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3 Description of MesoNet 
MesoNet is a medium-scale (i.e., mesoscopic) packet-level simulator, which represents 
transport flows that regulate the generation of packets, routers that queue (or discard), 
forward and transmit packets, and links that subject packets to propagation delays. 
MesoNet achieves scale reduction by eliminating packet sizes (i.e., expressing capacities 
in terms of integral packets) and by simplifying routers to share forwarding capacity 
across all attached outgoing links. Each backbone router contains a single, drop-tail 
queue of finite length. Each lower-level router contains two, finite-length, drop-tail 
queues – one for packets moving toward the network core and one for packets moving 
toward the network edge. These simplifications prevent MesoNet from providing precise 
quantitative estimates but enable qualitative understanding of relationships driving 
behavior in networks of reasonably large size: hundreds of routers transporting hundreds 
of thousands of flows. In what follows, we explain the structure of MesoNet and then 
describe how to configure the model for particular simulations. We also define 
measurements that the model can produce, including the ability to provide detailed traces 
of flow state and packet exchanges.  We close with a brief discussion of how MesoNet is 
coded in SLX [84-85], a discussion intended to aid those who wish to review the model’s 
source code, which is freely available from the authors. 

3.1 Model Structure 
MesoNet was motivated by finite-element, discrete-time (FEDT) models, also called 
cellular automata (CA) models [74], which are often used by physical scientists when 
attempting to understand general relationships that drive spatiotemporal evolution in 
complex physical systems, such as collections of particles and structural arrangements of 
chemicals in materials. In CA models, the state of each element is updated at each 
discrete time step. MesoNet was originally designed and implemented as a CA model. In 
this form, MesoNet worked fairly well for networks of limited size (on the order of up to 
3 x 104 sources) and forwarding speed (on the order of 13 million packets per second). 
When MesoNet simulated networks of larger size (hundreds of thousands of sources) and 
faster speed (hundreds of millions of packets per second), the CA modeling foundation 
proved quite inefficient. Simulating 1.5 million time steps of network operation could 
take more than two weeks on contemporary (circa 2007) PC-based servers. A CA model 
can require substantial useless processing when elements within the model have little to 
do for relatively long periods of simulated time. While the CA version of MesoNet was 
constructed as efficiently as possible, expanding the size and simulated speed of model 
elements produced a model with too much overhead. Ultimately, for models of a size and 
speed of interest for the studies reported in this document, the CA version of MesoNet 
needed about 5 CPU seconds to simulate 6 time steps of network operation. 

MesoNet was subsequently recast into a discrete-event simulation (DES) model 
[94]. This means that model elements (i.e., all elements except for simulated flows and 
packets, which are transient) persist for the duration of the simulation and that the state of 
each model element is updated at varying time intervals dictated by the global sequence 
of events, where each event is generated by some model element. A DES model skips 
over idle time and processes only when events occur. As a result, processing speeds 
increase and the increase (over the CA version of MesoNet) increases with model size 
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and simulated network speed. For models of a size and speed used in the current study, 
the DES version of MesoNet needed about 5 CPU seconds to simulate 26 time steps of 
network operation. Thus, 1.5 million time steps of simulated network operation could be 
computed in about 4 days (instead of 16 days). To achieve this speedup, the DES version 
of MesoNet requires about double the memory of the CA version.   

In what follows, we introduce the six fundamental elements of MesoNet and then 
describe how these elements are structured into a simulated network topology. We also 
introduce our representation of simulated packets, which are the mechanism through 
which MesoNet elements interact. Packets are originated by sources and receivers, flow 
through a topology of routers and links and then cease to exist. We provide with a brief 
discussion of our DES model, including one means to relate abstract time to the typical 
notion of real time in networks. 

3.1.1 Model Elements 
The persistent elements of MesoNet interact through two types of transient elements: 
packets and flows. Packets are the fundamental messages that move among the model’s 
persistent elements. Flows are collections of packets that move between specific sources 
and receivers over a defined time period. Flows then represent logically related 
spatiotemporal sequences of packets. The operation of each flow is controlled jointly by 
three elements: a source, a receiver and an access router (to which the source is attached). 
Each source generates data packets, subject to various constraints. Each receiver 
generates acknowledgment packets as required to indicate reception of expected data. 
Each receiver also generates negative acknowledgment packets to indicate that expected 
data was missed. Access routers update appropriate state variables for subordinate 
sources based upon information in arriving acknowledgments and negative 
acknowledgments. Access routers, point-of-presence (POP) routers and backbone routers 
manage the forwarding of packets. The simulated propagation of packets over distance is 
achieved through backbone links. Below, we describe the detailed operation of each of 
these element classes. 
 
3.1.1.1 Sources. MesoNet sources represent user behaviors associated with data sources. 
Sources alternate between ON and OFF periods. During each ON period, a source 
generates data packets under regulation of congestion control rules implemented by a 
specific, simulated transport protocol. During each OFF period, a source simply waits for 
simulated time to advance (an exponentially distributed value) to the beginning of the 
next ON period. The alternation of a source between ON and OFF periods simulates a 
user surfing the Web and downloading selected files of interest. Initially, sources are 
placed into the ON state with a specified probability. Sources that start in the OFF state 
are scheduled to enter the ON state at some random time after the model starts execution. 

