate responses. Third, we apply a 10-step graphical analysis (Sec. 4.1.5 
and Appendix D) to provide insight into the main input parameters (or factors) driving 
the behavior of the simulation model. In addition, we augment our analyses with various 
exploratory plots (e.g., Sec. 4.1.6) designed to shed light on specific questions of interest. 
Below, we elaborate on these elements. 

4.1.1 Experiment Design 
We consider our model in the form of following equation: [y1, y2, … yM] = f(x1, x2, … xN), 
which represents the model as a function transforming its N inputs (factors) into M 
outputs (responses). Designing an experiment consists of four main steps. First, we 
identify the N factors (model parameters) whose influence on system behavior we would 
like to investigate. Second, we select the number (L) of levels and then the settings (s1, s2, 
… sL) for each level of each factor (x1s1, x1s2, … xNsL). Third, we specify the 
combinations of factor settings that we intend to simulate. Fourth, we identify the M 
responses we are interested in investigating. We discuss each of these steps in turn.  
 
4.1.1.1 Identify Factors. At a maximum, the factors include all parameters associated 
with a model of interest. Of course, this can be quite a large number, so one may wish to 
limit the specific parameters to investigate. Some parameters might specify control 
details, such as the number or granularity of measurement intervals and the seeds of 
random number generators. Typically, these may be fixed to specific values during a 
sensitivity analysis. Fixed parameters are not factors to be investigated in a set of 
experiments. 

If the number of factors is still too large, other reduction steps may be adopted. 
For example, one may fix various factors and conduct sensitivity analyses with a limited 
number of runs. Repeating this process with various groupings of factors may identify 
some parameters as having limited influence on system behavior, at least for the range of 
settings envisioned for a particular experiment. Parameters that appear to have limited 
influence can be fixed during a sensitivity analysis that investigates more significant 
parameters. Domain expertise may also be applied to select various parameters to fix. 
One should exercise care in fixing particular parameters because some important 
elements of system behavior could be missed. Once parameters have been classified as 
fixed or variable for a given set of experiments, the variable parameters become the N 
factors for the experiment.  
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4.1.1.2 Select Number of Levels and Level Settings for Factors. Selecting the number of 
levels for an experiment determines the maximum number of combinations (LN) that will 
be investigated. The most common practice in engineering experiments is to specify 2-
level (L = 2) designs, which yield 2N as the maximum number of combinations. 2N 
designs result in nice properties of balance and orthogonality when OFF designs are used 
to reduce the number of combinations in a particular experiment. For this reason, we 
adopt L = 2 in our sensitivity analysis. 

Given L = 2, one needs to select values for each of the N factors at each of two 
levels. This mapping of levels to factors yields specific parameter values to be used in a 
set of experiment executions. The two levels are typically encoded as a plus (+1) level 
and a minus (-1) level. This form of encoding simplifies many mathematical 
transformations that are applied during experiment design and data analysis. By 
convention, the larger value of a setting is assigned to the +1 level and the smaller value 
is assigned to the -1 level.3 

Selecting the specific settings for the +1 and -1 levels of each factor is a key step 
that relies on domain expertise of an experimenter. Little general guidance exists because 
specific domains of investigation vary widely. In general, settings should be selected so 
as to be both realistic in the domain and also to stimulate the system sufficiently to reveal 
differences in response. When experiments are done using computers, preliminary 
simulations can be used to probe for the effects of varying specific parameters. No matter 
what settings are chosen, the analysis method relies upon an assumption that responses 
vary monotonically over the range of settings investigated. In cases where behaviors are 
non-monotonic, analysis of experiment data could completely miss significant and 
important behaviors. Further, the conclusions from data analysis are limited to (i.e., 
robust over) the range of settings investigated. For this reason, it is often prudent to run a 
second sensitivity analysis using different level settings to confirm conclusions from an 
initial sensitivity analysis. As discussed in Appendix C, we adopt this measure of 
prudence in our sensitivity analysis. Later, we plan to conduct a more complete 
sensitivity analysis with N = 20, covering the entire MesoNet parameter space.  
 
4.1.1.3 Select Specific Combinations to Simulate. Ideally, one would run a full factorial 
experiment that simulates all 2N possible combinations of level settings and factors. 
Often, though, executing 2N runs would be unaffordable. For example, we selected (N =) 
11 factors for our sensitivity analysis. A full factorial experiment would require 211 
(2048) runs. We could spread those runs over 16 processors, but each run requires 
between four and 10 hours of processing. We estimated that running a full-factorial 
experiment would require about 32 days of computing time plus overhead associated with 
managing the process. Such overhead includes configuring and monitoring simulations, 
collecting and summarizing data and recovering from various hardware and software 

                                                 
3 Note that due to an encoding error in the design of our sensitivity analysis we inadvertently encoded 
higher network speed (our factor x2) as the -1 level and slower network speed as the +1 level. 
Unfortunately, this can lead to confusion when viewing some of the related plots. Despite this potential for 
confusion, the encoding approach works fine even when larger values are assigned to the -1 setting and 
smaller values to the +1 setting. Correcting this in our situation would require rerunning the related 
experiments, which would prove too costly.  
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failures that might arise. This illustrates that there may be other justified reasons for 
reducing the number of experiment runs even when one can afford the processing cost. 
 

 
 

Figure 4-1. Encoding Template for a 211-5 Orthogonal Fractional Factorial Experiment Design 
 
After estimating the time requirements for conducting a full-factorial experiment, 

an investigator must decide on the number of affordable runs. In making this decision, 
one should also consider the confounding effects that would arise for a particular choice. 
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For example, suppose we decided to limit the number of affordable runs to 64 instead of 
2048. We would then need to select a subset of (26) combinations from among the 
complete set of 211. Experiment design theory [89] labels such a design as a 211-5 (= 26) 
design. Experiment design theory also specifies which 64 combinations to select and 
reveals the resulting confounding structure for the experiment. 

Fig. 4-1, taken from Dataplot [92], a software package available from NIST, 
shows the +1/-1 encoding of a 211-5 OFF design as a matrix. Each row in the matrix 
represents a specific experiment run. Each cell in a given row specifies the level setting to 
be used for a designated factor (x1 through x11). Thus, having previously assigned +1/-1 
level settings for each factor, an experimenter need only map level settings according to 
this table to create the specific combination of experiment parameters for each run. 

Experiment design theory also specifies the precise confounding structure 
associated with this experiment design. A 211-5 OFF design has no confounding of main 
effects with two-factor interactions, which is a desired property of an experiment design. 
Some main effects are confounded with some three-factor and higher interactions, but 
most systems are not driven by such higher interactions. From this we conclude that a 211-

5 OFF design would yield significant information for our sensitivity analysis. 
A reasoning process such as outlined above should be used when selecting 

specific combinations to simulate. Of course, the reasoning process must be tailored to 
the specific number of factors and affordable runs. Experiment design theory provides 
appropriate algorithms to generate designs and determine associated confounding 
structures for any bounds of interest. The NIST Dataplot software [92] also provides 
encoded experiment designs and confounding structures for a range of typical OFF 
designs, as documented by Hunter and Box [89].   
  
4.1.1.4 Select Responses to Examine. Often simulation models can measure system 
response through tens to hundreds of outputs, which might represent aspects of fewer 
significant underlying model behaviors. Usually, experimenters select a subset of model 
outputs to analyze because considering all available responses proves too time 
consuming, too costly or computationally infeasible. MesoNet, for example, can monitor 
the time-varying average aggregate behavior of the network for about 20 responses, can 
report about 6 time-varying properties for every router in a topology and can measure 
average throughputs experienced by users in six topologically determined flow classes. 
Summarizing and analyzing all of this data would prove time-consuming. 

When choosing a subset of simulation outputs, experimenters may select outputs 
in a fashion that overemphasizes particular behaviors. These mistakes become 
particularly salient during careful exploration of a model’s parameter space, where 
experimenters seek to understand the response of a model to changes in input parameters. 
Overweighting significant model behaviors can yield misleading conclusions, thus some 
method is required to identify precisely the model outputs that correspond to each 
significant behavior. Fodor [93] describes this mathematically as a dimension reduction 
problem: “given the p-dimensional random variable x = (x1,…, xp)T, find a lower 
dimensional representation, s = (s1,…, sk)T with k < p, that captures the content in the 
original data, according to some criterion.” Fodor goes on to survey numerous linear and 
non-linear techniques that may be applied to reduce the dimension of high-dimensional 
data sets. Adopting any of these techniques would provide a principled approach that 
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experimenters could use to identify significant model behaviors from a large collection of 
model output data. Of course, one wonders whether some techniques are superior to 
others. Fodor identifies principal components analysis (PCA) as the best (in terms of 
mean-square error) linear dimension reduction technique. In our analysis we use two 
techniques to reduce dimension in MesoNet response data. We use PCA and we also 
combine correlation analysis and clustering (CAC). Applying both techniques allows us 
to compare and contrast their findings, which provides additional information about 
MesoNet behavior. 

4.1.2 Candidate Responses 
We chose to examine a set of 22 MesoNet responses to which we applied PCA and CAC 
to identify lower dimensional response spaces representing the most significant model 
behaviors. This information could help us validate our model and could also help us to 
reduce the number of responses to analyze in subsequent experiments. We selected our 
22 candidate responses from among the measurements (see Sec. 3.3) provided by 
MesoNet. We selected responses in two classes: (a) responses that depict macroscopic 
behavior of the network and (b) responses that indicate user experience for various flow 
classes. We discuss these response classes in turn. 
 
4.1.2.1 Responses Characterizing Macroscopic Network Behavior. We chose 12 
fundamental responses to characterize macroscopic network behavior and we augmented 
those with four derived responses in order to investigate how well the fundamental 
responses represented the intended information. Table 4-1 lists the responses we used to 
characterize macroscopic behavior. MesoNet records each response as a value associated 
with each measurement interval, providing a time series for each response. To compute 
the fundamental responses that we analyzed, we discarded data from the first 3000 of 
6000 measurement intervals recorded. We then averaged the remaining data (from the 
second 3000 intervals) to obtain a mean value for each response. To compute a derived 
response, we mathematically manipulated some combination of fundamental responses, 
sometimes including a factor setting. The details are given as appropriate in Table 4-1. 

We tracked the number of active flows (y1) over time and used that number to 
indicate the general amount of user activity in the network. Because more potential 
sources might lead to more active flows, we chose also to consider (y2) what proportions 
of potential flows were represented by the active flows. In this way, we could investigate 
whether the number of possible flows was a key determinant in the number of active 
flows, or whether the number of active flows was driven primarily by other factors. We 
measured separately the number of data packets entering (y3) and leaving (y4) the 
network because we wanted to understand what relationship, if any, exists between the 
rate at which packets are injected into the network and the number of active flows. Given 
the rate of packets entering and leaving the network, we could also measure the loss rate 
(y5), which should give us some rough indication of the amount of network congestion. 

While the rate of data packets leaving the network gives us some idea of 
aggregate throughput, we were also interested in investigating the ability of the network 
to complete flows (y6), which could be combined with the number of active flows to 
yield a flow-completion rate (y7). Since we implemented TCP connection establishment 
(explained in Chapter 5) procedures, congestion could lead connection establishment to 
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fail. We measured the number of connection failures (y8) and also related the failures to 
the number of active flows (y1) to create a connection-failure rate (y9). 
 

Table 4-1. Responses Characterizing Macroscopic Network Behavior 
 
Response Definition 

y1 Active Flows – flows attempting to transfer data 
y2 Proportion of potential flows that were active: Active Flows/All Sources 
y3 Data packets entering the network per measurement interval 
y4 Data packets leaving the network per measurement interval 
y5 Loss Rate: y4/(y3+y4) 
y6 Flows Completed per measurement interval 
y7 Flow-Completion Rate: y6/(y6+y1) 
y8 Connection Failures per measurement interval 
y9 Connection-Failure Rate: y8/(y8+y1) 
y10 Retransmission Rate 
y11 Congestion Window per Flow 
y12 Window Increases per Flow per measurement interval 
y13 Negative Acknowledgments per Flow per measurement interval 
y14 Timeouts per Flow per measurement interval 
y15 Smoothed Round-Trip Time 
y16 Relative queuing delay: y15/(x1x41) 

 
For active flows, we were interested in understanding the average level of 

congestion. We suspected that several measures of flow congestion should be correlated. 
We measured the average retransmission rate (y10) for flows, which we postulated 
should be about twice the loss rate. We also measured the average congestion window 
per flow (y11) – larger congestion windows indicate that flows should be receiving better 
throughputs. In addition to the congestion window size, we chose to measure the average 
number of window increases (y12) received per flow during each measurement interval. 
To determine to what extent retransmissions arose from indicated losses vs. timeouts, we 
measured the number of negative acknowledgments (y13) and number of timeouts (y14) 
per flow. 

Finally, we were interested in monitoring smoothed round-trip time (y15), which 
might provide some indication of congestion. We also wanted to see how changing buffer 
sizes influenced round-trip time. We computed a relative queuing delay (y16) by 
factoring out propagation delay from the smoothed round-trip time. We computed y16 
because we wished to discover if there would be any differences in the pattern between 
smoothed round-trip time and queuing delay. 

 
4.1.2.2 Responses Characterizing User Experience. Aside from aggregate network 
behavior, we were interested in exploring the throughputs received for the six possible 
flow classes allowed by MesoNet. This required monitoring six additional responses, as 
shown in Table 4-2. Here, the measure gives average instantaneous throughput for a flow 
in each class, so the metric captures the throughput for active flows rather than flows that 
have finished. As with the aggregate measures, we computed the average value for each 
flow class over the final 3000 measurement intervals of each simulation run. 
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Table 4-2. Responses Characterizing Instantaneous Throughput for Active Flows by Flow Class 
 

Response Definition 
y17 Average Throughput for Active DD Flows 
y18 Average Throughput for Active DF Flows 
y19 Average Throughput for Active DN Flows 
y20 Average Throughput for Active FF Flows 
y21 Average Throughput for Active FN Flows 
y22 Average Throughput for Active NN Flows 

 
We chose to examine the throughput of the various flow classes in order to 

determine whether or not different factors affect the throughput of flows transiting 
different types of access routers. We collected separate throughput data for flows that 
completed and for flows that completed in each flow class. For purposes of our 
sensitivity analysis, we decided not to analyze the throughput data for completed flows. 

4.1.3 Correlation Analysis and Clustering 
As part of our analysis we wish to investigate the sensitivity of various model responses 
to model inputs. Of course, we are also interested in learning relationships among the 
responses. A reasonable hypothesis might be that correlated responses are influenced by 
the same model inputs. Further, clustering correlated responses into significant model 
behaviors might allow us to reduce the number of responses analyzed in future 
experiments. To determine relationships among responses we conduct a correlation 
analysis using the techniques described in this section. First, we generate scatter plots 
among all response pairs. Second, we compute correlations among each pair of 
responses. Third, we combine the selected scatter plots and correlation values into a 
single visualization. The combined visual can be ordered using several techniques to 
reveal correlation groupings. Finally, we select a correlation threshold above which we 
wish to consider correlations, and then generate an ordered index-index plot to highlight 
correlation groups and to help select specific responses for further study. We explain 
these four steps below. To aid our explanation, we use designators for various responses. 
The designators are yN, where y denotes a response and N denotes the number of the 
response. Here, N may range from 1 to 22 to correspond with the 22 candidate responses 
described in Sec. 4.1.2. 
 
4.1.3.1 Y-Y Scatter Plots. Scatter plots of each pair of responses can visually reveal linear 
correlations and can also suggest structure beyond correlation. Fig. 4-2 shows a sample 
scatter plot between two responses from our sensitivity analysis. The abscissa gives 
values for response y22 (average instantaneous throughput among typical flows) and the 
ordinate gives values for response y7 (flow-completion rate). Perhaps unsurprisingly, the 
scatter plot reveals a positive linear correlation among the two responses. Higher 
throughput for typical flows, which are most numerous, leads to higher flow-completion 
rate. Perhaps surprisingly, the scatter plot also reveals a bifurcation in correlation 
structure. Attributable to the properties of our OFF experiment design, the scatter plot can 
be augmented to reveal the cause underlying this bifurcation. We discuss the use of other 
exploratory plots and analyses below in Sec. 4.1.6. 
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Figure 4-2. Enlargement of Sample Scatter Plot of Response y7 vs. y2 – y axis gives the flow 
completion rate (y7) as a proportion (ranging from 0 to 0.5, where each tick mark represents 0.05) and x 
axis gives average goodput of NN flows (y22) in packets per second (ranging from 0 to 300, where each 
tick mark represents 25 packets/second) 
 
4.1.3.2 Correlation Computations. We also compute correlations among all pairs of 
responses generated from our sensitivity analysis. We compute the signed values, which 
separate positive and negative correlations, and the absolute values, which allow us to 
order correlations by magnitude. Fig. 4-3 provides a sample table of correlations, ordered 
by magnitude, where magnitude > 0.9. The table consists of four columns: (a) absolute 
value of the correlation between a pair of responses (Yi and Yj), (b) the signed value of 
the correlation, (c) the identifier (i) of the first response in the pair and (d) the identifier 
(j) of the second response in the pair. Here, two subgroups are shown: (1) correlations > 
0.95 and (2) correlations > 0.9 and < 0.95. In this particular sample, all correlations are 
positive. 
 