 Upon entering the ON state, a source selects a file size, which designates the 
number of data packets to transfer to a receiver. The source remains in the ON state until 
the receiver has acknowledged the required number of data packets. The file size is 
selected from a distribution (usually a Pareto distribution with a designated mean and 
shape) that represents the aggregate size of objects that might typically be downloaded to 
display a Web page. With some probability, a given file size is multiplied by a factor, 
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which represents the situation where a Web-surfing user decides to download a particular 
file (e.g., document, service pack or movie). 

After selecting a file size, a source selects a specific receiver with which to 
exchange the file. The source selects a receiver associated with a different backbone 
router than the source. This ensures that each simulated flow will transit the network 
backbone. Each eligible backbone (first-tier) router has a uniform probability of being 
selected. Once a backbone router is selected, the source chooses among one of the 
second-tier routers beneath the backbone router. For this selection, the probability of 
choosing a particular second-tier router is proportional to the number of receivers 
encompassed by each eligible router. If a selected second-tier router is a point-of-present 
(POP) router, then there will be third-tier (access) routers beneath it. In this case, the 
source selects a specific access router. For this selection, the probability of choosing a 
particular third-tier router is proportional to the number of receivers encompassed by 
each eligible router. Once a specific access router is determined, the source chooses any 
idle receiver encompassed by the access router. If no receiver is idle, then the source 
conducts another selection process, beginning with selection of a backbone router. The 
selection process continues until the source finds an available receiver. 

After selecting a receiver, a source initiates a connection process, intended to 
simulate the establishment of transmission control protocol (TCP) flows [5, 8-9]. Without 
including a connection process, the model would tend to generate congestion patterns 
inconsistent with real TCP traffic, which must establish a connection before attempting to 
exchange data. MesoNet simulates a two-way handshake, with behavior patterned after 
TCP implementations deployed in Microsoft Windows™ operating systems [11]. The 
source sends a SYN packet and then waits 3 x 103 time steps for a connection to be 
established. If a connection is not established, then the source sends a second SYN and 
waits 6 x 103 time steps for a connection to be established. If a connection is not 
established, then the source sends a third SYN packet and waits 12 x 103 time steps for a 
connection to be established. If no connection is established after 21 x 103 time steps, 
then the connection is declared to have failed and the source enters the OFF state after 
selecting the next time for the source to reenter the ON state. 

After successfully establishing a connection, a source enters the CONNECTED 
state and begins to transfer data packets. Upon initially entering the CONNECTED state, 
a source checks the time step and flow class (see 3.1.2.3 below) to determine whether the 
file size should be increased. MesoNet permits qualified flows to be designated as jumbo 
flows during particular time periods. The size of a jumbo flow is multiplied by an 
additional factor, intended to simulate the exchange of large data sets between research 
organizations. Upon transferring the first data packet of a file, the flow state is initialized 
– consistent with requirements of the particular transport protocol used on the flow. For 
all flows, both the congestion window and slow-start threshold are set to initial values 
and the flow is placed into the SLOW-START phase. The flow also establishes an initial 
estimate for the smoothed round-trip time (SRTT) between the source and receiver. This 
initial estimate is derived from the network topology used in the simulation (see 3.1.2 
below). The first packet is transferred to the access router that encompasses the source. If 
the incoming queue in the access router is full, then the data packet is dropped. 

After transferring the initial data packet of a flow, a source enters its main 
processing mode that attempts to transfer data packets whenever permitted and until all 
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required data packets have been sent. The source maintains a retransmission timeout 
(CRTO) that allows it to recover from situations where required feedback does not arrive. 
The first step of processing is to determine if the retransmission timer has expired. If so, 
following rules associated with a specific transport protocol, the source reduces the slow-
start threshold and resets the congestion window to its initial value. The source also 
doubles and resets the retransmission timeout and then reenters the SLOW-START 
phase. 

Before sending additional data packets, a source determines how many data 
packets it may send. Roughly, this is the congestion window minus the number of data 
packets sent but not yet acknowledged by the receiver. Of course, the number of data 
packets to be sent must also be bounded by the file size for the flow. If any data packets 
may be sent, then the source transfers one data packet to the access router that 
encompasses the source. If the incoming queue in the access router is full, then the data 
packet is dropped. Sending multiple data packets requires multiple invocations of a 
source. Thus, the number of packets that a source may send per time step is limited by the 
source’s capacity (in packets per time step, or ppts), which is established by a 
configuration parameter (see 3.2.4 below).        
 
3.1.1.2 Receivers. MesoNet receivers are responsible for sending positive and negative 
acknowledgment packets as directed by entries in an incoming queue. In MesoNet, each 
data packet associated with a flow is assigned a monotonically increasing (integer) 
sequence number. Acknowledgement (ACK) and negative acknowledgment (NAK) 
packets also contain a sequence number that identifies the sequence number of the next 
data packet expected by a receiver. In MesoNet, packets flow along a fixed route; thus, 
packets may be lost but not reordered. For this reason, the sequence numbers of packets 
on a flow can continually increase and still indicate packet losses and receptions. When a 
data packet arrives with an expected sequence number then an ACK packet should be 
sent with the next sequence number. When a data packet arrives with an unexpected 
sequence number then a NAK packet should be sent with the next sequence number. 
When a source receives either an ACK or a NAK, this means that a receiver got a data 
packet, though perhaps not the expected data packet. Thus, by counting the number of 
ACK and NAK packets from a receiver, a source can determine how many data packets 
were received. Data packets lost before reaching a receiver or ACK and NAK packets 
lost before reaching a source will cause a source to send additional data packets, which 
are retransmissions.  

    The processing of a receiver is quite simple. If there are no entries in its queue, 
then the receiver does nothing. If there are entries in its queue, then the receiver removes 
the first entry and generates an outgoing SYN+ACK, ACK or NAK packet as indicated. 
The outgoing packet is given to the access router associated with the receiver. If the 
incoming queue of the access router is full, then the packet is discarded. Sending multiple 
ACK or NAK packets requires multiple invocations of a receiver. Thus, the number of 
packets that a receiver may send per time step is capped by the receiver’s capacity (in 
ppts), which is established by a configuration parameter (see 3.2.4 below). 
 
3.1.1.3 Access Routers. Access routers are the most complex elements of a MesoNet 
model. Each access router has two queues: one for packets bound up toward the network 
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core and one for packets bound down toward sources and receivers. At each invocation, 
an access router processes at most one packet, alternating between the up and down 
queues. If no packet is available, then the access router simply does nothing. Access 
routers are also responsible for three roles: (a) forwarding outgoing packets from sources 
and receivers toward the network core, (b) processing incoming SYN and data packets on 
behalf of subordinate receivers, and (c) processing incoming SYN+ACK, ACK and NAK 
packets on behalf of subordinate sources. Each of these roles is addressed in turn. 

If a packet is outbound toward the network core, then the access router removes 
the packet from the up queue and finds the next-hop router (either a POP router or a 
backbone router) and forwards the packet to that router. If the incoming queue of the 
destination router is full, then the packet is discarded. 

If a packet is inbound toward the network edge, then the router removes the 
packet from the down queue and applies processing that depends upon the packet type. If 
the inbound packet is a SYN, then the access router creates an entry for the destination 
receiver requesting generation of a SYN+ACK and places the entry into the receiver’s 
work queue. If the inbound packet is a SYN+ACK, then the access router changes the 
phase of the destination source to CONNECTED. If the inbound packet is a data packet, 
then the access router compares the packet sequence number to the sequence number 
expected by the receiver. If the sequence numbers match, then the access router creates 
an ACK entry and places it into the work queue of the destination receiver. If the 
sequence numbers do not match, then the access router creates a NAK entry and places it 
into the work queue of the destination receiver. The access router also updates the 
sequence number of the destination receiver to be one greater than the sequence number 
in the received data packet. 

If the inbound packet is an ACK or NAK packet, then the access router updates 
the destination source state to reflect the feedback. First, the access router decrements the 
number of data packets that remain to be sent on the flow. If no more data packets remain 
to be sent, then the source is placed into the OFF state and a time is selected for the 
source to return to the ON state. If the inbound ACK or NAK is an interim packet in the 
flow, then the access router updates the SRTT and retransmission timeout for the source. 
The access router also sets the highest sequence number acknowledged for this flow to be 
the sequence number in the ACK or NAK. If the sequence number in the ACK or NAK is 
lower than a sequence number recorded when the last NAK was received for the source, 
then the remainder of the feedback processing is skipped because the packet provides 
outdated information. The feedback processing that remains is to update the state of the 
source’s congestion control variables (notably the congestion window and slow-start 
threshold) based on (a) packet type (ACK or NAK), (b) current state of the congestion 
control variables, and (c) rules of the specific congestion control algorithm being 
simulated for the flow associated with the packet. 

MesoNet increases the congestion window identically for all flows for which the 
congestion window is below the slow-start threshold. The procedures adopted correspond 
to limited slow-start, as suggested by Floyd [7]. Upon receiving an ACK, if the 
congestion window is below some MAX_SS_THRESHOLD, then the congestion 
window is increased by one, which amounts to an exponential increase. If the congestion 
window exceeds MAX_SS_THRESHOLD, then the congestion window (cwnd) is 
increased by 1/(cwnd/(0.5 x MAX_SS_THRESHOLD)), which amounts to a logarithmic 
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increase. When the congestion window exceeds the slow-start threshold, congestion 
avoidance procedures are adopted, where the increase resulting from an ACK depends 
upon the particular congestion control algorithm being simulated for the flow. For TCP 
Reno, receiving an ACK in congestion avoidance increases the congestion window by 
1/cwnd, which results in a linear increase.  

Upon receiving a NAK, the access router records the next data sequence number 
for the source when the NAK was received. This marks the ACK or NAK sequence 
number that must be received before feedback processing can recommence on this flow. 
In addition, receiving the NAK causes the access router to reduce the source’s congestion 
window. For TCP Reno, the congestion window is reduced by ½ and the slow-start 
threshold is set to the reduced congestion window, which ensures that the flow enters 
congestion avoidance, where cwnd increases linearly upon receiving new ACKs. The 
explanation of other congestion control algorithms is postponed until Chapter 5. 