 
 

Figure 4-3. Sample (and Partial) Table of Correlations among Response Pairs 
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We also plot a histogram (see Figure 4-4) of the absolute values of all pairs of 
correlations. This gives a concise view of the distribution of correlations. The histogram 
can help us select a threshold above which to consider the correlations. Fig. 4-4, for 
example, suggests that correlations greater than about 0.65 should be considered because 
there is a notable change above that value, appearing as a separate sub-distribution 
centered on a different mode. This sub-distribution includes around 40 of the 231 
correlation pairs computed.  

 

 
Figure 4-4. Sample Histogram of Correlation Magnitudes among Response Pairs (x axis  depicts 
correlation strength divided into 13 bins, where each bin spans a range of size ~0.075 and y axis gives the 
count, or frequency, of correlation pairs appearing in each bin)  
 
4.1.3.3 Combined Matrix Visualization. We can combine the response scatter plots and 
computed correlation values into a matrix visualization providing a concise view of all 
relevant information. Further, we can use color to highlight various correlation groupings. 
Fig. 4-5 gives a 6-x-6 subset taken from our complete matrix for all 22 responses. 

The diagonal of the matrix identifies a particular response associated with each 
column and row. The scatter plots are displayed to the right and above the diagonal and 
the associated correlation values (multiplied by 100, rounded and truncated) are displayed 
to the left and below. For example, consider the response y3 (data packets input per time 
unit), which is third on the diagonal in Fig. 4-5. The scatter plot in the cell directly to the 
right of y3 and above y4 (data packets output per time unit) depicts the linear correlation 
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between y3 and y4. The cell directly below y3 and to the left of y4 reads 99, which is the 
associated correlation value. Not surprisingly, the correlation is positive and quite high. 
Similarly, the scatter plot related to y2 (proportion of flows that are active) vs. y3 is 
shown in the cell directly above y3 and to the right of y2. The related correlation value 
(37) is given in the cell immediately below y2 and to the left of y3. Perhaps the weakness 
of this correlation is surprising. Other scatter plots and correlation values may be located 
similarly. For example, the scatter plot in the cell in the upper right-hand corner depicts 
y1 (number of active flows) vs. y6 (flows completed per time unit) and the related 
correlation value (-6) appears in the cell in the lower left-hand corner of the matrix. 
While the negative direction of the y1-y6 correlation is not surprising, the lack of 
correlation might be unexpected. 
 
 

 
 

Figure 4-5. Sample 6-x-6 Subset from a Combined Matrix of Scatter Plots and Correlation Values 
 

Thresholds may be selected for coloring the scatter plots and correlation values in 
the combined matrix visualization. In Fig. 4-5 we chose three colors, based on the 
magnitude of the correlation values. For correlation magnitudes 80 and above, we colored 
the related cells red. We colored cells blue for correlation magnitudes below 80 and 
greater than or equal to 30. The green cells represent correlation magnitudes below 30. 
After coloring, one can scan the matrix to visually group correlations by their strengths. 
The diagonal of the colored matrix may also be reordered, along with the related scatter 
plots and correlation values. Such reordering may readily indentify correlation groupings. 
For example, Fig. 4-5 could be reordered by descending mean, median or maximum 
correlation of each given response with all other responses. Later, in Sec. 4.3, we order 
our matrix by descending mean correlation, which nicely groups correlations among 
response pairs.    
 
4.1.3.4 Index-Index Plot. Fig. 4-6 shows an index-index plot involving all 22 responses 
from our sensitivity analysis. Guided by Fig. 4-4, we display only correlations with 
magnitudes above 0.65. The x and y axes in Fig. 4-6 both list all 22 responses in order of 
numerically increasing designator (N = 1 to 22). Then a grid is formed. A point is placed 
at each grid intersection when the magnitude of the correlation between the related pair of 
responses exceeds 0.65. In Sec. 4.3, we use this index-index plot but we reorder the axes 
in a different form. The resulting correlation groups, not obvious in Fig. 4-6, become 
quite apparent after the axes are reordered (for example, see Fig. 4-22).  
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Figure 4-6. Index-Index Plot Identifying Response Pairs with Correlation Magnitude above 0.65 

4.1.4 Principal Components Analysis 
Principal Components Analysis (PCA) provides another approach to identify significant 
behaviors in model response data. PCA aims to reduce the dimensionality of model 
responses by finding orthogonal linear combinations (i.e., principal components, or PCs) 
of the responses that account for the largest variance. In essence, PCA identifies as many 
PCs as there are responses, with each PC being orthogonal to the others and with PC1 
accounting for the largest variance in the data and PC2 second largest and so on to PCn, 
where n is the total number of responses. For many sets of responses, the first several PCs 
account for most of the variance in the data, and thus those PCs represent the most 
significant model behaviors. 

 In our case we have 64 samples (recall Fig. 4-1) for each of 22 response variables 
(recall Tables 4-1 and 4-2). Since variance depends upon the scale of each response, we 
must first normalize each response to have a mean of zero and a standard deviation of 
one. This can be done for a given response by subtracting the mean of the 64 samples 
from the response and then dividing by the standard deviation of the 64 samples. Such 
normalization will place all responses into comparable units. 

In our application, each PC consists of a 22 dimensional weight vector 
representing the linear weighted combination of response variables necessary to generate 
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the PC. For example, Fig. 4-7 depicts a graphical representation of the weight vector for 
the first PC (PC1) from one of our PCAs. The figure depicts the 22 response variables on 
the x axis, while the y axis gives the (positive or negative) weighting. A horizontal line 
denotes zero weight. Given a weight vector for a PC, it is often customary in heuristic 
interpretation to suppress consideration of the low-weighted variables. In Fig. 4-7 for 
example, we might choose to suppress the following variables: y3, y4, y6, y15, y16, y17, 
y18 and y20. It is also customary to differentiate between “average” weights and 
“contrasting” weights, though such differentiation is not warranted in Fig. 4-7. 
 

 
Figure 4-7. Enlargement of a Sample Weight Vector for First Principal Component (x axis identifies 
the response variable, ranging from 1 to 22 and y axis identifies weight, ranging from -1 to +1) 
 

For each PC we can plot a histogram of the 64 values using appropriate 
components to represent the variance accounted for by the PC. For example, Fig. 4-8 
gives the histogram corresponding to PC1. The x axis divides the standard deviation over 
the 64 values into appropriately sized bins and the y axis gives the count of values that 
fall into each bin. Above the plot we give the standard deviation accounted for by the PC. 
Given an entire set of such histograms, we can determine the relative variance accounted 
for by each PC by summing the standard deviations and then dividing each by that sum. 
For example, Fig. 4-23 recounts the 22 histograms representing each PC in one of our 
PCAs. In that case, the first four PCs account for about 86 % of the variance in the data. 

4.1.5 10-Step Graphical Analysis of Selected Responses 
Once we select the specific responses to examine, we can subject them to a 10-step 
graphical analysis regime developed at NIST. Each analysis step produces a different 
type of plot intended to reveal information about model responses. In this section we 
simply introduce the intent of each plot type, as shown in Table 4-3, which lists each of 
the ten plots and provides a summary of the purpose of each plot. In Appendix D we give 
detailed examples and explanation of each plot type. Here we introduce in detail only the 
main effects plot, which proved most insightful for purposes of our sensitivity analysis. 
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Figure 4-8. Enlargement of a Sample Histogram for First Principal Component (x axis identifies bins 
of normalized component values ranging from -20 to +20 and y axis the count of values within each bin). 
Above the plot is the standard deviation in the data accounted for by the Principal Component. 
 

We illustrate the main effects plot using response variable y11, average 
congestion window (CWND) size. The transmission control protocol (TCP) manages a 
congestion window variable that represents the number of packets that can be sent prior 
to receipt of an acknowledgment. The larger the congestion window, the more packets 
that can be sent per unit time and thus the greater will be the transmission rate. For that 
reason, a network with a high average congestion window (y11) will be able to transmit 
more packets than a network with a lower average congestion window. In general, a 
congestion window is reduced when packets are lost, usually due to congestion. 
Lowering the congestion window slows the rate of packet transmissions in the network 
and thus should reduce congestion. Subsequent to a reduction, TCP allows the congestion 
window to increase linearly and so the rate of packet transmissions in the network should 
also increase. Once the transmission rate becomes too high, packets are lost and 
congestion windows are reduced and the rate of transmission slows and so on. Thus the 
average congestion window size might be used to represent the level of congestion in a 
network. 

Fig. 4-9 gives a sample main effects plot, which is the most essential plot to 
identify the factors and settings driving a system’s response. The x axis identifies each of 
11 MesoNet parameters and the y axis gives the mean response. For each parameter the 
plot gives two means: (1) when the parameter is set to -1 value and (2) when set to the +1 
value. Fig. 4-9 shows that the mean CWND size was about under 8.5 packets when 
network speed (X1) was high (-) and was about 4 packets under low network speed (+). 
For each parameter, a line connects the two means to indicate direction and magnitude of 
the effect when changing the parameter from its -1 to +1 value. Two numbers are 
reported just above each parameter label. The top number gives the effect in raw terms 
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(e.g., CWND size of 4.33 fewer packets under lower network speed) and the bottom 
number gives the change relative to (i.e., as a % of) the mean response, which is about 
6.2 packets in Fig. 4-9 (i.e., the 4.33 packet change in CWND size is 70 % of the mean, 
which is called the relative effect). The plot also gives the number of parameters (k = 11) 
and observations (n = 64). 
 

Table 4-3. Identity and Purpose of 10 Plots in the 10-Step Graphical Analysis  
(For sample and explanation of each plot see Appendix D) 

 
Plot Purpose 

Ordered Data Plot Reveal how combinations of parameter 
settings influence response 

Multi-factor Scatter Plot Reveal influence of individual parameter 
levels on response distribution 

Main Effects Plot (see Fig. 4-8) Reveal individual parameters having 
greatest influence on response 

Interaction Effects Matrix Reveal degree of influence of parameter 
pairs on response 

Block Plot 
Test robustness of statistically significant 
parameters in light of secondary or 
nuisance factors 

Youden Plot Reveal parameters and parameter pairs 
with greatest influence on response 

|Effects| Plot 
Reveal magnitude of a change in response 
due to specific parameters and parameter 
interactions 

Half-Normal Probability Plot of |Effects| 
Separate influential parameters and 
parameter interactions from those that are 
not influential 

Cumulative Residual SD Plot Provide information sufficient to construct 
a linear model to represent response data 

Contour Plot 
Suggest how alterations in parameter 
settings could influence system response in 
predictable directions. 

 
Fig. 4-9 reveals that the most influential factor in determining CWND is network 

speed (70 % of mean) followed by three closely grouped factors: buffer-sizing algorithm 
(54 %), initial slow-start threshold and think time (53 % each). The distribution of 
sources also has a significant (50 %) influence. Notice that the plot reveals a smaller 
number of sources and receivers (x8 = -) leads to a (1.7 packet) larger average CWND 
than a larger number. A domain expert will understand that fewer sources sharing the 
same network mean that each source may transmit faster, which is reflected in a larger 
CWND. Thus, the main effects plot clearly reveals the nature of the influence of the 
factors and settings on the response. 

In thinking about the main effects, an experimenter with domain knowledge might 
be quite pleased with the meaning of these results regarding the validity of the model. 
Fewer, simultaneously active, flows (x5 = +, x8 = - and x9 = -), higher network speeds 
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(x2 = -) together with more buffers (x3 = +) should permit higher CWND. Under these 
circumstances, the ability to increase the CWND to a higher threshold via initial slow-
start (x11 = +) should also lead to higher CWND, because CWND increases faster during 
initial slow start. 
 

 
 
Figure 4-9. Sample Main Effects Plot for Response y11, average congestion window size, x axis lists 
11 model parameters with a – and + value for each parameter, y axis gives average congestion window 
(CWND) size in packets, two average CWND sizes are given for each parameter, one size when the 
parameter is set to its – level and one size when the parameter is set to its + level, and a line connects the 
pair of average sizes for each parameter. Dashed line is the overall average CWND size (about 6.2 packets) 
 

In Appendix D we illustrate the application of the entire 10-step graphical 
analysis technique to analyze model parameters influencing CWND size. An 
experimenter might also apply the 10-step graphical analysis technique to examine 
influences on principal components. We give an example of this technique in Sec. 4.6.2. 

4.1.6 Other Exploratory Plots and Analyses 
Using an orthogonal fractional factorial (OFF) design opens the possibility for a range of 
exploratory plots and analyses to supplement the correlation and clustering analysis, the 
principal components analysis and the 10-step graphical analysis presented so far. For 
example, bifurcations in response-response scatter plots can be explored by altering the 
scatter plot symbols to reflect factor settings. As a sample, recall Fig. 4-2, a scatter plot of 
y7 vs. y22, which revealed a bifurcation. One means to explore the underlying reason for 
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the bifurcation is to plot points using symbols, e.g., - when associated with minus settings 
for each factor, and as +, when associated with plus settings. Fig. 4-10 illustrates twelve 
scatter-plots for y7 vs. y22. The first plot, upper left-hand corner, repeats the scatter plot 
from Fig. 4-2. The remaining plots encode the plus (in blue) and minus (in red) settings 
responsible for the responses given each of the 11 factors (x1 through x11). 

 

 
 
Figure 4-10. Sample Y-Y-X plot for Responses y7 and y22 – configuration of each plot is as explained 
for Fig. 4-2 – x axis is goodput in packets/second on NN flows ranging from 0 to 300 and y axis is flow 
completion rate ranging from 0 to 0.5 

 
Examining Fig. 4-10, one can appreciate that factor x4 (average file size) is 

responsible for the bifurcation. Shorter file sizes result in higher completion rates (y7) 
and yet lead to lower average throughputs for typical flows (y22). Thinking this through 
reveals a sensible explanation. Shorter files spend a higher percentage of their transfer in 
TCP slow start, during which throughputs are lower. On the other hand, shorter files are 
generally transferred more quickly because they involve fewer packets. Since shorter files 
are transferred more quickly, more flows are completed per unit of time, so the flow 
completion rate is higher. Longer files spend a higher percentage of their transfer beyond 
TCP slow start, during which throughputs are higher. On the other hand, longer files 
require transferring more packets. Since it takes longer to transfer more packets, fewer 
flows are completed per unit time. Thus, the explanation for the bifurcation, as revealed 
in the y7-y22-x4 plot in Fig. 4-10, matches an explanation that appears reasonable to a 
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domain expert. Such analysis and reasoning can help to verify a model’s correctness, or 
to reveal flaws.   

Additional exploratory plots and analyses are also possible. For example, one can 
combine factor settings to create additional conditions and then compare the relative 
effects of varying each of the combined factor settings on the ordering of selected 
responses. More specifically, one could combine the 2-level settings for factors x1 
through x3 (propagation delay, network speed and buffer size) to create 23 = 8 conditions, 
and then examine the relative influence of varying each of the factors on selected 
responses. We use such an approach in Sec. 4.7 to explore the relative effects on system 
response due to changing network speed, propagation delay and buffer size. We defer a 
more detailed explanation of the technique to Sec. 4.7. 

4.2 Experiment Design for MesoNet Sensitivity Analysis   
This section outlines the experiment design used for the MesoNet sensitivity analysis, 
and explains the rationale underlying the design. The design consists of a 211-5 orthogonal 
fractional factorial (OFF) design, which requires 64 simulation runs. We compared the 
results of the simulation runs across 22 responses (described in Sec. 4.1.2). Below, we 
summarize MesoNet parameters and we identify the 11 parameters chosen as factors in 
our OFF design. We then explain the levels, and related settings, chosen for each factor. 
We summarize the 64 specific combinations simulated.  

4.2.1 MesoNet Factors 
For this sensitivity analysis, MesoNet parameters may be divided into six general 
categories: (1) simulation-control parameters, (2) parameters controlling user behavior, 
(3) parameters adapting the characteristics of the network, (4) parameters altering the 
properties of sources and receivers, (5) parameters controlling the startup pattern of 
sources and (6) parameters related to TCP operation. We describe the specific parameters 
in each category. Parameter descriptions may identify a parameter’s type as an integer or 
a float. In such cases, one should assume that an integer may take on values between -231 
and +231. A float may take on values in the range of 1.797-308 to 1.797+308. The range of 
values for any other parameter types will be given explicitly. For more detail on these 
parameters see Sec. 3.2. 