Whenever an access router is invoked it processes only one packet. Thus, to 
process multiple packets an access router must be invoked multiple times. The rate at 
which an access router is invoked denotes its capacity (in ppts). This capacity is 
established by configuration parameters (see 3.2.3 below). 
 
3.1.1.4 Point-Of-Presence Routers. Point-of-Presence (POP) routers provide intermediate 
points to connect access routers to the network backbone. (Note that some access routers 
may be connected directly to backbone routers, as discussed below in 3.1.2.2). POP 
routers serve only to forward packets from access routers toward backbone routers and to 
forward packets from backbone routers toward access routers. Thus, POP routers act as 
statistical multiplexor and demultiplexor elements. MesoNet topologies do not permit 
POP routers to be connected to each other or to be connected to multiple backbone 
routers. 

Each POP router has two queues: one for packets bound up toward the network 
core and one for packets bound down toward the network edge. At each invocation, a 
POP router processes at most one packet, alternating between the up and down queues. If 
no packet is available from the appropriate queue, then the POP router is idle; otherwise, 
the POP router removes the first packet from the queue. If the packet is inbound, then the 
POP router looks up the next-hop access router and forwards the packet. If the incoming 
queue of the access router is full, then the packet is discarded. If the packet is outbound, 
then the POP router looks up the next-hop backbone router and forwards the packet. If 
the queue of the backbone router is full, then the packet is discarded. To process multiple 
packets, a POP router must be invoked multiple times. The rate at which a POP router is 
invoked denotes its capacity (in ppts). This capacity is established by configuration 
parameters (see 3.2.3 below).  
 
3.1.1.5 Backbone Routers. Backbone routers connect to each other through backbone 
links and also connect to POP or access routers. Thus, backbone routers forward 
outbound and transit packets to backbone links and forward inbound packets to POP or 
access routers. Each backbone router has a single queue from which one packet is 
processed on each invocation. If the queue is empty, then the backbone router does 
nothing. If the queue is not empty, then the backbone router removes and processes the 
first packet. If the packet is inbound, then the backbone router looks up the next-hop POP 
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or access router and forwards the packet onward. If the incoming queue of the next-hop 
router is full, then the packet is discarded. If the packet is an outbound or transit packet, 
then the backbone router forwards it on to the appropriate backbone link. To process 
multiple packets, a backbone router must be invoked multiple times. The rate at which a 
backbone router is invoked denotes its capacity (in ppts). This capacity is established by 
configuration parameters (see 3.2.3 below).  
 
3.1.1.6 Backbone Links. Backbone links are simplex links connecting (source and 
destination) pairs of backbone routers and delaying packets for a specified propagation 
time prior to delivering them to the next backbone router. Generally, backbone links are 
paired so that if one goes from source backbone router A to destination backbone router 
B, then a second goes from source backbone router B to destination backbone router A, 
Also, generally each of the paired backbone links exhibits the same propagation delay, 
though the model permits configuring asymmetric propagation times. Backbone links are 
simulated as queues sized to hold as many packets as a backbone router can forward in 
one time step times the number of time steps required to propagate packets on the link. At 
each invocation, a backbone link processes at most one packet. If the queue is empty, 
then the backbone link does nothing. If the queue is not empty, then the backbone link 
examines the first packet. If it is not yet time for the packet to arrive, then the backbone 
waits. Once the time has come for the packet to arrive at the destination backbone router, 
then the backbone link removes the packet from its queue and forwards it on to the 
backbone router. If the backbone router queue is full, then the packet is discarded. 

3.1.2 Network Topology 
Network topology (i.e., the arrangement of routers and links and routes that transit them) 
plays a key role in shaping macroscopic behavior in a packet network. The study of 
network topologies, particularly of the larger Internet topology, a network of networks, 
remains an object of extensive research [12-15, 18-22, 29, 32]. Given access to selected 
measurement points and little other information, researchers attempt to generate maps of 
network topologies [17, 23-24, 27-28, 31]. This becomes quite a difficult problem for the 
Internet as a whole, where a topology of autonomous systems is the measurement aim. 
Even generating maps of individual autonomous systems, each perhaps representing the 
topology of an Internet service provider (ISP), can be quite challenging when making 
measurements from outside the topology [16, 30]. 

MesoNet models a single ISP (Internet service provider) and thus the topology of 
interest is a collection of routers and links that compose a single autonomous system. 
MesoNet allows a user to define any network topology as long as a few restrictions are 
followed. First, POP routers may only connect to one parent (backbone) router, but may 
connect to multiple children (access) routers. Each access router may only connect to one 
parent router, either a POP router or a backbone router. This means that POP and access 
routers may not connect to routers of the same type. This results in fixed routing for 
packets flowing toward and away from the network backbone. Second, the network 
backbone must define fixed routes for packets flowing in a given direction between pairs 
of backbone routers. This means that packets flow on fixed routes among backbone 
routers. These restrictions deviate from some real network topologies in a couple of 
ways. First, some real network topologies provide multiple links between pairs of routers. 
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These multiple links provide increased capacity when all links are operating and also 
provide increased reliability when selected links are down. For MesoNet, higher capacity 
links would be modeled as higher capacity routers. MesoNet does not support capacity 
reductions that would occur when selected links within a multiple-link set fail. Second, 
some real network topologies allow links between routers at the same level. These same-
level links may provide multiple paths to adapt around temporary outages. MesoNet does 
not represent such alternate routes. Also, by assigning link costs, multiple paths may be 
used to engineer traffic flows along various routes. In such cases, link costs are not 
associated with link propagation delay but are chosen to create desired traffic patterns. 
MesoNet can be used to represent such traffic engineering because MesoNet does not 
explicitly require that routes be assigned based on link propagation delays. 

MesoNet topology restrictions have several implications. First, packets in each 
direction between a source and destination flow on the same fixed path. Second, the link 
capacities in MesoNet topologies remain fixed for the duration of a simulation.  

For the experiments discussed in this report, MesoNet uses a single topology, 
shown in Fig. 3-1. The backbone for this topology was adapted from the original Abilene 
backbone [25]. Other aspects of the topology were derived from investigations of ISP 
topologies, as reported in the published literature [26]. The simulated topology defines a 
fixed route for packets flowing between each source-receiver pair. While MesoNet may 
specify routes based on any criteria, the routes specified in the experiments reported in 
this document are shortest path routes that are based typically on link propagation delays. 
The assigned paths in both directions between a given pair of routers are usually, but not 
always, mirrors of each other. This implies that routes are not always determined by link 
propagation delays. The use of asymmetric routes is similar to the definition of traffic-
engineered routes defined for many real ISP topologies. The routes used in this study are 
specified below in Table 3-2. 

The resulting simulated topology was compared against an example topology 
used by an ISP. The comparison provided confidence in the main features of the topology 
shown in Fig. 3-1. Differences arose from topological restrictions imposed by MesoNet, 
as well as from the need to execute simulations within a tractable amount of computing 
time. There were four main differences observed between the topology in Fig. 3-1 and the 
example ISP topology. First, the real ISP topology used fixed path routing with weights 
assigned to achieve traffic engineering objectives rather than assigning weights based on 
propagation delays. Thus, while routes taken through both topologies are fixed, none of 
the routes in the real topology were shortest-path routes based on propagation delay. 
Second, the real ISP topology used multiple links to connect many pairs of routers. This 
provided an increase in both capacity and reliability. The simulated topology included 
only single links between router pairs. Thus, the simulated topology could not support as 
much traffic as the real topology. This restriction was adopted to decrease simulation 
time. Further, the simulated topology could not represent capacity decreases resulting 
from link failures. This restriction was adopted because the periods of time simulated 
(between 20 and 60 minutes) were of short duration and because investigations were not 
focused on network changes arising from link failures. Third, the real ISP topology 
exhibited multiple links from POP routers to backbone routers and also between POP 
routers. These multiple links were used for traffic engineering and for improving 
reliability. Fourth, the real topology included around 60 backbone routers and 81 bi-
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directional links, 85 POP routers and 663 access routers. The simulated topology includes 
only 11 backbone routers and 14 bi-directional links, 22 POP routers and 139 access 
routers. This restricts the simulated topology to carry less traffic than the real topology. 
Of course, restricting the size of the simulated topology reduces the computation time 
required to simulate the entire network over a given period of time. This is especially 
important when attempting to simulate high-speed forwarding capacities, ranging up to 
384 Gbps in simulations described in this report.  
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Figure 3-1. Topology used for simulation experiments discussed in this study 
 

In summary, the topology simulated in this study represents one instance of a real 
backbone topology (the original Abilene network). The remainder of the topology was 
inspired by traits from real ISPs, as reported from investigations in the published 
literature. The main restrictions adopted in the simulated topology deal with reducing the 
number and capacity of routers and links. These restrictions were adopted to allow for 
feasible simulations of network operation within available computing resources. The 
sections that follow describe the key aspects of the topology used in experiments 
throughout this study.    
 
3.1.2.1 Four-Tier Structure. The topology consists of a four-tier structure. The top tier is 
the network backbone, composed of 11 backbone routers (A-K in Fig. 3-1) and 14 bi-
directional links. Routers forward packets at some specified rate. Propagation delays are 
imposed only when packets transit backbone links. The second tier comprises 22 POP 
routers (A1-K2 in Fig. 3-1). The third tier comprises 139 access routers (A0a-K2d in Fig. 
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3-1). The fourth tier (not shown in Fig. 3-1) consists of sources and receivers that 
represent computers exchanging data over the network. 

Data packets are generated at a source, forwarded to an associated access router 
and then on to the access router’s parent, either a POP router or a backbone router. 
Outgoing data packets that reach a backbone router are forwarded on a link connecting to 
the next-hop backbone router on the route and so on until reaching the backbone router 
under which the receiver may be found. The destination backbone router forwards the 
packet on to the destination child router (either POP or access router). An inbound data 
packet reaching a POP router is forwarded on to the destination access router and then to 
the destination receiver. Acknowledgment packets flow in a similar fashion but in the 
reverse direction from receiver to source. This four-tier structure is similar to the 
structure that exists in many ISP networks. 