As we discuss the MesoNet parameters, we identify (highlighted in blue bold) 
which were chosen as factors for our sensitivity analysis and we give our reasoning. In 
each table, we also give (highlighted in red) the fixed values assigned to the excluded 
parameters. At the end of the section, we recap the parameters included as factors in the 
sensitivity analysis.  
 
4.2.1.1 Simulation Control Parameters. Simulation control is affected by six parameters, 
as defined in Table 4-4. The sensitivity analysis will not consider the response of 
MesoNet to variations in simulation-control parameters. Thus, five of these parameters 
will simply be fixed (to the values shown in Table 4-4) across all experiment runs. The 
maximum propagation delay in our experiments will be around 200 time steps, which we 
select for our basic measurement interval duration. We set our fundamental time-step 
duration to 1 millisecond, so each measurement interval captures about 200 milliseconds 
(i.e., five measurement intervals cover one second). We run each simulation for 6000 
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measurement intervals, which is (6000/5 =) 1200 seconds (20 minutes). We set our 
random number seed to a fixed value for all simulations because we are interested in 
capturing changes due to parameter variations, and not variations due to randomness. We 
vary the run number from 1 to 64 to identify the particular configuration of factors used 
in specific experiments.  
 

Table 4-4. Simulation-Control Parameters 
 
Parameter Definition Type 

P1 Number of time steps in a measurement interval (200) Integer 
P2 Number of measurement intervals (6000) Integer 
P3 Number of measurement intervals in a measurement buffer (6000) Integer 
P4 Run number (1 to 64, signifying a combination of factors) Integer 
P5 Random number seed (200000) Integer 
P6 Duration of each time step (0.001 s) Float 

 
 
4.2.1.2 Parameters Controlling User Behavior. Eight parameters, shown in Table 4-5, 
determine how individual users (sources) behave over the course of a simulation. The 
MesoNet sensitivity analysis considers only typical Web traffic, so parameters (P12-P14) 
dealing with jumbo file transfers will be assigned fixed values (see Table 4-5) that cause 
them to be deactivated. The five remaining parameters (P7-P11) are candidates to include 
as factors in the experiments. 
 

Table 4-5. Parameters Controlling User Behavior 
 
Parameter Definition Type 

P7 Shape parameter for the distribution of web-object sizes (1.5) Float 
P8 Average size (in packets) of web objects Integer 
P9 Average think time (in time steps) between web clicks Integer 
P10 Probability a user decides to download a larger document Float 

P11 Factor by which web-object size is multiplied if it is a larger 
document  (10) Integer 

P12 Proportion of simulation time that elapses before jumbo file transfers 
begin (1.0) Float 

P13 Proportion of simulation time that elapses before jumbo file transfers 
end (1.0) Float 

P14 Factor by which web-object size is multiplied if it is a jumbo file (100) Integer 
 

We decided to fix the value of parameters P7 and P11, so we selected only three 
parameters to control user behavior during the sensitivity analysis. We chose to fix P7 (= 
1.5) because experiments with P7 set to 1.2 and 1.5 revealed little difference in results. 
We chose to fix P11 (= 10) because varying the size of Web objects (P8) will also 
implicitly vary the size of larger documents. Further, preliminary sensitivity analyses 
with P11 set to either 5 or 10 showed little influence on the results. 
 
4.2.1.3 Parameters Adapting Network Characteristics. Nine parameters, shown in Table 
4-6, may be varied to adapt characteristics of a network topology defined for a MesoNet 
simulation. We decided to vary only three of these parameters during the sensitivity 
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analysis. We wanted to be able to vary propagation delay, network speed and buffer 
sizes. Parameter P15 can alter the base propagation delays defined in a network topology. 
Network speed can be influenced by six parameters (P16-P21). We chose only to vary the 
backbone speed (P17), which has the effect of varying the speeds of the other routers 
because their speeds are expressed in terms of backbone-router speed. Thus, even though 
we fix parameters P18-P21 to the values given in Table 4-6, the speeds of the associated 
routers vary as we vary P17. We chose not to vary the speedup of backbone routers (P16 
is fixed to 1) because our anticipated scenario of simulated Web traffic was unlikely to 
overwhelm the backbone routers with traffic. 
 

Table 4-6. Parameters Adapting Network Characteristics 
 
Parameter Definition Type 

P15 Factor by which to multiply basic propagation delays defined 
within a simulated topology Float 

P16 Multiplier used to speed up backbone routers (1) Integer 
P17 Backbone router speed (in packets per time step) Integer 
P18 Divisor used to reduce the speed of POP routers relative to 

backbone routers (4) Integer 

P19 Divisor used to reduce the speed of access routers relative to POP 
routers (10) Integer 

P20 Multiplier used to increase the speed of directly connected access 
routers over typical access routers (10) Integer 

P21 Multiplier used to increase the speed of fast access routers over 
typical access routers (2) Integer 

P22 Identification of a specific buffer-sizing algorithm to adopt Integer 
(1 to 3) 

P23 Multiplier used to increase or reduce buffer sizes as computed by 
the algorithm selected by parameter P22 (1.0) Float 

 
Buffer sizes can be varied by choosing among several algorithms to calculate 

buffers in each router. This choice is controlled by P22, which we varied for our 
sensitivity analysis. Another parameter, P23, may be used to refine buffer sizing, either 
increasing or decreasing the basic buffer sizes computed by a chosen algorithm. For our 
sensitivity analysis, we decided to stick with the choice among alternate algorithms, so 
we fixed the value of P23 to 1.0. 
 
4.2.1.4 Parameters Altering Properties of Sources and Receivers. Nine parameters, 
shown in Table 4-7, control the properties of sources and receivers within the model. 
Controllable properties include: the network interface speeds of hosts on which sources 
and receivers operate, the relative number of sources and receivers and the distribution of 
sources and receivers within the network topology. 

In our sensitivity analysis, we are interested in examining the effects on responses 
as the number and speeds of sources and receivers is changed and as the distribution of 
sources and receivers is altered in the topology. This requires varying the six parameters 
(P26, P28-P32) highlighted in Table 4-7. We decided there is no need to vary the speeds 
of either basic or fast hosts, so we simply fix the speed of each (P24 = 1 and P25 = 8). 
Varying the probability a host is fast and the number of sources and receivers in the 
network should provide sufficient variation in the number of fast and slow hosts in the 
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network. Similarly, we decided not to vary the base number of sources (P27 = 100) under 
an access router because the number of sources and receivers are determined by 
multiplying the base number by a scaling factor (P28). Thus, varying P28 achieves 
sufficient variability among the number of sources and receivers in a topology. 
 

Table 4-7. Parameters Altering Properties of Sources and Receivers 
 
Parameter Definition Type 

P24 Speed (packets per time step) of basic host (1) Integer 
P25 Speed (packets per time step) of fast host (8) Integer 
P26 Probability a host is fast Float 
P27 Base number of sources under an access router (100) Integer 
P28 Multiplier by which to scale the base number of sources Float 
P29 Probability source is located under a typical access router  Float 
P30 Probability source is located under a fast access router Float 
P31 Probability receiver is located under a typical access router  Float 
P32 Probability receiver is located under a fast access router Float 

 
MesoNet permits the distribution of sources and receivers to be varied by 

reallocating some sources and receivers among the three classes of access router (normal, 
fast and directly connected). Two parameters (P29 and P30) control the allocation of 
sources (note that the probability a source is allocated to a directly connected access 
router is equal to 1 – P29 – P30). Similarly, two parameters (P31 and P32) control the 
allocation of receivers. We chose to combine the three probabilities associated with 
sources into a single factor and also to combine the three probabilities associated with 
receivers into a single factor. Thus, the six highlighted parameters in Table 4-7 will 
comprise only four factors in our sensitivity analysis. 
 
4.2.1.5 Parameters Controlling Source Startup Pattern. Sources are started randomly in 
stages: some portion start in the ON state, some portion enter the ON state after about 1/3 
of the average think time, some portion enter the ON state after about 2/3 of the average 
think time and the remaining sources enter the ON state after about the average think 
time. This startup pattern is controlled by three parameters (P33-P35) as shown in Table 
4-8. Subtracting the value of these three parameters from one reveals that half of the 
sources start after about the average think time: 1 – 0.25 – 0.08 – 0.17 = 0.50. 
 

Table 4-8. Parameters Controlling Source Startup Pattern 
 
Parameter Definition Type 

P33 Portion of sources that start ON (0.25) Float 

P34 Portion of sources that come ON after about 1/3 average think time 
(0.08) Float 

P35 Portion of sources that come ON after about 2/3 average think time 
(0.17) Float 

 
For two reasons, we decided not to vary parameters controlling source startup 

pattern. First, we discard the first half of our observations and consider only the second 
half. Thus, the influence of startup pattern should not be evident in the data. Second, we 
conducted preliminary sensitivity analyses where we varied the startup pattern, along 
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with other parameters, and found that such variations had no influence on the long-term 
results. 
 
4.2.1.6 Parameters Related to TCP Operation. MesoNet includes only three parameters, 
given in Table 4-9, controlling the operation of standard TCP. Given lack of widespread 
agreement on the choice of initial slow-start threshold for TCP, we were interested in 
exploring the influence of the threshold on network performance. We decided to fix the 
other two parameters: initial congestion window (P36 = 2) and threshold (P38 = 100) for 
switching from exponential slow-start increase to logarithmic increase. 
 

Table 4-9. Parameters Related to TCP Operation 
 
Parameter Definition Type 

P36 Initial TCP congestion window (2) Integer 
P37 Initial slow-start threshold Integer 

P38 Threshold for switching from exponential to logarithm slow-start 
(100) Integer 

 
Parameter P38 influences slow-start operation only if the value of the initial slow-

start threshold (P37) exceeds the value of P38. Assuming this condition, the congestion 
window begins at the value of P36 and then increases exponentially with each round-trip 
time until reaching the value of P38, after which the congestion window increases 
logarithmically until reaching P37 and then linearly. Assuming that P37 < P38, the 
congestion window increases exponentially until reaching P37 and then linearly. Of 
course, under either assumption, whenever a loss is encountered, slow-start is abandoned 
and the congestion window increases linearly when standard TCP is being simulated. 

 
4.2.1.7 Summary of Factors Selected for Sensitivity Analysis. Table 4-10 recaps the 
eleven factors selected for the sensitivity analysis and the relationship of those factors to 
MesoNet parameters. Parameters not included in Table 4-10 are assigned fixed values, as 
indicated in Tables 4-4 through 4-9. 
 

Table 4-10. Recap of Sensitivity Analysis Factors and Mapping to MesoNet Parameters 
 
 Factor Definition MesoNet 

Parameter(s) 

Network 
Factors 

x1 Propagation delay P15 
x2 Network speed P17 
x3 Buffer sizing P22 

User 
Factors 

x4 Average file size for web pages P8 
x5 Average think time between web clicks P9 
x6 Probability a user opts to transfer a larger file P10 

Source & 
Receiver 
Factors 

x7 Probability a source or receiver is on a fast host P26 
x8 Scaling factor for number of sources & receivers P28 
x9 Distribution of sources P29 & P30 

x10 Distribution of receivers P31 & P32 
Protocol 
Factors x11 Initial TCP slow-start threshold P37 
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As Table 4-10 demonstrates, the sensitivity analysis is designed to consider the 
influence of four main classes of factors: (1) network factors, (2) user factors, (3) factors 
affecting sources and receivers and (4) protocol factors. The factors are fairly balanced 
with three or four in each category, except for a single protocol factor. In general, the 
three protocol-related factors might have been fixed, but the inclusion of the initial slow-
start threshold as a factor was driven by a specific question, about which the related 
literature [6, 7, 10] indicates there is no widespread agreement. Now that values have 
been assigned to 25 fixed parameters, it remains to select the number of levels and 
settings for the 11 factors identified in Table 4-10. We address that topic next. 

4.2.2 Number of Levels and Settings for MesoNet Factors 
Adopting the convention of a two-level experiment allows us to produce the kind of OFF 
designs often used in engineering studies [88, 89, 95] and to benefit from the positive 
effects such designs have on related analysis techniques. For this reason, we decided to 
choose two levels for each factor in our sensitivity analysis. Of course, doing so limits 
our conclusions to the range of settings chosen for our (robustness) factors. Even here we 
are assuming that the system behaves monotonically in the range between any two 
settings. If we have reason to believe that behavior is non-monotonic between particular 
settings, then we should not select such settings for our sensitivity analysis. To extend 
confidence in the findings produced by our sensitivity analysis, we should explore 
different specific values for our settings and see whether or not our conclusions also hold. 
We adopted this supplementary exploration. Here, we focus on our initial sensitivity 
analysis. We present our supplementary sensitivity analysis in Appendix C. 

In choosing specific settings for our two levels (plus and minus) of each factor, 
we were guided by a desire to complete our 64 experiment runs within a week or so of 
computing time. We had already determined that computation time in our model was 
influenced by the number of packets that need to be processed during a simulation. Given 
that we had decided to fix our simulation to a 20-minute period of network operation, this 
meant that the computational requirements of our model would be driven largely by the 
number of sources and the network speed. For this reason, we chose to restrict our 
simulated network to a few tens of thousands of potential sources and to restrict our 
network speed to about 10 Gbps in the backbone. Increasing the number of potential 
sources and the network speed would increase our computational requirements. We 
decided that increasing the number of sources and the network speed would not be 
necessary for our sensitivity analysis. Of course, we verified this decision by using more 
sources and higher backbone speeds in Appendix C. 
 
4.2.2.1 Two-Level Factor Settings. Table 4-11 presents settings chosen for the plus and 
minus levels for all eleven factors in the sensitivity analysis. Next, we discuss the reasons 
underlying our choices and the ramifications for the related simulations.  
 
4.2.2.2 Rationale for (and Ramifications of) Network Factor Settings. The topology used 
in our experiments (recall Fig. 3-1) has defined link propagation delays (recall Table 3-1) 
that lead to specified minimum round-trip times on designated routes (see Table 3-2). We 
decided to assign one setting (x1 = 1) to indicate the propagation delays defined in this 
topology and a second setting (x1 = 2) that doubles those propagation delays. With the 



Study of Proposed Internet Congestion Control Mechanisms NIST 

Mills, et al. Special Publication 500-282 95 

minus setting, paths in the topology average a round-trip propagation delay of 41 time 
steps and a maximum round-trip propagation delay of 100 time steps. This is consistent 
with a network spanning the United States. When the plus setting is used, average and 
maximum propagation delays increase to 81 and 200 time steps, respectively. The 
increased propagation delays are consistent with a network that spans from the west coast 
of Asia across the United States and into Europe. Note that the setting for propagation 
delay also influences buffer sizes because the average round-trip propagation delay 
makes up the RTT component of the buffer-sizing algorithms. 
 

Table 4-11. Two-Level Settings for Each of 11 Factors in Sensitivity Analysis 
 
 Factor Plus Minus Parameter Mapping 

Network 
Factors 

x1 2 1 +(P15 = 2) or –(P15 = 1) 
x24 400 p/ms 800 p/ms +(P17 = 400) or –(P17 = 800) 
x3 RTTxC RTTxC/SQRT(n) +(P22 = 1) or +(P22 = 2) 

User 
Factors 

x4 100 packets 50 packets +(P8 = 100) or –(P8 = 50) 
x5 5000 ms 2000 ms +(P9 = 5000) or –(P9 = 2000) 
x65 0.01 0.02 +(P10 = 0.01) or –(P10 = 0.02) 

Source & 
Receiver 
Factors 

x76 0.2 0.4 +(P26 = 0.2) or –(P26 = 0.4) 
x8 3 2 +(P28 = 3) or –(P28 = 2) 

x9 P2P WEB +(P29 = 0.33 and P30 = 0.33) or 
–(P29 = 0.13 and P30 = 0.53) 

x10 P2P WEB +(P31 = 0.33 and P32 = 0.33) or 
–(P31 = 0.5 and P32 = 0.25) 

Protocol 
Factors x11 1.07x109 

packets 43 packets +(P37 = 1.07x109) or –(P37 = 43) 

 
 For network speed, we chose to consider a backbone operating near 10 Gbps. 

Thus, we chose 800 p/ms (packets per millisecond – 8 x 105 packets per second) as the 
top speed of our backbone routers. (8 x 105 packets per second x 12 x 103 bits per packet 
= 9.6 Gbps). Of course, modern backbone routers operate at many times this speed; 
however, we were interested in keeping our simulation time within reason, while still 
providing some level of load to the simulated network. We chose to define our slower 
network speed as half our higher speed; thus, we chose 400 packets per millisecond, 
which equates to a 4.8 Gbps backbone. Note that the choice of backbone router speed 
determines the choice of router speeds for the other five router types, as shown in Table 
4-12. In addition, router speeds influence buffer size because router speed equates to the 
capacity (C) component of the buffer-sizing algorithm. 