In general, backbone routers operate at higher speed than POP routers and POP 
routers operate at higher speed than access routers. Further, topologies are constructed so 
that backbone and POP routers can handle the expected load, leaving bottlenecks to arise 
at the level of access routers. For the topology in Fig. 3-1 to mimic this behavior requires 
that router speeds be configured properly.  
 
3.1.2.2 Heterogeneous Composition. Recent research, which attempts to map the network 
topology for selected ISPs, suggests a heterogeneous composition for real networks [26]. 
For example, some access routers operate at higher speeds than others and some access 
routers connect directly to backbone routers rather than transit across POP routers. The 
topology in Fig. 3-1 includes both forms of heterogeneity. First, access routers operate at 
three different speeds: normal, twice normal speed (green routers in Fig. 3-1) and ten 
times normal speed (red routers in Fig. 3-1). Second, selected access routers connect 
directly to backbone routers. The main reason access routers connect directly to backbone 
routers is because they require higher bandwidth. For this reason, the topology in Fig. 3-1 
has access routers, operating at ten times the normal speed, connect directly to backbone 
routers. Further, POP routers can handle fewer high-speed access routers than access 
routers of normal speed. The topology in Fig. 3-1 reflects this by allowing only four fast 
access routers to connect to a POP router, while a POP router can handle seven access 
routers of normal speed. Further heterogeneity is possible, for example, by allowing three 
normal access routers and two fast access routers to connect to POP routers.  
 
3.1.2.3 Flow Classes. Access routers provide network access for sources and receivers. 
The division of access routers into three speed classes (normal, fast and directly 
connected) has the effect of creating six possible classes of flows, depending upon the 
location of a flow’s source and receiver: NN1 (normal-normal), FN (fast-normal), DN 
(directly connected-normal), FF (fast-fast), DF (directly connected-fast) and DD (directly 
connected-directly connected). Thus, heterogeneity among access routers leads to 
heterogeneity among flows, which allows measurements to be made regarding the 
performance of flows within each of the six classes.  
 

                                                 
1 We color code flow-class designations to indicate their relationship to the types of access routers in the 
topology. 
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3.1.2.4 Fixed-Path Routing. Even when a choice exists among equal-cost routes, most 
deployed routers in the Internet attempt to ensure that all packets related to an individual 
flow transit the same fixed route in a given direction [41-43]. The aim is to have packets 
reaching receivers in sequence and thus to reduce problems associated with 
fragmentation of reassembly buffers. There exists debate on how successful routers are in 
achieving this aim [38-39, 45]. Since packet sequencing cannot be completely guaranteed 
on the Internet, receivers will sometimes indicate (via a duplicate acknowledgment) a 
packet has been missed, when in fact the packet may have been reordered rather than lost. 
For this reason, TCP sources typically wait for three duplicate acknowledgments before 
initiating retransmission of a lost packet. This allows time for reordered packets to arrive 
at a receiver and be acknowledged. The cost of this heuristic is that reaction to actual lost 
packets is somewhat delayed.    

MesoNet topologies are totally successful in achieving packet sequencing along 
the route in each direction between a source and receiver. The upshot of this MesoNet 
feature is that packets received out of order can be assumed to signal a loss. For this 
reason, MesoNet sources take retransmission actions after receiving one, rather than 
three, duplicate acknowledgments. (Note that MesoNet replaces the use of three duplicate 
acknowledgments with one explicit negative acknowledgment, or NAK). 
 

Table 3-1. Link Propagation Delays in the Base Simulated Topology 
 

Router Pair Link Pair Link Propagation Delay 
(in time steps) 

A-B 1-2 10 
A-C 3-4 12 
B-C 5-6 12 
B-D 7-8 4 
C-E 9-10 8 
D-F 11-12 20 
E-F 13-14 10 
E-G 15-16 7 
F-H 17-18 9 
G-H 19-20 7 
G-I 21-22 4 
H-J 23-24 7 
I-K 25-26 5 
J-K 27-28 3 

 
3.1.2.5 Simulated Abilene Backbone Characteristics. All experiments described in this 
study operate within the context of a simulated Abilene backbone network topology 
(recall Fig. 3-1) with the characteristics described in this section. First, the backbone links 
in the topology exhibit the base propagation delays shown in Table 3-1. The simulated 
topology encompasses (14 x 2 =) 28 unidirectional backbone links. The propagation 
delays, shown in Table 3-1, are the same for both backbone links (one in each direction) 
that connect the indicated router pairs. The odd numbered link of each pair flows in the 
forward direction (e.g., A to B) and the even numbered link flows in the reverse direction 
(e.g., B to A). 

The simulated topology defines fixed routes, given in Table 3-2, for packets 
flowing between sources and receivers located under specific pairs of backbone routers. 
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The fixed routes indicate links that are followed and so the sum of the link propagation 
delays determines the route propagation delays (as indicated in Table 3-2). The round-trip 
propagation times between selected source and destination domains can be determined by 
summing, from Table 3-2, the route propagation delay in the forward direction and the 
route propagation delay in the reverse direction. The average round-trip propagation 
delay for the base topology is 41 time steps; the minimum roundtrip propagation delay is 
6 time steps (i.e., route J-K-J) and the maximum roundtrip propagation delay is 100 time 
steps (i.e., route A-B-D-F-H-J-H-F-D-B-A). One-way paths that are part of the five 
asymmetric routes are highlighted in red in Table 3-2. 