For buffer sizes, we chose two algorithms. One algorithm, RTTxC, instantiates the 
conventional wisdom [40] regarding how to select buffer sizes to match the expected 
round-trip time of routes transiting the router and also the capacity of links attached to the 
router. The second algorithm, RTTxC/SQRT(n), incorporates an alternate proposal 
suggesting that one can reduce buffer capacity proportional to the square root of the 
expected number of flows transiting a router. In the paper proposing the second algorithm 
                                                 
4 Unfortunately, we coded an increased network speed under the minus setting (and a lower network speed 
under the plus setting). The reader should bear this in mind when interpreting the results in following 
sections. Changing this coding would necessitate rerunning the experiment, which would be rather costly. 
5 We also coded this setting incorrectly. Fortunately, this factor doesn’t have a large influence on model 
response, so it does not become confusing in the discussion. 
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[37], it was left as future work to assess the influence of this algorithm in a large network. 
This open research question motivated us to include the second buffer-sizing algorithm as 
an alternative to the typical algorithm. 
 
Table 4-12. Relationship among the Speed of Backbone Routers and Other Router Types (all values 
given in packets per millisecond) 
 

Router Type Plus Minus 
Backbone 400 800 
POP 100 200 
Typical Access 10 20 
Fast Access 20 40 
Directly Connected Access 100 200 

 
4.2.2.3 Rationale for (and Ramifications of) User Factor Settings. Defining user behavior 
required selecting three parameters: average file size, average think time and likelihood 
of downloading a larger file. These parameters are meant to characterize Web users who 
click from Web page to Web page and occasionally download a picture or a paper or a 
music file. Previous research [33-36] has established that Internet file sizes exhibit a 
long-tailed distribution that can be approximated with a Pareto distribution with a shape 
parameter below 2. We adopted this approach. On the other hand, we need to select an 
average for the distribution (factor x4). We chose 100 packets (100 packets x 1500 bytes 
per packet = 1.5 x 105 bytes per Web page) as a reasonable size for typical Web pages. 
We decided to also consider Web pages at half that size: 50 packets (7.5 x 104 bytes). 

The think time (x5) between Web clicks could be chosen in two different ways. 
One way is to imagine how long a user typically dwells on a page, while perusing it. 
Another way is to choose times to obtain a desired load of active users on the network. 
We took this second approach. A more heavily loaded network would be represented by 
sources that clicked on a Web link every 2000 milliseconds (x5 = 2 seconds), while we 
modeled a more lightly loaded network through sources that clicked on a Web link every 
5000 milliseconds (x5 = 5 seconds). Of course, this factor interacts with the number of 
potential users. Many potential users clicking very often create a heavier load and fewer 
potential users clicking less often create a lighter load. And combinations would fall in 
between. Note that a heavily loaded network would require users to take longer to 
transfer their files and thus would mean that users might not be able to arrive for 
additional transfers quickly because they are slower with ongoing transfers. This implies 
that there is some dependency-based feedback inherent in the model. Such feedback is 
probably congruent with the same type of feedback inherent in real networks. The overall 
effect of this technique for modeling network traffic is not clear, but one must bound the 
number of simulated users in some fashion. 

The probability for a user to decide to download a larger document (x6) 
represents the possibility that, after looking at a Web page, the user decides to download 
a paper or a photo or some other document that is larger than a typical Web page. Since 
we set that file size multiplier to a fixed value (10), a user will download files with an 
average size of 1.5 Mbytes (x4 = 100) or 750 Kbytes (x4 = 50). As with normal Web 
objects, these larger documents will be distributed according to a Pareto distribution, 
which gives a long tail. Lacking concrete measurements, we chose to imagine that a user 
might download a larger document once in every 100 clicks, so we could set x6 = 0.01. 
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We also decided to consider the situation where a user downloads a document twice as 
often (x6 = 0.02), or twice in every 100 clicks. 
 
4.2.2.4 Rationale for (and Ramifications of) Source & Receiver Factor Settings. Defining 
parameters for sources and receivers required deciding how fast each source or receiver 
could operate, determining how many sources and receivers existed in the topology, and 
also indicating the distribution of sources and receivers. These decisions influenced the 
number of potential active flows and the probability of flows between various classes of 
access router. We begin by noting that computers connected to the Internet are in 
transition from slower speed connections (e.g., 100 Mbps) to higher speed connections 
(e.g., 1 Gbps), so sources and receivers operate on computers with different network-
connection speeds. To reflect this, we decided to experiment with two different mixes of 
computer speeds: 20 % fast computers (x7 = 0.20) and 40 % fast computers (x7 = 0.40). 

We began by fixing the base number of sources (P27) under each access router to 
100. Since each router has on average four times as many receivers as sources, the base 
number of receivers becomes 400. We decided to investigate two scaling factors for the 
number of sources and receivers; we set the scaling factor to either two (x8 = 2) or three 
(x8 = 3). A scaling factor of two implies that each access router will have around 200 
sources and 800 receivers, while a scaling factor of three implies that each access router 
will have about 300 sources and 1200 receivers. Thus, the total number of potential 
sources in the network will vary from around 18.56 x 103 to 41.7 x 103 and the total 
number of potential receivers will vary from around 111.2 x 103 to 219.6 x 103. 

The average number of sources and receivers under each access router (and also 
total sources and receivers in the network) will be further adjusted through the 
distribution pattern assigned to sources (x9) and receivers (x10). The combination of 
distribution patterns will also affect the number of sources and receivers under each 
access router and throughout the network. (Sec. 3.2.4 explains the specific relationships 
that determine the resulting distribution of sources and receivers.) 

To recap, given a specified base number of sources and receivers, a scaling factor 
and a distributional pattern for sources and for receivers, MesoNet populates the network 
topology with a specified number of sources and receivers and distributes those sources 
and receivers in the required proportion under each class of access router: normal (N-
class6) routers, fast (F-class) routers and directly connected (D-class) routers. Table 4-13 
shows the resulting distribution of sources for each combination of relevant factors (x8, 
x9 and x10) used in our sensitivity analysis. Table 4-14 shows the resulting distribution 
of receivers. A given distribution of sources and receivers also leads to a particular 
apportioning of flows among the three classes of access router, as shown in Table 4-15. 

As the tables indicate, the distributional factors (x9 and x10) control the 
probability that flows go between specific combinations of access router classes: directly 
connected to directly connected (DD), directly connected to fast (DF), directly connected 
to normal (DN), fast to fast (FF), fast to normal (FN) and normal to normal (NN). The 
scale factor (x8) coupled with the fixed base sources parameter (P27) determines the 
number of potential active flows (which is also the number of sources). 

 
                                                 
6 We continue our convention of color coding designators for access-router classes to match the colors used 
in Fig. 3-1. 
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Table 4-13. Relation between Factors and Number and Distribution of Sources 

 
x8 x9 x10 Total 

Sources 
% under 

D Routers 
% under 

F Routers 
% under 

N Routers 
2 P2P P2P 27.8 x 103 4.32 20.14 75.54 
3 P2P P2P 41.7 x 103 4.32 20.14 75.54 
2 WEB WEB 18.56 x 103 6.46 48.27 45.25 
3 WEB WEB 27.84 x 103 6.46 48.27 45.25 
2 P2P WEB 27.8 x 103 4.32 20.14 75.54 
3 P2P WEB 41.7 x 103 4.32 20.14 75.54 
2 WEB P2P 18.56 x 103 6.46 48.27 45.25 
3 WEB P2P 27.84 x 103 6.46 48.27 45.25 

 
 

Table 4-14. Relation between Factors and Number and Distribution of Receivers 
 

x8 x9 x10 Total 
Receivers 

% under 
D Routers 

% under 
F Routers 

% under 
N Routers 

2 P2P P2P 111.2 x 103 4.32 20.14 75.54 
3 P2P P2P 166.8 x 103 4.32 20.14 75.54 
2 WEB WEB 146.4 x 103 2.45 11.47 86.06 
3 WEB WEB 219.6 x 103 2.45 11.47 86.06 
2 P2P WEB 146.4 x 103 2.45 11.47 86.06 
3 P2P WEB 219.6 x 103 2.45 11.47 86.06 
2 WEB P2P 111.2 x 103 4.32 20.14 75.54 
3 WEB P2P 166.8 x 103 4.32 20.14 75.54 

 
 

Table 4-15. Relation between Factors and Distribution of Flow Classes 
 

x8 x9 x10 % DD 
Flows 

% DF 
Flows 

% DN 
Flows 

% FF 
Flows 

% FN 
Flows 

% NN 
Flows 

2 P2P P2P 0.186 1.74 6.52 4.05 30.43 57.06 
3 P2P P2P 0.186 1.74 6.52 4.05 30.43 57.06 
2 WEB WEB 0.159 1.92 6.67 5.53 46.74 38.95 
3 WEB WEB 0.159 1.92 6.67 5.53 46.74 38.95 
2 P2P WEB 0.106 0.99 5.57 2.31 26.00 65.01 
3 P2P WEB 0.106 0.99 5.57 2.31 26.00 65.01 
2 WEB P2P 0.279 3.38 6.83 9.72 45.58 34.18 
3 WEB P2P 0.279 3.38 6.83 9.72 45.58 34.18 
 
One final note: the number and distribution of sources and receivers also 

influences the determination of router buffer sizes when using the RTTxC/SQRT(n) 
algorithm. The RTTxC algorithm computes buffer sizes based on multiplying the average 
round-trip propagation delay in the network by the capacity of each router. Table 4-16 
shows the results for this algorithm when using the factor values adopted in this 
sensitivity analysis. When switching to the RTTxC/SQRT(n) algorithm, the values in 
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Table 4-16 are divided by the estimated average number of active flows expected to 
transit each router. This estimate depends on the number and distribution of sources and 
receivers throughout the topology. In general, using the RTTxC/SQRT(n) algorithm 
reduces buffers within routers by one or two orders of magnitude. 
 

Table 4-16. Buffers for Combinations of Round-Trip Propagation Delay (x1) and Capacity (x2) 
 

x1 x2 Backbone Router 
Buffers (avg.) 

POP Router 
Buffers (avg.) 

Access Router 
Buffers (avg.) 

1 400 16.277 x 103 4.070 x 103 647 
2 400 32.553 x 103 8.139 x 103 1.294 x 103 
1 800 32.553 x 103 8.139 x 103 1.294 x 103 
2 800 65.106 x 103 16.277 x 103 2.588 x 103 

 
 
4.2.2.5 Rationale for (and Ramifications of) Protocol Factor Settings. After investigating 
the literature, we came to the realization that there is no consensus value to use for the 
initial TCP slow-start threshold. Some authors [4] suggest using the receive window 
provided by a corresponding TCP entity. Some authors [10] suggest picking a small 
value. Some authors [6] suggest picking a very large number. A colleague, Mark Carson 
(personal communication, November 12, 2008) indicated that some operating systems 
select this value based upon characteristics of the local network card. Given this general 
lack of consensus, we decided to include the initial TCP slow-start threshold as a factor 
(x11) in our sensitivity analysis. We decided there were two main schools of thought 
about choosing a value: choose a small value and choose a large value. To represent the 
small-value school of thought, we chose (x11 =) 43 packets, which was recommended by 
Stevens [10]. To represent the large-value school of thought, we chose an arbitrarily large 
value of (x11 =) 1.07x109 packets, as suggested by Fall [6]. We also adopted the 
recommendation of Floyd [7], where a flow increases its sending rate exponentially up to 
a congestion window of 100 and then logarithmically until a higher threshold is reached 
or loss encountered. The rationale for choosing a large value derives from the purpose of 
initial slow-start: to quickly determine how fast a source may send on a given path. 
Choosing a small value could lead a flow to switch to a linear increase prior to achieving 
its maximum transmission rate, so a flow might end before maximum rate is achieved. 
We decided to see what difference the choice of initial TCP slow-start threshold would 
make given our other factors and parameter settings. 

4.2.3 Specific Combinations Simulated 
Given 11 factors, each with two possible levels, a full factorial experiment would require 
(211 =) 2048 simulation runs. Assuming an average run takes about 8.5 processor hours, 
conducting all these simulation runs would require 17.408 x 103 processor hours. If we 
split these among 24 processors, we could complete the work in about 725 hours – or 30 
days. We preferred to be able to complete our simulations within a week, so we adopted a 
211-5 orthogonal fractional factorial (OFF) design that required only 64 simulation runs. 
The design can be found in Fig. 4-1. To generate our parameterized runs, we set our fixed 
factors to the values indicated in Tables 4-8 through 4-9 and then we generated 64 
configuration files that varied the factors (x1 to x11) as instructed by Fig. 4-1 – taking 
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from Table 4-11 the PLUS values to substitute for the +1 designators in Fig. 4-1and the 
MINUS values to substitute for the -1 designators in Fig. 4-1. 

4.3 Experiment Execution   
The experiment plan required 64 simulation runs, each simulating a different combination 
of factor settings (recall Fig. 4-1). We had 28 physical processors7 on which we could run 
our experiments, so we could conduct simulations in parallel. However, we were sharing 
these processors with other projects, so we could not always use all of the available 
processors. Below, we give a brief discussion of the resource requirements for the 
simulations and then we recount our approach to data collection and summarization. 

4.3.1 Resource Requirements for Simulations 
Table 4-17 reports the characteristics of the 28 processors available for our sensitivity 
analysis. Since MesoNet is implemented in SLX, each of the processors had access to an 
SLX simulation environment. SLX comes in two varieties: one configured to run in a 32-
bit address space and one configured to run in a 64-bit address space. Some of the 
available processors were configured with a 64-bit operating system, which could support 
both the 32-bit and 64-bit versions of SLX. We chose to run all our simulations using the 
32-bit version of SLX. We made this choice because our simulations could easily fit 
within a 32-bit address space and 32-bit simulation runs faster than 64-bit simulation. 
This is true largely because 64-bit simulation requires the use of 64-bit arithmetic when 
manipulating pointers that address simulation objects. Also 64-bit simulation requires 
more memory than 32-bit simulation because of the doubling of size for address pointers. 
For these reasons, 64-bit simulation should be reserved for situations where the size of 
the simulation cannot be contained within a 32-bit address space. 
 

Table 4-17. Characteristics of Processors Executing Simulation Runs 
 
Node Physical 

Processors 
Speed 
(GHz) Hyperthreaded Memory 

(GB) 
Operating 
System 

ws7 4 3.66 Yes 20 Windows Server 2003 R2 x64 
Edition SP2 

ws8 4 3.66 Yes 20 Windows Server 2003 R2 x64 
Edition SP2 

ws9 8 2.6 No 32 Windows Server 2003 R2 x64 
Edition SP2 

ws10 8 2.6 No 32 Windows Server 2003 R2 x64 
Edition SP2 

DT 4 3.2 No 3 Windows XP SP2 
 
We executed the simulations in three rounds (runs 1-35, runs 36-50 and runs 51-

64) over about one week. All simulation runs required a similar amount of memory: on 
the order of 120 Mbytes. On the other hand, simulation runs required varying amounts of 
                                                 
7 HyperthreadingTM was enabled on 8 of these physical processors. Hyperthreading creates two independent 
logical threads on a single physical processor. With hyperthreading the number of available logical 
processors totaled (28 + 4 x 2 =) 36. On hyperthreaded processors, our simulations ran at (or below) half 
the speed that was possible without using hyperthreading. The reader should take this into account when 
interpreting the execution time requirements given in Table 4-18. 
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processor time, depending on the specific combination of factors and on the specific node 
used to execute the simulation. Table 4-18 recounts the execution time used for each 
simulation run. Executing all 64 runs required a total of 537.6 hours of processing time, 
which amounts to 8.4 hours on average per run. However, due to the fact that ws7 and 
ws8 used hyperthreading, this figure is somewhat misleading. 
 

Table 4-18. Execution Time (Hours) Required for Each Simulation Run 
 
Run Node Time Run Node Time Run Node Time Run Node Time 

1 ws9 7.7 17 ws7 13.8 33 DT 10.7 49 DT 6.8 
2 ws9 6.2 18 ws7 12.2 34 DT 6.5 50 DT 2.4 
3 ws9 3.8 19 ws7 11.5 35 DT 5.2 51 ws9 2 
4 ws9 4.3 20 ws7 12.9 36 ws9 4.5 52 ws9 3.6 
5 ws9 4.9 21 ws7 8.8 37 ws9 7.3 53 ws9 2.8 
6 ws9 9.2 22 ws7 15.6 38 ws9 6.9 54 ws9 3.1 
7 ws9 5.1 23 ws7 15.4 39 ws10 5.7 55 ws9 3 
8 ws9 4.1 24 ws7 8.4 40 ws9 4.9 56 ws9 3.2 
9 ws10 7.5 25 ws8 16.7 41 ws9 8.2 57 ws9 5.7 
10 ws10 8.8 26 ws8 24.6 42 ws10 8.3 58 ws10 5.6 
11 ws10 6.1 27 ws8 19.1 43 ws10 4.9 59 ws10 5 
12 ws10 4.3 28 ws8 16.4 44 ws9 4.8 60 ws10 4.1 
13 ws10 10.2 29 ws8 24.7 45 ws10 9.2 61 ws10 7.5 
14 ws10 8.5 30 ws8 22.5 46 ws9 8.2 62 ws10 4 
15 ws10 5.6 31 ws8 19 47 ws10 5.1 63 ws10 3.8 
16 ws10 5.1 32 ws8 19.9 48 DT 6.8 64 ws10 4.9 

 
Considering the processing time required for runs on individual nodes, runs on 

ws9 averaged 5.2 hours, runs on ws10 averaged 6.2 hours, runs on DT averaged 6.4 
hours, runs on ws7 averaged 12.3 hours and runs on ws8 averaged 20.4 hours. Grouping 
nodes into those that were not hyperthreaded (ws9, ws10 and DT) and those that were 
hyperthreaded (ws7 and ws8), we found that the hyperthreaded nodes required an average 
of 16.3 hours per run, while the non-hyperthreaded nodes required an average of 5.8 
hours per run. Thus, the hyperthreaded nodes took an average of 2.8 times longer than the 
non-hyperthreaded nodes to execute a simulation run. This suggests that the 
hyperthreaded processors ran at about 36 % the speed of the non-hyperthreaded 
processors. Of course, to gauge the effects due to hyperthreading alone, one must account 
for the fact that the processor speeds of the hyperthreaded nodes were different than the 
processor speeds of the non-hyperthreaded nodes. 

Given that the processor speed of ws7 (and ws8) is 3.66 GHz, one would expect 
hyperthreading to provide half the processing speed, or (3.66/2 =) 1.83 GHz, to each 
logical thread. Thus, one might expect that it would take (2.6/1.83 =) 1.42 times longer to 
run simulations on ws7 (and ws8) than on ws9 (and ws10). We found that on average it 
took 2.8 times longer to run simulations on the hyperthreaded nodes. These findings do 
not provide a complete characterization of differences between hyperthreaded and non-
hyperthreaded operations. First, we did not run the same workload on both types of 
processors, as we split various experiment configurations among the processors. Second, 
the hyperthreaded processors employed chip architectures (Intel Xenon MP) different 
from some of the non-hyperthreaded processors (ws9 and ws10 used AMD Opteron 8218 
and DT used Intel Xenon). 
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4.3.2 Data Collection and Summarization 
MesoNet records response data as time series. This allows monitoring response changes 
over time. For example, Fig. 4-11 shows the time series for the number of active flows 
(response y1) during run 64 of our sensitivity analysis. As shown, the time series reports 
the number of active flows (y axis) at the end of each of measurement interval for each of 
6000 measurement intervals (x axis) recorded during the simulation run. To facilitate our 
analyses, we summarize each response to an average value for each run. As illustrated in 
Fig. 4-11, we do this by discarding the first half of the data (measurement intervals 1 to 
3000) and then computing the average value for the remaining data (measurement 
intervals 3001-6000). As illustrated in Fig. 4-11, discarding the first 3000 measurement 
intervals eliminates transient startup effects and enables us to retain behavior 
representative of the model operating in steady-state. In this case, for run 64, the mean 
value of y1 over measurement intervals 3001-6000 is 214.676 x 102 flows.    
 

 
Figure 4-11. Example Illustrating the Technique used to Summarize System Responses (x axis gives 
the number of active flows and y axis gives time in 200 ms intervals) 
 
 

We conduct such a summarization for all 22 responses under each of the 64 
conditions and collect the summarizations into a table, as shown in Fig. 4-12. For 
example, the value placed in the cell for response y1 and run 64 in Fig. 4-12 is the value 
we computed in Fig. 4-11. The summarization table forms the basis for all of our 
analyses. 
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Run y1 y2 … y21 y22 

1 4680.619 0.168126 … 92.034 89.785 

2 6654.512 0.239371 … 72.596 57.738 

3 9431.405 0.339259 … 29.569 13.963 

4 11565.81 0.415439 … 23.427 19.882 

… … … … … … 

61 10319.55 0.247471 … 87.969 41.573 

62 1738.469 0.093668 … 159.298 161.602 

63 1783.509 0.096094 … 148.395 161.36 

64 21467.6 0.514811 … 26.159 9.981 
 

Figure 4-12. Sample Data Summarization: 22 Responses for each of 64 Simulation Runs 
 
 

 
 

Figure 4-13. Combined Matrix of Scatter Plots and Correlation Values for 22 Responses 
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4.4 Correlation Analysis and Clustering   
Given 64 average values (one per run) for 22 responses, correlation analysis investigates 
the degree to which pairs of responses are correlated. Recall that Tables 4-1 and 4-2 
identify the 22 responses. We begin by generating a scatter plot and computing the 
correlation for each pair of responses. Then we plot (in Fig. 4-13) the results as a 
combined matrix of scatter plots and correlation values. We order the diagonal by 
decreasing average correlation for each response with the 21 other responses. The highest 
average correlation is for response y7 and the lowest is for response y6. Correlations of .8 
and above are colored red, correlations between .3 and .79 are colored blue and 
correlations below .3 are colored green. 

Fig. 4-13 reveals some correlation groupings. For example, responses y7, y21, 
y22, y19, y12, y11, y1 and y2 show mutual correlations. Responses y5, y10, y14, y8 and 
y9 also exhibit mutual correlations. Strong correlations appear between selected pairs of 
responses: y21 and y22; y22 and y19; y5 and y10; y1 and y2; y8 and y9; y13 and y14; 
y18 and y20; y3 and y4. These mutual correlations suggest that it should prove feasible to 
reduce the number of responses examined from 22 to some lower dimension. On the 
other hand, a few responses (e.g., y6 and y17) appear largely uncorrelated with other 
responses. 
 

 
Figure 4-14. Frequency Distribution of the Absolute Value of Correlations for All Pairs of Responses 
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To identify particular correlation groups, we need to select a threshold for the 
absolute value of correlations such that above that threshold we will consider correlations 
sufficiently strong to warrant inclusion in further analyses, while we will discard 
correlations below that threshold. To help identify a reasonable threshold, we plot (in Fig. 
4-14) a frequency distribution of the absolute values of all correlation pairs. 

In Fig. 4-14, we emphasize (in red) the range of correlations that appear most 
significant because there is a notable change above that value, appearing as a separate 
sub-distribution centered on a different mode. The range of correlations emphasized in 
Fig. 4-14 run from about 0.65 to 1.0, so we decided to use correlations whose absolute 
value exceeds 0.65. We discard correlations with lower absolute values. For the 
correlations retained, we produced an index-index plot (recall Fig. 4-6). In Fig. 4-15 we 
reorder the indices from Fig. 4-6 (on both the ordinate and abscissa) by increasing total 
number of variables exhibiting above threshold correlation with the designated variable. 
Where the count of mutual correlations is the same, our order is arbitrary. We begin with 
responses y6 and y17, which have no retained correlations. For those responses, we order 
y17 first because it has only one mutual correlation > 0.5, while y6 has two such 
correlations – thus, y17 is somewhat less correlated with other responses than is y6. 
 

 
 

Figure 4-15. Index-Index Plot for Correlation Pairs where |Correlation (Yi, Yj)| > 0.65 
 

Fig. 4-15 identifies seven clear correlation groups: y17 (no correlations); y6 (no 
correlations); y3 and y4 (pair-wise correlation); y15 and y16 (pair-wise correlation); y18 
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and y20 (pair-wise correlation); y8, y13, y5, y10, y14 and y9 (28 mutual correlations); 
y11, y1, y7, y2, y19, y21, y22 and y12 (50 mutual correlations). This suggests that we 
can characterize system response through seven, rather than 22, responses. Next, we 
address the issue of whether or not the seven correlation groupings make sense from the 
perspective of the network simulation model. We also discuss what information may be 
conveyed by lack of correlation. We begin our discussion with the three mutually 
correlated pairs and then consider the group with 28 mutual correlations, followed by the 
group with 50 mutual correlations. We close by considering the two uncorrelated 
responses.  

 The rate of data packets injected into the network (y3) is highly correlated (0.99) 
with the rate of packets leaving (y4). This strong correlation is expected because packets 
must enter the network before they can exit and the rate of entry and exit should be 
balanced (unless many packets are lost within the network). Perhaps more surprising is 
the fact that the rate of packets entering and exiting the network is not strongly correlated 
with any other responses. The closest correlation (around 0.5) is with the rate of flow 
completions (y6), which is largely uncorrelated with any other responses. One might 
expect correlation between the number of active flows (y1) and the number of packets 
entering and leaving the network, but this is not the case. From this, we conclude that the 
rate of packets flowing through the network is influenced by factors different from those 
influencing the number of active flows. Thus, our sensitivity analysis needs to consider 
either the rate of packets entering or leaving the network but not both. 

The (SRTT) smoothed round-trip time (y15) and relative queuing delay (y16) are 
somewhat correlated (0.7). This makes sense because the relative queuing delay is 
computed by transforming the SRTT. The correlation is not particularly strong because 
the relative queuing delay factors out the propagation delay and gives enhanced weight to 
time spent in buffers. Buffer size has a greater influence on y16, while that influence is 
somewhat diluted (by propagation delay) in y15. The low strength of the correlation 
suggests that our sensitivity analysis should consider both y15 and y16. On the other 
hand, the reasons underlying the correlation suggest that perhaps we could use only y15, 
which captures influences due to both propagation delay and queuing delay. 

The average instantaneous throughput for DF flows (y18) is strongly correlated 
(0.98) with the throughput for FF flows (y20). This reflects the fact that throughput is 
constrained by the capabilities of the slower of the two access-router classes over which 
such flows transit. This strong correlation implies that we need only consider one of these 
two responses for our sensitivity analysis. 

The next correlation group in Fig. 4-15 consists of 28 mutual correlations among 
six responses: loss rate (y5); connection failures (y8) and connection-failure rate (y9); 
retransmission rate (y10); negative acknowledgment rate (y13) and timeout rate (y14). 
Most of these mutual correlations exceed 0.8. The correlations among these responses 
appear reasonable because packet losses have numerous consequences: negative 
acknowledgments or timeouts, connection failures and retransmissions. The strongest 
correlation (0.99) exists between loss rate and retransmission rate. In fact, since both data 
packets and acknowledgments may be lost, one would expect the retransmission rate to 
be about twice the loss rate. The (0.89) correlation between loss rate and connection 
failures is lower because connection attempts are retried; three connection attempts must 
be lost before a connection fails. The (0.79) correlation between loss rate and negative 
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acknowledgment rate (as seen by sources) is lower because negative acknowledgments 
may also be lost; losses push up the rate at which receivers send negative 
acknowledgments but also increase probability that negative acknowledgments are lost. 
When acknowledgments (negative or positive) are lost, the rate of timeouts increases, so 
there is a higher correlation (0.88) between loss rate and timeouts. The six responses in 
this correlation group are measures of packet losses and the ensuing consequences for the 
network. Our sensitivity analysis need only consider one of these responses, such as 
retransmission rate (y10), which reflects both packet losses and the packets resent to 
recover from losses. 

The final correlation group consists of 50 mutual correlations among eight 
responses: active flows (y1) and proportion of possible flows that are active (y2); flow-
completion rate (y7); average congestion window (y11) and window-increase rate (y12); 
and average instantaneous throughput for DN (y19), FN (y21) and NN (y22) flows. Most 
correlations, which are negative, stem from sharing network resources. Increasing active 
flows leads to decreases in flow-completion rate, the average congestion window, 
window increase rate and instantaneous throughput for flows transiting normal access 
routers. Flows (DN, FN and NN) transiting normal access routers are most numerous; 
sharing access routers affects the throughput of these flows. As the number of flows 
transiting an access router increases, each flow receives a lower share of the bandwidth 
and so will receive lower throughput. Lower throughput implies smaller congestion 
windows. Smaller congestion windows imply a slower rate of window increases. More 
active connections also imply a lower rate of connection completion. Note, however, that 
the (-0.5) correlation between active connections and average congestion window is not 
strong enough to be included in this correlation group. Stronger correlations exist 
between average congestion window and flow throughputs (about 0.8) and window 
increase rate (0.85). This suggests that congestion window size is influenced by factors 
not solely related to the number of active connections. In fact, in Sec. 4.1.5 we showed 
that congestion window size is influenced by network speed, buffer-sizing algorithm and 
initial slow-start threshold, as well as by factors that influence the number of active 
connections. For our sensitivity analysis we can select one response (such as y22) to 
reflect the degree of sharing among common network resources. We should probably also 
include the number of active flows in order to investigate what factors influence the need 
to share resources. 

The two remaining responses, flows completed (y6) and average instantaneous 
throughput for DD flows (y17), are uncorrelated with other responses. Apparently, the 
number of flows completed is driven by factors different from the factors driving other 
responses. The reason for this is not obvious.  Throughput for DD flows is also driven by 
factors different from the factors influencing throughput for other flow classes. The 
reason for this appears straightforward. First, DD flows are relatively few in number, 
when compared with other flow classes. Second, DD flows cross high-speed access 
routers that are connected directly to backbone routers, so DD flows see less contention 
for bandwidth on the ingress and egress paths of the network. Since y6 and y17 are 
uncorrelated with other responses, we must include them in our sensitivity analysis. 

To recap, Table 4-19 identifies the responses we chose to investigate during our 
sensitivity analysis. Correlation analysis suggested that we could characterize system 
response using only seven of 22 responses. We decided to include an eighth response: the 
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number of active flows (y1). This added response allowed us to consider which factors 
lead to an increased number of active flows, a main influence on the degree of resource 
sharing required within a network. Two responses deal with the aggregate throughput of 
packets (y4) and flows (y6). One response (y10) reflects the degree and consequences of 
packet losses. One response (y15) mirrors the degree of network delay. The remaining 
responses gauge throughput for flows constrained by transiting directly connected (y17), 
fast (y20) or normal (y22) access routers.   

 
Table 4-19. Responses Selected for Investigation in Sensitivity Analysis 

 
Response Definition 

y1 Average number of active flows 
y4 Average number of packet output per measurement interval 
y6 Average number of flows completed per measurement interval 

y10 Average retransmission rate 
y15 Average smoothed round-trip time 
y17 Average instantaneous throughput for DD flows 
y20 Average instantaneous throughput for FF flows 
y22 Average instantaneous throughput for NN flows 

4.5 Principal Components Analysis   
Principal components analysis (PCA) is an alternative (or complementary) technique 
often used to assess the covariance structure of a set responses [96]. In this section, we 
describe the findings of a PCA applied to the 22 responses from our sensitivity analysis 
simulation runs. As the first step in the PCA, we transform our data responses into a 
standardized form by subtracting the mean value (over all 64 conditions) from each 
response to yield (22 x 64 =) 1408 normalized data points, as discussed previously in Sec. 
4.1.4. In this way, all responses are placed on an equivalent scale with respect to variance 
around the mean. Next, we find a weight vector that yields the maximum possible 
variance (or standard deviation), subject to the constraint that the sum of all weights (with 
each weight squared) is equal to one. We repeat this process, possibly up to the total 
number of responses, and each time require the weights selected to be orthogonal to the 
weights used in previous steps. Using this technique we are looking for the largest 
sources of variation in different directions through the data with each step. Each different 
direction through the data is considered a principal component. The amount of variation 
accounted for diminishes with each principal component considered. At some point, most 
of the variance will be accounted for and one could stop the analysis. 

For example, consider Figure 4-16, which displays the results of a PCA for the 22 
responses from our sensitivity simulations. The detailed layout of each sub-plot was 
explained previously in Sec. 4.1.4 (recall Fig. 4-8). The upper left-hand plot depicts the 
standard deviation (SD) across all normalized responses (y1 through y22). The remaining 
22 plots show the standard deviation accounted for by each of 22 principal components in 
decreasing order of magnitude. We note that most (about 86 %) of the variation in the 
data is accounted for by the first four principal components. Next, we plot the weights 
associated with each response in each of the first four principal components. Figure 4-17 
shows this information. The detailed layout of each sub-plot was explained previously in 
Sec. 4.1.4 (recall Fig. 4-7). 
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The results of the PCA suggest that the behavior of our model can be represented 
with as few as four (statistically uncorrelated) responses, instead of the seven responses 
suggested by our correlation analysis. Further, these four principal components, or PCs, 
are linear combinations of many regular responses. Extracting responses from each PC in 
Fig. 4-17 using heuristics mentioned in Sec. 4.1.4, we can group responses by principal 
component, as shown in Tables 4-20 through 4-23. 

 
 

 
Figure 4-16. Histograms for 22 Principal Components (x axis of each sub-plot identifies bins of 
normalized component values ranging from -20 to +20 and y axis the count of values within each bin). 
Above each sub-plot is the standard deviation in the data accounted for by the Principal Component. The 
first sub-plot gives the distribution of the normalized responses. 