 
Table 3-2. Routes across the Backbone from Source (S) to Destination (D) Domain 

(One-Way Route Propagation Delays in Time Steps Given in Parentheses) 
 

S\D A B C D E F G H I J K 

A - A-B 
(10) 

A-C 
(12) 

A-B-D 
(14) 

A-C-E 
(20) 

A-B-
D-F 
(30) 

A-C-
E-G 
(19) 

A-C-
E-G-H 
(34) 

A-C-
E-G-I 
(31) 

A-B-
D-F-
H-J 
(50) 

A-C-
E-G-I-

K 
(36) 

B B-A 
(10) - B-C 

(12) 
B-D 
(4) 

B-C-E 
(20) 

B-D-F 
(24) 

B-C-
E-G 
(27) 

B-D-
F-H 
(33) 

B-C-
E-G-I 
(31) 

B-D-
F-H-J 
(40) 

B-C-
E-G-I-

K 
(36) 

C C-A 
(12) 

C-B 
(12) - C-B-D 

(16) 
C-E 
(8) 

C-E-F 
(18) 

C-E-G 
(15) 

C-E-
G-H 
(22) 

C-E-
G-I 
(19) 

C-E-
G-H-J 
(29) 

C-E-
G-I-K 
(24) 

D D-B-A 
(14) 

D-B 
(4) 

D-B-C 
(16) - 

D-B-
C-E 
(24) 

D-F 
(20) 

D-F-
E-G 
(37) 

D-F-H 
(29) 

D-F-
H-G-I 
(40) 

D-F-
H-J 
(36) 

D-F-
H-J-K 
(39) 

E E-C-A 
(20) 

E-C-B 
(20) 

E-C 
(8) 

E-F-D 
(30) - E-F 

(10) 
E-G 
(7) 

E-G-H 
(14) 

E-G-I 
(11) 

E-G-
H-J 
(21) 

E-G-I-
K 

(16) 

F 
F-D-
B-A 
(30) 

F-D-B 
(24) 

F-E-C 
(18) 

F-D 
(20) 

F-E 
(10) - F-E-G 

(17) 
F-H 
(9) 

F-H-
G-I 
(20) 

F-H-J 
(16) 

F-H-J-
K 

(19) 

G 
G-E-
C-A 
(19) 

G-E-
C-B 
(27) 

G-E-C 
(15) 

G-H-
F-D 
(20) 

G-E 
(7) 

G-H-F 
(16) - G-H 

(7) 
G-I 
(4) 

G-H-J 
(14) 

G-I-K 
(9) 

H 
H-F-

D-B-A 
(43) 

H-F-
D-B 
(33) 

H-G-
E-C 
(22) 

H-F-D 
(29) 

H-G-E 
(14) 

H-F 
(9) 

H-G 
(7) - H-G-I 

(11) 
H-J 
(7) 

H-J-K 
(10) 

I 
I-G-E-
C-A 
(31) 

I-G-E-
C-B 
(31) 

I-G-E-
C 

(19) 

I-G-H-
F-D 
(40) 

I-G-E 
(11) 

I-G-H-
F 

(20) 

I-G 
(4) 

I-G-H 
(11) - I-K-J 

(8) 
I-K 
(5) 

J 
J-H-F-
D-B-A 
(50) 

J-H-F-
D-B 
(40) 

J-H-
G-E-C 
(29) 

J-H-F-
D 

(36) 

J-H-
G-E 
(21) 

J-F-H 
(16) 

J-H-G 
(14) 

J-H 
(7) 

K-I 
(5) - J-K 

(3) 

K 
K-I-G-
E-C-A 
(36) 

K-J-
H-F-
D-B 
(41) 

K-I-G-
E-C 
(24) 

K-J-H-
F-D 
(39) 

K-I-G-
E 

(16) 

K-J-H-
F 

(19) 

K-I-G 
(9) 

K-J-H 
(10) 

J-K-I 
(8) 

K-J 
(3) - 

3.1.3 Simulated Packets 
Simulated packets in MesoNet share many elements with real Internet packets, while also 
lacking some traits of real packets. Each simulated packet comprises six main fields: (a) 
packet type, (b) source address, (c) destination address, (d) flow identifier, (e) sequence 
number and (f) creation timestamp. Each simulated packet also contains a propagation 
time field used to control propagation across simulated backbone links. MesoNet packets 
can have one of the following types: SYN, SYN+ACK, DT, ACK or NAK. Each source 
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and destination address in MesoNet consists of three components: (1) domain identifier, 
(2) POP identifier, and (3) access-point identifier. Flow identifiers are represented as a 
pair of pointers: one to a source and one to a receiver. MesoNet packets are assigned 
monotonically increasing sequence numbers, but numbers are skipped whenever a packet 
in the flow is lost.  