 
 

Principal Component 1 Principal Component 2 Principal Component 3 Principal Component 4

 
 

Figure 4-17. Weight Vectors for the First Four Principal Components 
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The first principal component (Table 4-20) combines two response groups 
identified in the correlation analysis. One group represents the effects of resource sharing 
and congestion on the throughput of flows that transit typical access routers. Such flows 
are most numerous in any given simulation. The second group represents the level of 
congestion present in the network. Congestion occurs most often at access routers. Thus, 
the PCA finds that the largest source of variance in the 22 responses arises from the level 
of congestion at access routers in the simulated network. 
 

Table 4-20 Responses Composing Principal Component One 
 

Correlation Cluster Response Definition 

Effects of 
Resource Sharing 
and Congestion on 
Throughput in 
Flows Transiting 
Typical Access 
Routers 

y1 Average number of active flows 
y2 Proportion of possible flows that are active 
y7 Flow-completion rate 
y11 Average congestion window 
y12 Window-increase rate 
y19 Average instantaneous throughput for DN flows 
y21 Average instantaneous throughput for FN flows 
y22 Average instantaneous throughput for NN flows 

Overall Network 
Congestion 

y5 Loss rate 
y8 Connection failures 
y9 Connection-failure rate 
y10 Retransmission rate 
y13 Negative-acknowledgment rate 
y14 Timeout rate 

 
 

Table 4-21. Responses Composing Principal Component Two 
 

Response Definition 
y15 Smoothed round-trip time 
y16 Relative queuing delay 

 
The second principal component (Table 4-21) corresponds to a pair of responses 

(y15 and y16) grouped together by the correlation analysis. These responses represent the 
level of delay within the network. 

 
Table 4-22. Responses Composing Principal Component Three 

 
Correlation Cluster Response Definition 

Packet Throughput y3 Packets input 
y4 Packets output 

DD-flow Throughput  y17 Average instantaneous throughput for DD flows 
DF- & FF-flow 
Throughput 

y18 Average instantaneous throughput for DF flows 
y20 Average instantaneous throughput for FF flows 

 
The third principal component (Table 4-22) unites three separate groupings found 

in the correlation analysis. One group represents the number of data packets flowing in 
and out of the network, which correlation analysis suggested were not strongly correlated 
with other responses. Note, though, that there were moderate correlations with throughput 
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on faster flows (y17, y18 and y20) and with the number of flows completing (y6). In fact, 
the PCA assigns similar weights for y3 and y4 in both principal components three and 
four. (For this reason, we also include y3 and y4 in the grouping associated with principal 
component four.) Responses relating to throughputs for flows transiting only fast and 
directly-connected routers were grouped together by the principal components analysis, 
while correlation analysis separated these responses. Principal component three also 
seems to include the effects of the higher throughput flows on packets flowing into and 
out of the network. 

The fourth principal component represents the ability of the network to complete 
flows. Included in this component is the association with packets entering and leaving the 
network. If called upon to place y3 and y4 into only a single principal component, we 
would choose to place them into PC4. On the other hand, as shown in Table 4-23, PC4 
unites two separate groupings found in the correlation analysis. 

 
Table 4-23. Responses Composing Principal Component Four 

Correlation Cluster Response Definition 

Packet Throughput y3 Packets input 
y4 Packets output 

Flow Throughput y6 Flows completed per measurement interval 
 

The principal components analysis both confirms the findings of the correlation 
analysis and also provides additional information. For example, the PCA groups together 
the symptoms and effects of congestion. This appears sensible. The PCA also reveals a 
connection between packets in and out and two other groupings: throughput on high-
throughput flows and the number of connections completed. The correlation analysis 
hinted at these connections. The PCA suggests that throughput on DD flows should be 
grouped together with throughput on DF and FF flows; the correlation analysis indicated 
that DD flows should be studied separately. We will use findings from both the 
correlation and principal components analyses as we investigate the sensitivity of model 
responses to input parameters.   

4.6 Sensitivity Analysis   
In this section, we use the experiment design, the model responses and the results of the 
correlation and principal components analyses to assess the sensitivity of MesoNet to 
changes in eleven input factors. We begin by exploring how model inputs affect the eight 
responses identified by our correlation analysis (recall Table 4-19). Subsequently, we 
consider how the four main principal components (recall Tables 4-20 through 4-23) vary 
with changes in input factors. 

4.6.1 Sensitivity Analysis Guided by Correlation Analysis 
We begin by exploring how model inputs affect three, congestion-related responses: 
number of active flows (y1), retransmission rate (y10) and average instantaneous 
throughput for NN flows (y22). Subsequently, we consider the five remaining responses 
in the following order: average smoothed round-trip time (y15), rate of data packets 
output (y4), number of flows completed per measurement interval (y6) and average 
instantaneous throughput for DD flows (y17) and for FF flows (y20). 
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4.6.1.1 Congestion-Related Responses. For the topology and experiment design we 
adopted, flows transiting through the slowest (N-class) access routers were most 
numerous. For this reason, congestion tends to occur most often in N-class access routers, 
which affects the throughput of flows transiting such routers. The affected flows include 
DN, FN and NN flows, which our analysis showed to be significantly correlated. We 
selected NN flows as a representative flow class to consider. The throughput experienced 
by NN flows is likely to be affected by the number of active flows transiting N-class 
access routers and by the retransmission rate on those flows. Since flows transiting N-
class access routers are most numerous, macroscopic measures of the number of active 
flows and the retransmission rate network-wide should be indicative of the level of 
congestion experienced by NN flows. For these reasons, we decided to consider y1, y10 
and y22 as a related set of responses. 
 

 
 

Figure 4-18. Main-Effects Plot for Response y1 (Average Number of Active Flows) 
 

We decided to first examine factors that influence the number of active flows in 
the network, since the number of active flows is likely to affect congestion. Fig. 4-18 
gives the main-effects plot highlighting factors influencing the number of active flows. 
The main factors appear to fall into three categories: (a) number of sources underneath N-
class access routers, (b) idle interval for those sources and (c) duration for which flows 
remain active. The think time of sources (x5) is the main influence on the number of 
active flows. The shorter the think time the more often sources become active and 
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attempt to transfer files (i.e., sequences of packets). Naturally, the more sources that exist 
under N-class access routers, the greater will be the effects of shorter think time. The 
number of sources under N-class access routers is influenced by two factors: the base 
number (x8) of sources used to populate the topology and the distribution (x9) of those 
sources. The plus setting for x9 increases the probability flows will exist between sources 
and receivers under N-class access routers. This setting gives the network a bit of a peer-
to-peer (P2P) character. 

For flows active between N-class access routers, the longer it takes for flows to 
complete, the more likely the number of active flows will increase. There is a bit of 
reinforcement at work here. The more active flows that transit a given access router, the 
lower will be the throughput of each flow and the longer it will take for each flow to 
finish transferring its packets. Thus, the higher the arrival rate of flows (i.e., the lower the 
source think time) the larger the number of active flows. Two other factors have 
significant influence on the time taken to complete flows. The first factor is the average 
file size (x4). Larger files take longer to transfer because more packets must be relayed 
and acknowledged. The second factor is network speed (x2): a slower network (plus 
setting) will take longer to transfer files of any particular size. Fig. 4-18 reveals this 
complex collection of related and reinforcing influences on the number of active flows. 

Some other plots (not reproduced here) from the ten-step analysis also reveal 
interactions between number and distribution of sources (x8/x9), file size and distribution 
of sources (x4/x9) and think time and distribution of sources (x5/x9). These interactions 
make sense given the discussion contained in the previous paragraph. The effects from 
these factor interactions are much less significant than the main factors alone. In fact, the 
analysis of all 22 responses reveals that MesoNet simulations are driven by main factors 
and not by interactions among factors. 

Congestion at N-class access routers could certainly lead to packet losses, which 
would stimulate retransmissions and cause flows to take longer to complete because the 
required number of packet transmissions would increase. Given this reasoning, one 
would expect many of the same factors influencing the number of active flows to also 
influence the retransmission rate. Fig. 4-19 displays the main-effects plot for network-
wide retransmission rate (y10). Comparing Fig. 4-18 and Fig. 4-19 one can certainly see 
significant overlap in the main factors: number (x8) and distribution of sources (x9), 
average file size (x4) and think time (x5) and network speed (x2). In fact, the same 
settings for these factors that lead to increased number of active flows also lead to 
increased retransmission rate. The main difference is that retransmission rate is 
influenced most significantly (and equally) by network speed (x2) and buffer sizing 
algorithm (x3). Fewer buffers (minus setting) and lower network speed (plus setting) lead 
to increased probability of packet losses, which stimulate retransmissions. 

The fact that buffer size was not so important with respect to the number of active 
flows reflects TCP congestion control. Given a larger number of flows, the TCP 
congestion control mechanism reacts to losses by adjusting flow sending rate: slowing 
packet transmissions, which leads to lower throughputs but also mitigates packet losses. 
Fig. 4-19 shows that mitigating packet losses becomes more difficult when buffer sizes 
are severely restricted. One would expect the main effects influencing retransmission rate 
to be identical to the main effects influencing loss rate (y5). Our review of the main-
effects plot (not reproduced here) for loss rate confirms this expectation. 
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Figure 4-19. Main-Effects Plot for Response y10 (Average Retransmission Rate) 
 

Given the analysis related to number of active flows and retransmission rate, one 
would expect throughput8 on NN flows to be driven primarily by a relationship between 
available bandwidth (network speed) and number of active flows. The main-effects plot, 
Fig. 4-20, supports this expectation. Factors leading to fewer active flows include a lower 
number of sources (x8 minus) and a distribution that leads to fewer NN flows (x9 minus), 
as well as longer think time (x5 plus). Setting x9 to minus increases the probability that 
sources under N-class access routers will exchange data with receivers under F-class 
access routers, which gives the network a bit of a Web-centric character. With fewer 
active NN flows and higher network speed (x2 minus), the throughput achieved by NN 
flows is higher; under reverse conditions the throughput is lower. 

Fig. 4-20 also reveals some subtle, although less significant, effects. Shorter 
propagation delay (x1 minus) yields higher throughput. This occurs because sources 
receive feedback more quickly and timeout values remain lower. Perhaps unexpectedly, 
throughput is higher when file sizes are smaller (x4 minus). This appears related to 
reducing the number of active flows, as flows complete more quickly when fewer packets 
must be transferred. Finally, larger buffer sizes (x3 plus) lead to higher throughput. This 
appears due to experiencing fewer losses, which requires fewer retransmissions and 
timeouts. 
                                                 
8 Note that, though we use the term throughput when discussing flow classes, what we actually measure is 
often referred to as goodput; thus, retransmissions are not considered to be throughput. 
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Figure 4-20. Main-Effects Plot for Response y22 (Average Instantaneous Throughput for NN Flows) 
 
4.6.1.2 Delay-Related Responses. We selected average, smoothed, round-trip time 
(SRTT) as the response (y15) reflecting changes in network delay. Fig. 4-21 gives the 
related main-effects plot, which reveals that buffer-sizing algorithm and propagation 
delay are the main factors influencing SRTT. This makes eminent sense: higher 
propagation delay (x1 plus) and larger buffer sizes (x3 plus) lead directly to increase in 
SRTT. Larger buffer sizes permit bigger queues of packets, which increases queuing 
delay. Fig. 4-21 also reveals some minor effects, which suggest that congestion 
influences SRTT. This makes sense: more congestion leads to more packets residing in 
the bigger buffers. 
 
4.6.1.3 Responses Related to Macroscopic Throughput. To represent the macroscopic 
throughput of the network, we selected two responses: data packets output per interval 
(y4) and flows completed per interval (y6). The first response represents the rate at which 
packets are flowing through the network, while the second response represents the rate at 
which flows are being completed by the network. We begin by considering the rate of 
packet output. 

Fig. 4-22 reveals that the main influence on the rate of packet output is network 
speed: higher network speed (x2 minus) means a greater rate of packet output. This 
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stands to reason in a network with a sufficient number of active flows. The combination 
of shorter think times (x5 minus) and more sources (x8 plus) leads to an increase in the 
number of flows and the higher network speed implies that each flow can transmit faster, 
so the aggregate rate of packet output should be greater under these circumstances. File 
size is another factor significantly affecting the rate of packet output. Larger file sizes (x4 
plus) lead to greater throughputs because a smaller portion of the transfer occurs during 
slow-start, the transfer phase during which a flow’s congestion window is lowest. Flows 
transferring with a larger congestion window achieve higher throughput, which helps to 
increase the aggregate network throughput. 
 

 
 

Figure 4-21. Main-Effects Plot for Response y15 (Average Smoothed Round-Trip Time) 
 

As shown in Fig. 4-23, with one major exception, the story regarding the rate of 
flow completions is quite similar to the story regarding the rate of packet outputs. A 
sufficient number of connections (x5 minus and x8 plus) combined with higher network 
speed (x2 minus) contributes to a higher rate of flow completion. The exception involves 
file size (x4). In the case of packets output, larger file sizes (x4 plus) led to higher 
throughputs and thus to more packets output. On the contrary, for flows completed, 
smaller file size led to a higher completion rate. This stands to reason; smaller flows will 
be completed sooner. The sooner flows can be completed, the more flows can be 
completed per unit of time. 
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Figure 4-22. Main-Effects Plot for Response y4 (Average Packets Output per Measurement Interval) 
 
 
 

Figure 4-23. Main-Effects Plot for Response y6 (Flows Completed per Measurement Interval) 
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4.6.1.4 Responses Related to Advantaged Flow Classes. The final two responses we 
investigate represent throughputs achieved over advantaged flow classes, which are flows 
that transit between sources and receivers located under directly-connected and fast 
access routers. We examine the average instantaneous throughput of DD flows (y17) and 
FF flows (y20). 

 

 
 

Figure 4-24. Main-Effects Plot for Response y17 (Average Instantaneous Throughput of DD Flows) 
 

Each DD flow transits across a pair of D-class access routers, which are directly 
connected to backbone routers. D-class access routers are comparable in speed to POP 
routers, which are 10 times faster than N-class access routers. Given these factors, DD 
flows are the most advantaged in the simulation and should be able to achieve highest 
throughputs under the traffic scenario adopted for the sensitivity analysis. Few factors 
should impede the throughput of DD flows. Fig. 4-24 reveals that the throughput of DD 
flows is influenced by only two factors: propagation delay (x1) and file size (x4). This 
makes sense. Shorter propagation delay (x1 minus) permits faster feedback on DD flows, 
which allows the congestion window to increase more quickly. The rate of feedback is 
most important during the initial slow-start phase, where the congestion window starts at 
a small size but doubles with each acknowledgment received. The influence of file size is 
also clear. Larger file sizes (x4 plus) allow more of the packets in a file to be transferred 
after the flow reaches its peak sending rate. Smaller file sizes (x4 minus) imply that more 
of the packets in a file will be sent early in the slow-start phase, when a flow is building 
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up toward its peak sending rate. Throughput early in slow-start will be much smaller than 
throughput after a flow reaches its peak rate. 

Two other classes of advantaged flows are those where a source or receiver is 
under an F-class access router and its correspondent is under either an F-class or D-class 
access router. These flows comprise the following classes: DF flows and FF flows. The 
throughput achievable on these flows is constrained by the F-class access routers, which 
operate at twice the speed of N-class access routers. DF and FF flows are less advantaged 
than DD flows. We use the throughput on FF flows (response y20) to represent both 
classes. 

 Fig. 4-25 shows the main effects influencing throughput on FF flows. FF flows 
are influenced by a more complex mix of factors than DD flows. The significance of 
propagation delay (x1) and file size (x4) are two clear common factors among all 
advantaged flow classes. Shorter propagation delay means quicker feedback, which leads 
to faster increase in the congestion window for flows that are not impeded by congestion. 
Larger file sizes allow more of a flow’s packets to be transferred at a higher sending rate. 
Less advantaged (DN, FN and NN) flows are influenced mainly by congestion, so 
propagation delay has less effect on those flows. 

 

 
Figure 4-25. Main-Effects Plot for Response y20 (Average Instantaneous Throughput of FF Flows) 

 
Unlike DD flows, FF flows can face some congestion because selected source 

distributions lead to higher numbers of FN flows. Specifically, a source distribution (x9 
minus) that gives the network a Web-centric characteristic leads to more FN flows, which 
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compete for throughput with FF and DF flows. In addition, lower average think time (x5 
minus) leads to more active flows that can compete for throughput. Under these 
circumstances, higher network speed (x2 minus) allows competing flows to achieve 
higher throughputs. The influence of all these factors is evident in Fig. 4-25. 

Our investigation of throughput reveals three general categories of flows. 
Throughput in one category, which includes the most numerous (DN, FN and NN) flows, 
is influenced mainly by congestion and network speed. Throughput in a second category, 
which includes only the most advantaged and least numerous DD flows, is influenced 
mainly by propagation delay and file size. Throughput in the remaining category (DF and 
FF flows) is influenced by a combination of the factors influencing the other two 
categories. 

4.6.2 Sensitivity Analysis Guided by Principal Components Analysis 
In this section we examine the sensitivity of the principal components (PCs) to variations 
in model inputs. Recall from our PCA (Sec. 4.5) that we identified four main principal 
components accounting for most variation in the model’s 22 responses. We viewed these 
PCs, summarized in Table 4-24, as groupings of responses representing different aspects 
of the model’s behavior. The reader may note a correspondence between the groupings 
by principal component and the groupings used (in Sec. 4.6.1) to describe the sensitivity 
analysis of responses guided by correlation analysis. Below, we report the results of 
applying main-effects analysis to the PCs identified in Table 4-24. 
 

Table 4-24. Definition of Major Principal Components in Model Response 
 
Principal Component Responses in Principal Component 

Congestion (PC1) y1, y2, y5, y7, y10, y11, y12, y13, y14, y19, 
y21, y22 

Delay (PC2) y15, y16 
Throughput for Advantaged Flows (PC3) y17, y18, y20 
Macroscopic Throughput (PC4) y3, y4, y6 
 
4.6.2.1 Congestion. Given that PC1 represents the effects of network congestion, one 
would expect significant congruence between factors affecting PC1 and factors affecting 
responses driven by congestion. Previously, we analyzed three congestion-related 
responses: number of active flows (y1), retransmission rate (y10) and average 
instantaneous throughput for NN flows (y22). We also noted that loss rate (y5) and 
retransmission rate were related closely. Analysis of PC1 should show that the same 
factors influence PC1 as influence responses y1, y5, y10 and y22. Fig. 4-26 displays the 
main-effects plot for PC1. The key factors influencing PC1, in order of significance, 
include: network speed (x2), think time (x5), distribution (x9) and number (x8) of 
sources, file size (x4) and buffer size (x3). This set of factors is also the union of factors 
most significantly driving responses y1, y10 and y22. Further, given insights from our 
previous analyses, we conclude that Fig. 4-26 illustrates the following factors induce 
network congestion and its consequences: slower network speed (x2 plus), smaller buffer 
sizes (x3 minus), larger file size (x4 plus), shorter think time (x5 minus), more sources 
(x8 plus) and a P2P-like distribution of sources (x9 plus). Reversing these factors eases 
network congestion and its consequences.  
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Figure 4-26. Main-Effects Plot for PC1 (Network Congestion) – the % computations in Main-Effects 
plots for PCs appear unreadable (and meaningless) because PC values are normalized to a 0 mean. The 
reader may simply use the magnitude and slope of the lines connecting the – and + level of each of the 11 
factors to provide information that may be compared with previous Main-Effects plots applied to individual 
responses rather than PCs, which are linear combinations of many individual responses 
 

The reasons that these factors modulate network congestion have already been 
explained in Sec. 4.6.1.1. Our analysis suggests that factors modulating network 
congestion will influence all responses grouped under PC1. For example, increasing 
network congestion lowers the average congestion window (y11), decreases the rate of 
congestion window increases (y12), increases the rate of negative acknowledgments 
(y13) and timeouts (y14) and reduces average throughput for DN (y19), FN (y21) and 
NN (y22) flows. For the traffic scenario adopted, the macroscopic pattern of network 
congestion relates primarily to the most numerous types of flows, which transit the most 
numerous N-class access routers. Other factors influence less numerous, more 
advantaged flows, as discussed below when considering PC3. 
 
4.6.2.2 Delay. Given that PC2 represents effects on network delay, one would expect 
significant congruence between factors affecting PC2 and factors affecting responses 
driven by delay. Previously, we analyzed one delay-related response: average smoothed 
round-trip time – SRTT (y15). SRTT was driven primarily by two factors: buffer size 
(x3) and propagation delay (x1). Note that SRTT is significantly correlated (0.70) with 
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relative queuing delay (y16), which is driven mainly by one factor: buffer size (x3). One 
would expect PC2 to be driven by the same factors that drive SRTT and relative queuing 
delay. Fig. 4-27 depicts the main-effects plot for PC2. The plot shows that PC2 is mainly 
influenced by two factors: buffer size and propagation delay. Fig. 4-27 also reveals a 
minor influence of think time (x5). Interpreting Fig. 4-27 shows that average network 
delay increases with increases in propagation delay (x1 plus) and buffer size (x2 plus). 
Further, Fig. 4-27 suggests that decreasing think time (x5 minus) tends to increase delay; 
this is likely due to the fact that more flows are active simultaneously, which helps to fill 
the larger available buffer space. 
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Figure 4-27. Main-Effects Plot for PC2 (Network Delay) 
 

These results indicate that, for the traffic scenario used here, network delay is 
largely orthogonal to network congestion. Why might this be so? Under congestion, the 
TCP congestion control mechanism causes flows to reduce their sending rate. This adapts 
the flow of packets into the network in accordance with perceived congestion. The 
feedback rate for the congestion control mechanism depends largely on network delay, 
which is due to two factors: propagation delay and queuing delay. Propagation delay is 
modulated by the distance packets must travel, and queuing delay is modulated by the 
size of buffers in network routers. Congestion cannot affect the distance that packets must 
travel. When buffers are small, congestion cannot affect the queuing delay because 
queues will be small. Only when buffers are large can the degree of congestion influence 
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network delay, but in this case TCP congestion control reacts to reduce the rate of traffic 
entering the network, which tends to limit the number of packets in the network. For 
these reasons, results suggesting lack of correlation between network congestion and 
delay appear reasonable.  
 
4.6.2.3 Throughput for Advantaged Flows. Given that PC3 represents the effects on 
throughput for advantaged flows, one would expect significant congruence between 
factors affecting PC3 and factors affecting throughput for DD (y17), DF (y18) and FF 
(y20) flows. Previously, we analyzed factors influencing throughput on DD and FF 
flows. Factors influencing throughput on DF flows (not included in this report) are 
identical to the factors influencing FF flow throughput. The main factors influencing 
throughput for advantaged flows include: propagation delay (x1), file size (x4), network 
speed (x2), distribution of sources (x9) and think time (x5). Review of Fig. 4-28 shows 
that the same factors influence PC3. PC3 is also driven to some extent by buffer size (x3), 
which was not a significant factor in the previous analysis of throughput for DD or FF 
flows. 
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Figure 4-28. Main-Effects Plot for PC3 (Throughput for Advantaged Flows) 
 

One could interpret Fig. 4-28 as depicting lower throughput above the zero line 
and higher throughput below the zero line. Using this interpretation, Fig. 4-28 indicates 
that higher throughput on advantaged flows results from: larger file sizes (x4 plus), 
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higher network speed (x2 minus), shorter propagation delay (x1 minus), and more P2P-
like network traffic (x9 plus). Reversing the settings for these factors would lead to lower 
throughputs. These findings are consistent with our previous analysis of the factors 
influencing throughput for DD (y17) and FF (y20) flows. 

One somewhat new piece of information is revealed by Fig. 4-28: the influence of 
buffer size on throughput for advantaged flows. In our previous analyses, buffer size had 
a more modest influence on throughput. The influence that was present indicated that 
smaller buffers led to lower throughputs and larger buffers led to higher throughputs. 
This seems to make sense because small buffers lead to increased losses, which lead to 
increased retransmissions, which lead to longer file transfer times, which results in lower 
throughputs. Fig. 4-28 shows the same influence, so the interpretation of PC3 remains 
consistent with the earlier results for DD and FF flows. 
 
4.6.2.4 Macroscopic Throughput. Given that PC4 represents effects on macroscopic 
(network-wide) throughput, one would expect significant congruence between factors 
affecting PC4 and factors influencing the rate of data packets leaving the network (y4) 
and the flow-completion rate (y6). Recall, though, that one factor, file size (x4), had the 
opposite influence on y6 and y4. With this information, we should be able to determine 
which aspect of macroscopic throughput is represented by PC4. Sec. 4.5 suggested that 
PC4 represents macroscopic throughput of flow completions. 
 

 
Figure 4-29. Main-Effects Plot for PC4 (Macroscopic Throughput) 
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Fig. 4-29 displays the main-effects plot for PC4. The primary factors influencing 
PC4, in order of significance, include: network speed (x2), think time (x5) and file size 
(x4). Interpreting Fig. 4-29 suggests that higher network speed (x2 minus) and shorter 
think time (x5 minus) increase macroscopic throughput.9 These findings are consistent 
with the factors influencing both the rate of packet output (y4) and the rate of flow 
completion (y6). Fig. 4-29 shows that smaller file size (x4 minus) causes variation in the 
same direction as higher network speed and shorter think time. From this, we conclude 
that PC4 represents macroscopic throughput of flow completions. This agrees with the 
previous PCA. 

4.6.3 Summary of Findings from the Sensitivity Analysis 
Results from the sensitivity, correlation and principal components analyses increased our 
confidence in MesoNet. The behavioral patterns and relationships revealed by the 
sensitivity analysis aligned with our expectations. Further, the sensitivity analysis 
provided significant insight into model operation. We review our key findings here. We 
begin with a summary of the main aspects of model behavior. Second, we characterize 
the major factors influencing model behavior. Third, we identify and discuss factors that 
appear to have little influence on model behavior. 
 
4.6.3.1 Main Aspects of Model Behavior. The sensitivity analysis revealed the model to 
have six main behavioral aspects: congestion, delay, throughout for DD flows, 
throughput for DF and FF flows, packet throughput and flow completion throughput. We 
discuss each of these in turn. 

Congestion. The largest behavioral aspect of the model relates to macroscopic 
congestion, which occurs primarily in the slowest (N-class) access routers. In the 
topology employed for the sensitivity analysis, most users (represented as model sources) 
accessed the network through the (105) N-class routers. This is analogous to business and 
home users who connect to a network via limited bandwidth links. Higher network tiers 
(represented in the model by 22 POP and 11 backbone routers) typically operate at speeds 
sufficient to support traffic entering the network from the access tier. The topology used 
in the sensitivity analysis reflects this fact of network design. The model’s heterogeneous 
topology allowed selected (D-class and F-class) access routers to operate at higher 
speeds. (Twenty-eight) F-class access routers represented larger businesses that might 
support Web sites, which could be accessed by many users, most of whom connect to the 
network through N-class routers. (Six) D-class access routers represented research 
institutions and very large corporations that connect directly to the network backbone. 

The net result of this topology is that most active flows transit N-class access 
routers because most users reside underneath such routers. These flows include NN, FN 
and DN flows. Since these flows are most numerous, their behavior tends to drive 
macroscopic congestion, which occurs at the network edge (i.e., in the access tier). Of 
course, this is also due in part to the homogeneous Web-like traffic model employed 
during the sensitivity analysis. Regardless of traffic model, one should expect network 
congestion to arise primarily at the access tier because transit networks are continuously 
                                                 
9 Note that PCA involves normalizing and transforming responses to a scale differing from the scales of the 
original responses. This means that interpretation of the main-effects plots for principal components must 
be aided by context provided from previous interpretation of main-effects influencing particular responses. 
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monitored by network providers and the bandwidth in the POP and backbone tiers is 
provisioned to meet traffic demands from the access tier. 

Throughput available to individual NN, FN and DN flows is constrained by the 
bandwidth of N-class routers. This means that lower network speed (x2 plus) will reduce 
flow throughputs, while higher speed (x2 minus) will increase flow throughputs. Further, 
the more flows (y1) that transit an N-class router, the lower will be the individual 
throughputs for each flow. This behavior is revealed by the related response variables: 
y19, y21 and y22. The number of active flows transiting an access router is influenced 
primarily by three factors: number (x8) and distribution (x9) of sources and average idle 
time (x5) between source transfers. Increasing the number of sources leads to increased 
congestion within a fixed topology of N-class access routers. In the sensitivity analysis, 
the FN to NN ratio (in number of flows) shifts depending on the distribution of sources. 
With the plus setting for x9 the pattern of flows takes on a P2P-like characteristic, where 
the FN to NN ratio decreases. With the minus setting the flow pattern adopts a Web-
centric characteristic, where the FN to NN ratio increases. Since NN flows take slightly 
longer to complete than FN flows, the P2P pattern tends to result in more flows transiting 
N-class routers at any given instant. And, of course, the shorter the idle time between 
transfers the more sources will arrive in any given period. 

Network congestion also influences macroscopic responses, including: loss (y5) 
and retransmission (y10) rates, congestion window (y11) and its rate of increase (y12), 
and rate of negative acknowledgments (y13) and timeouts (y14). As with flow 
throughputs, these responses can be primarily attributed to the relative number of flows 
simultaneously transiting N-class access routers, as well as to the speed of N-class 
routers. The existence of fewer simultaneous flows, combined with higher speed, creates 
a better experience for individual flows and less congestion at the network edge. 

To summarize, congestion occurs at the network edge. The primary effects of 
congestion are due to flows transiting N-class access routers. Higher speed N-class 
routers mitigate congestion to some extent. The macroscopic effects of congestion are 
due to the most numerous flow types: NN, FN and DN flows. 

Delay. Network delay, measured as smoothed round-trip time (SRTT), is 
influenced by two main factors: propagation delay (x1) and buffer-sizing algorithm (x3). 
As one would expect, longer propagation delay and larger buffer sizes lead to increased 
SRTT (y15). Further, relative queuing delay (y16) is driven only by buffer size. These 
relationships are as expected. Perhaps unexpected is that network delay is largely 
uncorrelated with congestion. We attribute this to the fact that the TCP congestion control 
mechanism responds to network congestion by slowing the rate of packets injected into 
the network and thus limiting the number of packets that might otherwise be sitting in 
network buffers. 

Throughput for DD Flows. For DD flows, both the source and receiver reside 
under D-class access routers, which connect directly to backbone routers and operate at 
the same speed as POP routers. Further, the number of simultaneously active DD flows is 
typically quite small, relative to other flow classes. Given these facts, DD flows should 
be able to achieve throughputs constrained only by the minimum of the speeds of the 
source and receiver. The sensitivity analysis revealed that, unique among flow classes, 
throughput of DD flows is influenced by only two factors: propagation delay (x1) and file 
size (x4). 
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A DD flow must transit through TCP slow-start before reaching its maximum 
achievable throughput. The time taken to reach maximum throughput then depends upon 
the feedback rate on the flow. The feedback rate is determined mainly by propagation 
delay. Longer propagation delay lengthens time taken to achieve maximum throughput. 
Further, for larger files, more packets may be transferred at maximum throughput, so 
average throughput is higher. For the traffic patterns used in the sensitivity analysis, no 
other factors influenced throughput of DD flows. For this reason, DD flows must be 
given separate consideration from other flow classes.   

Throughput for DF and FF Flows. DF and FF flows could potentially achieve 
maximum throughputs constrained only by the minimum of the speeds of the source and 
receiver, but some other factors can interfere. For example, DF and FF flows compete for 
throughput with FN flows, which might be smaller or larger in number, depending upon 
various factors discussed previously. When the relative number of FN flows is smaller, 
then DF and FF throughputs are influenced mainly by propagation delay and file size, as 
is the case for DD flows. When the relative number of FN flows is larger, then DF and FF 
throughputs are influenced more by the factors that influence throughput of FN flows. 

Packet Throughput. Packet throughput (y4) is influenced primarily by network 
speed (x2), idle time of sources (x5) and file size (x4). When network speed is faster (x2 
minus), flow congestion windows are larger, and so flows can send more packets per unit 
of time. When idle time is smaller (x5 minus), more flows tend to be active, which means 
more flows are injecting packets into the network. Finally, when file sizes are larger (x4 
plus), then more flows are operating at their maximum achievable throughputs, so more 
packets are being injected into the network. The higher the network speed and the more 
packets being injected into the network, the greater the number of packets leaving the 
network. These factors determine packet throughput. Of course, when there are many 
active flows and lower network speed, then congestion increases and the TCP congestion 
control mechanism slows the rate of packets entering the network, which also slows the 
rate of packets exiting the network. 

Flow-Completion Throughput. Flow-completion throughput (y6) is also 
influenced primarily by network speed, idle time of sources and file size. In this case, 
however, smaller file sizes (x4 minus) lead to shorter file-transfer times, which increases 
the number of flows completed in a given time period. Of course, since each file transfer 
spends a lower proportion of its duration at maximum achievable throughput, the number 
of packets injected will be lower than if the file size is smaller. Thus, to some extent, 
variations in file size lead to a tradeoff between packet throughput and flow-completion 
throughput.     
 
4.6.3.2 Major Factors Influencing Model Behavior. Based on the results of the sensitivity 
analysis, we can identify the major factors influencing the behavior of MesoNet. We 
consider the results of the analysis by a domain expert and also the PCA. We begin with 
the results from a domain expert, which are based on six main behavioral characteristics, 
as identified in the preceding section. 

We use one response to represent each characteristic: packet throughput (y4), 
flow-completion throughput (y6), congestion (y10), delay (y15) and throughput of DD 
(y17) and FF (y20) flows. Table 4-25 shows the result of a rank analysis, where the 
relative influence of each factor on each of the six responses is assigned a rank from one 
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(most influential) to 11 (least influential) based upon the degree to which the factor 
altered the response when moving from a plus to a minus setting. The average rank is 
computed for each factor, and then the average rank is converted into an integer ranking 
based on ordering the factors from most (one) to least (11) influential. The table shows 
that network speed (x2) is the most influential factor, followed by file size (x4) and think 
time (x5). Next is number of sources (x8), followed by propagation delay (x1) and 
distribution of sources (x9). Buffer-sizing algorithm (x3) ranks seventh. The remaining 
factors lag: initial slow-start threshold (x11), distribution of receivers (x10), probability 
that a flow transfers a larger document (x6) and then probability that a host is fast (x7). 

Table 4-26 gives a similar analysis based on the top four principal components 
identified by the PCA. The PCA squeezes out some redundancy included in the analysis 
conducted by the domain expert. In particular, the domain expert separated throughput 
for advantaged flows into two responses (y17 and y20) based upon an observation that 
different factors drove the two responses. In addition, the domain expert noted that packet 
throughput (y4) was driven in two different directions, depending upon file size (x4); 
thus, decided to retain packet throughput as a separate response. The PCA amalgamated 
y17 and y20 (in PC3) and also combined y4 with y6 (in PC4). 
 

Table 4-25. Rank Analysis based on Domain Expertise 
 

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 
y4 9.5 1 8 3 2 9.5 11 4 5 6.5 6.5 
y6 11 1 6 2 3 9 10 4 5 7.5 7.5 
y10 7 1.5 1.5 5 5 10 10 5 3 8 10 
y15 2 3 1 4 5 8 10 6 7 10 10 
y17 1 8 10.5 2 8 5 5 3 10.5 8 5 
y20 1 3 8 5 4 10 11 6 2 9 7 

Average Rank 5.25 2.92 5.83 3.50 4.50 8.58 9.50 4.67 5.42 8.17 7.67 
Ordinal Rank 5 1 7 2 3 10 11 4 6 9 8 

 
Table 4-26. Rank Analysis based on Principal Components Analysis 

 
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 

PC1 10.5 1 6 5 2 10.5 9 4 3 7.5 7.5
PC2 2 6 1 7 3 8.5 8.5 4 11 10 5
PC3 3 2 5 1 6 8 10.5 7 4 9 10.5
PC4 5 1 4 3 2 10 11 7 9 8 6

Average Rank 5.13 2.50 4.00 4.00 3.25 9.25 9.75 5.50 6.75 8.63 7.25
Ordinal Rank 5 1 4 4 2 10 11 6 7 9 8 

 
Comparing Tables 4-25 and 4-26 reveals similarities (in the main) and a few 

differences. Both tables rank factors x6, x7, x10 and x11 as not very influential on system 
response. Both tables identify network speed (x2) as the main factor driving response and 
both tables also rank file size (x4) and think time (x5) as significant factors. Both tables 
also agree on the relative influence of propagation delay (x1). The PCA suggests that 
buffer size is fairly influential, while the domain expert finds buffer size to be less 
significant. When the redundancies (y17 and y4) are removed from Table 4-25, the 
significance of buffer size is comparable for both analyses. Overall, the analyses are quite 
consistent.  
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4.6.3.3 Factors Exhibiting Little Influence on Model Behavior. The sensitivity analysis, 
whether based on domain expertise or principal components, shows that system response 
is little influenced by four factors: probability of transferring a larger file (x6), probability 
that a source is on a fast host (x7), distribution of receivers (x9) and initial slow-start 
threshold. The experiment design varied the probability of transferring a (10x) larger file 
from 0.01 (x6 plus) to 0.02 (x6 minus). Apparently, the difference in these probabilities 
was small enough that the system response was not influenced. Results might have 
proven different if the higher probability were increased, but this would imply that a 
lower proportion of file transfers were reserved for simple Web browsing activities. 

  The probability that a source is on a fast host (x7) makes little difference in 
system response because most sources existed underneath N-class access routers, which 
had limited bandwidth to share among those sources. Apparently, due to multiplexing 
with other sources, most sources were seldom able to realize their maximum potential 
transmission rate. 

The distribution of receivers (x10) had little influence on results because no 
matter the setting, most receivers resided under N-class access routers. The proportion of 
receivers under N-class access routers varied from 76 % (x10 plus) to 86 % (x10 minus). 
The distribution of receivers had more bearing on the number of receivers under D-class 
access routers (4 % and 2 % for x10 plus and minus, respectively) and also under F-class 
access routers (20 % and 12 % for x10 plus and minus, respectively). 

The initial slow-start threshold (x11) had significant influence on only one 
response: average congestion window size (y11). Absent losses, the congestion window 
on a flow can become very high even though flow throughput will be limited by the 
minimum of the maximum speeds of the source and receiver. Setting a high initial slow-
start threshold (x11 plus) allows flows to increase their congestion window very quickly 
to a large size. Setting a lower initial slow-start threshold (x11 minus) permits quick 
increase to a small size and then linear increase afterward. Thus, when congestion is 
light, using a large threshold for initial slow-start permitted the average congestion 
window size to become much larger, even though there was little influence on flow 
throughput. 

4.7 Exploring Effects of Buffer Sizing   
As we explained in Sec 4.1.6, the experiment design approach we used can facilitate 
additional exploratory analyses that were not necessarily planned at the time the 
experiment was undertaken. Here, we demonstrate this feature of our approach by using 
model response data to investigate the importance of buffer sizing relative to network 
speed and propagation delay. Our experiment design used two algorithms for buffer 
sizing. One algorithm, which is recommended practice [40], sets buffer size by 
multiplying average estimated round-trip time by capacity. The second algorithm, 
suggested by McKeown and colleagues [37], divides buffer size computed from the first 
algorithm by the square root of the expected number of flows. This second algorithm 
requires much less buffer space in network routers. McKeown and colleagues conducted 
an analytical study and empirical experiment that found similar performance when using 
either buffer sizing algorithm. The McKeown study, which was limited to a small number 
of flows transiting a few routers, suggested that network providers could deliver 
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reasonable performance while requiring much less memory in routers. The study left for 
future work consideration of the effects of the alternate buffer-sizing algorithm in a 
network-wide context. Our sensitivity analysis was not intended explicitly to study 
detailed effects of buffer-sizing algorithms, but the experiment design used does provide 
information that could shed some light on the topic. 

In this section, we use the results from our sensitivity experiment to explore the 
effects of buffer-sizing algorithm on overall network behavior and user experience. Our 
goal is to develop evidence relevant to the findings of the McKeown study. First, we 
consider the effects that choice of buffer-sizing algorithm has on smoothed round-trip 
time (SRTT) and on relative queuing delay. In previous discussions, we showed that 
buffer-sizing algorithm influenced both these aspects of network delay. Here, we look a 
bit more explicitly at the data. Second, we conduct a rank analysis based on selected 
responses chosen to characterize overall network behavior and user experience. 
 

 
Figure 4-30. Multi-factor Scatter Plot of Smoothed Round Trip Time (y15) for each of the 11 
Experiment Factors 
 
4.7.1 Effects on Delay Variation. Fig. 4-30 presents a multi-factor scatter plot (explained 
in Appendix D.2) for SRTT.  Fig. 4-31 shows a similar plot for relative queuing delay. 
Each plot depicts how the related response varies with the two settings of each of the 11 
factors used in our experiments. For the current discussion we are interested in the buffer-
sizing algorithm (factor x3). Fig. 4-30 shows that the choice of buffer-sizing algorithm 
shifts the pattern of SRTT. The McKeown algorithm restricts variation in SRTT. This 



Study of Proposed Internet Congestion Control Mechanisms NIST 

Mills, et al. Special Publication 500-282 131 

occurs because buffer sizes are much smaller and thus queuing delays must also be 
smaller. 

Fig. 4-31 illustrates clearly that reduced buffer size restricts the range of queuing 
delay that packets experience. Reducing variation in queuing delay within a network 
leads to more predictable SRTT and also to faster feedback regarding congestion. These 
traits might be considered valuable for selected networks and applications. On the other 
hand, one wonders whether more predictable delay might come at the cost of worsening 
behavior in other aspects of the network. The McKeown study suggested that smaller 
buffer size would not detract from user experience. We investigate this question next. 

 
4.7.2 Effects on Other Aspects of Network Behavior. In this section, we consider the 
relative influence of propagation delay (x1), network speed (x2) and buffer-sizing 
algorithm (x3) on selected responses, chosen to represent macroscopic network behavior 
and user experience. To represent macroscopic behavior, we use packet throughput (y4), 
flow-completion throughput (y6), retransmission rate (y10) and relative queuing delay 
(y16). To represent user experience, we use average throughput from three different flow 
classes: DD flows (y17), FF flows (y20) and NN flows (Y22). We aim to determine 
which of the three factors (x1, x2 or x3) has largest influence on the combined responses. 
 

  
Figure 4-31. Multi-factor Scatter Plot of Relative Queuing Delay (y16) for Each Experiment Factor 

 
We use a rank analysis to study the effects of our chosen factors on our selected 

responses. In this particular analysis, we elected to use a larger number to indicate higher 
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rank and a smaller number to indicate lower rank. We begin by combining our three 
factors into a condition that can be assigned one of eight settings, as illustrated in Table 
4-27. Next, we compute the average value for each of our responses under each 
condition. Table 4-28 displays the results of this averaging. 
 

Table 4-27. Mapping of Factor Settings to Eight Conditions  
(M means the – level of a factor and P means the + level of a factor) 

 
 Values 

Condition Factor Settings 
x1:x2:x3 

Propagation Delay 
Multiplier 

Backbone Router 
Speed 

Buffer Sizing 
Algorithm 

C1 M:M:M 1 800 RTTxC/SQRT(n) 
C2 P:M:M 2 800 RTTxC/SQRT(n) 
C3 M:P:M 1 400 RTTxC/SQRT(n) 
C4 P:P:M 2 400 RTTxC/SQRT(n) 
C5 M:M:P 1 800 RTTxC
C6 P:M:P 2 800 RTTxC
C7 M:P:P 1 400 RTTxC
C8 P:P:P 2 400 RTTxC

 
 

Table 4-28. Average Response Values for Each Condition 
 

 Response 
Condition y4 y6 y10 y16 y17 y20 y22 

C1 109 863.71 1 384.55 0.07 1.53 229.88 167.12 107.06 
C2 104 049.61 1 218.14 0.05 1.45 138.02 97.66 70.59 
C3 68 721.38 803.31 0.27 1.41 229.82 89.81 37.48 
C4 69 996.51 872.54 0.17 1.39 137.65 73.92 28.25 
C5 111 195.23 1 324.93 0.02 2.52 237.65 169.29 119.39 
C6 109 949.76 1 409.62 0 1.91 138.17 106.73 96.33 
C7 74 509.45 956.32 0.08 3.27 226.01 131.99 51.3 
C8 70 170.53 881.34 0.04 2.83 136.26 79.82 37.04 

 
 
Using the average responses from Table 4-28, we next rank each condition from 

high (8) to low (1) for each response, based on the appropriate ordering criteria. For 
retransmission rate (y10) and relative queuing delay (y16) a lower value would be ranked 
higher. For the other five responses in Table 4-28 a higher value would be ranked higher. 
After ranking the conditions with respect to each response, we compute an average 
ranking. The results of our ranking are shown in Table 4-29. 

We can assign the average rank for each condition to the vertex of a cube, where 
each vertex represents a specific combination of settings for propagation delay, network 
speed and buffer size. Fig. 4-32 shows the cube corresponding to Table 4-29.  Moving 
along the edges among the vertices on the cube allows us to determine changes in ranking 
attributable to each factor. The change in each factor (x1, x2 and x3) across all conditions 
is represented by a set of four different edges from among the 12 edges contained in the 
cube. We extract the relevant changes in ranking and display them in Table 4-30. 
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Table 4-29. Ranking for Each Condition vs. Each Response 
 

 Condition 
Response C1 C2 C3 C4 C5 C6 C7 C8 

y4 6 5 1 2 8 7 4 3 
y6 7 5 1 2 6 8 4 3 

y10 4 5 1 2 7 8 3 6 
y16 5 6 7 8 3 4 1 2 
y17 7 3 6 2 8 4 5 1 
y20 7 4 5 1 8 5 6 2 
y22 7 5 3 1 8 6 4 2 

Average Rank 6.1 4.7 3.4 2.6 6.9 6.0 3.9 2.7 
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4-32. Average Condition Ranking Displayed on Vertices of a Cube 
 
 

Table 4-30. Changes in Ranking Attributable to Each Factor 
 

 Propagation Delay (x1) Network Speed (x2) Buffer Sizing (x3) 
Edge 1 1.4 2.7 0.8 
Edge 2 0.8 2.1 0.5 
Edge 3 0.9 3 1.3 
Edge 4 1.2 3.3 0.1 

 
Interpreting Table 4-30 we see that changing network speed has the largest effect 

on the responses we selected. Changing propagation delay has the second largest effect. 
Changing buffer-sizing algorithm has the smallest effect. Further, Fig. 4-31 shows that 
changing from fewer to more buffers has a larger effect when network speed is high and 
propagation delay is long. This makes intuitive sense because more packets could 
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potentially be inside the network when speed and propagation delay increases, so a higher 
proportion of the increased buffers would likely be occupied. 

While our examination of the effect of buffer-sizing algorithm should not be 
considered definitive, the results extracted from our sensitivity experiment tend to 
support the findings of McKeown and colleagues. For the topology and traffic patterns 
used in our study, reducing buffer sizes by the square root of the expected number of 
active flows transiting each router had little overall effect on macroscopic network 
behavior and user experience. On the other hand, we found that reducing buffer sizes can 
markedly restrict the range of variation in queuing delay and thus in round-trip times. 
Reducing variance in round-trip times allows faster feedback on losses and permits the 
TCP flows to adapt more quickly, which could offset some of the losses that might 
otherwise occur due to reducing the number of buffers. 

4.8 Conclusions   
We described a method for conducting sensitivity analyses for simulations of large, 
complex systems, such as communications networks, computing grids and service-
oriented architectures. The method included: orthogonal fractional factorial (OFF) design 
of two-level experiments, correlation and principal components analyses and a ten-step 
graphical analysis. We applied the method to gain an understanding of MesoNet 
(described in Chapter 3). Correlation and principal components analyses revealed the 
main dimensions of MesoNet behavior to include: (1) congestion, (2) delay, (3) 
throughput of advantaged flows and (4) aggregate rate of flow completions.  

Sensitivity analysis identified the main factors influencing each aspect of 
MesoNet behavior. Congestion is influenced primarily by network speed, number and 
distribution of sources and average idle time for sources. Delay is influenced primarily by 
buffer size and propagation delay. Advantaged flows come in two categories: DD flows 
and FF (and DF) flows. Throughput for DD flows is influenced by two factors: 
propagation delay and file size. While propagation delay and file size prove influential, 
throughput for FF flows is also affected by network speed and distribution and idle time 
of sources. These additional factors reflect situations where increased numbers of FN 
flows compete with DF and FF flows. The aggregate rate of flow completions is 
influenced by network speed, source idle times and file size. Using rank analysis, we 
found the order of overall influence exerted by key factors. From more to less influential, 
the overall influence of factors was ordered as follows: network speed, file size and idle 
time, number of sources, propagation delay, distribution of sources and buffer size. 

Sensitivity analysis also identified four factors that had little influence on the 
behavior of MesoNet. These factors included: probability of electing to download a larger 
file, probability of sources and receivers residing on fast hosts, distribution of receivers 
and initial slow-start threshold. 

We extended our analysis to investigate explicitly the relative influence of 
network speed, propagation delay and buffer size on overall behavior of the model. We 
found that network speed had greatest influence and buffer size had least influence. We 
also showed that very small buffer sizes restrict the range of variance in smoothed round-
trip times. Further, we found that buffer size has greater influence on model behavior 
when network speed and propagation delay are larger. 
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We also conducted a second sensitivity analysis (see Appendix C) that used the 
same 211-5 OFF experiment design template documented in Sec. 4.1, but that changed the 
specific values assigned to each of the 11 experiment factors so that network size and 
speed were increased and so that the distances between the – and + levels for each 
parameter were expanded. The sensitivity analysis documented in Appendix C found the 
same main factors driving MesoNet behavior as we documented in Chapter 4, though the 
influence of propagation delay was increased due to the expanded distance between the 
values chosen for the two levels. In general, the network simulated in Appendix C 
exhibited lower correlations because overall congestion was lower. This was also 
reflected in changes in principal components, which became more difficult to interpret. 

Overall, analyses conducted on MesoNet increase our confidence in the model’s 
correctness and reasonableness. The fundamental characteristics of the model and the 
topology, as investigated here and in Appendix C, provide a reasonable basis for 
comparing the effects of alternate congestion control algorithms on macroscopic network 
behavior and user experience. In the next section, we discuss the congestion control 
algorithms we will study and we show how we modeled those algorithms.       
 