The main difference between MesoNet packets and real Internet packets is that 
MesoNet packets lack size. This simplification was adopted to allow MesoNet to 
represent packet-level behavior without having to simulate the lower level of octets or 
bits. This was intended to make MesoNet easier to code and understand and faster to 
simulate. One could then assume that all MesoNet packets have the same size – for 
example, one could assume that each packet is 1500 octets (i.e., 12 x 103 bits) in length. 
In this way, processing rates expressed as packets per time step can be converted into 
other bases, such as octets per time step or bits per time step. 

Real Internet packet flows may consist of data going in both directions (i.e., flows 
may be full duplex), which also permits ACKs to be piggybacked on data packets. 
MesoNet flows simulate data moving in one direction only (i.e., flows are simplex) and 
thus ACKs are not piggybacked on data packets but instead are sent individually. The 
restriction to unidirectional data flows (with ACKs flowing in the reverse direction) 
combined with lack of packet size has the unrealistic effect that MesoNet processes 
simulated ACKs at the same rate as simulated data packets, which would not occur in the 
real Internet because ACK packets typically have a much smaller size than data packets. 
This is one reason why MesoNet cannot be used to derive precise quantitative measures 
of network performance. 

Real Internet packets do not include a NAK type – but instead use duplicate 
acknowledgments. Real Internet packets also include a FIN type, used to close flows. 
MesoNet dispenses with the FIN exchange and instead closes flows implicitly when a 
source receives the last expected ACK or NAK packet from a receiver. Real Internet 
packets may also include a RESET type, which can abort a flow. MesoNet allows a 
source to abort a flow with resorting to a RESET packet. 

Real TCP implementations may include several optional, optimization features, 
such as deferring ACKs, pacing data transmissions and selectively acknowledging 
packets. Further, real TCP implementations implement various procedures, such as keep-
alive ACKs that ensure a flow remains active even in the absence of data packets. 
MesoNet does not simulate any of these features or procedures, unless required by 
particular simulated transport protocols. 

3.1.4 Relating Abstract Time to Real Time 
MesoNet simulation progresses with respect to abstract time steps that have no specific 
meaning within the domain of real time. Various parameters in MesoNet specify element 
capacities in terms of units per abstract time step. This abstract formulation of time is 
quite unusual for network designers and engineers, who tend to think in capacities 
dimensioned along real time (e.g., bytes per second, packets per second or bits per 
second) instead of abstract time. To achieve mapping between abstract time steps and real 
time, MesoNet includes an explicit parameter to specify the basic simulated time unit. By 
setting this parameter, an experimenter creates a link between abstract time steps and real 
time. Configured capacities, given in packets per time step, are converted into delays 
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(i.e., 1/capacity) per packet, and then scaled by the basic time unit. For example, suppose 
a router is defined as operating at 400 packets per time step and the basic simulated time 
unit is defined as one millisecond (0.001), then the time taken to process one packet is 
computed as 1/400 x 0.001 = 2.5 x 10-6 seconds and thus the router processes packets at 
1/2.5 x 10-6 = 4 x 105 packets per second. 

3.2 Model Configuration    
The operation of MesoNet elements is controlled by a number of parameters that must be 
specified by the experiment designer. This section describes these configuration 
parameters, divided into six categories: (1) simulation control, (2) definition of user 
behavior, (3) adaptation of the network topology, (4) description of sources and receivers, 
(5) specification of optional long-lived flows, and (6) transport protocols. The settings of 
MesoNet parameters associated with a specific simulation run are reported in an output 
file, as explained below in Sec. 3.2.8.   

3.2.1 Simulation Control Parameters 
Simulation control parameters allow an experiment designer to control various aspects of 
a simulation’s operation, such as duration and measurement granularity. Parameter M 
defines the length of the measurement interval in abstract time steps. The model will 
make sample measurements (see Sec. 3.3 below) at the end of each measurement interval. 
Parameter MI defines the number of measurement intervals over which the simulation will 
execute. Thus, the total time simulated will be M * MI time steps. Parameter basicTimeUnit 
establishes a link between abstract time steps and simulated real time. This link is 
explained above in Sec. 3.1.4. 

Parameter MB defines the number of measurement intervals that can be buffered 
by the model. When the measurement buffer fills, measurements are appended to 
appropriate files and the measurement buffer is cleared to accumulate subsequent 
measurements. This enables very long simulations to be conducted without using 
excessive memory. 

Parameter exID can be used to assign a number to a simulation run. This number 
provides one means of distinguishing measurement file names and of associating a 
related set of measurement files. The system time is used as another means. Typically, 
the parameter exID would be set to specific run numbers associated with some experiment 
design. For example, a sensitivity analysis experiment requiring 64 runs would set exID 
sequentially from 1 to 64 to reflect each of the runs required by the experiment design. 
This would allow specific output files to be associated with specific experiment 
configurations. 

Parameter RandOffset defines the offset used to parameterize seeds for the random 
number streams2 used in MesoNet. Typically, for experiment designs that expose 
different system configurations to similar random conditions, the RandOffset should be set 
to the same value for all runs. Alternatively, when the same system configuration is to be 
exposed to varying random conditions, RandOffset should be set to different values for 
each run. 
                                                 
2 MesoNet uses seven uniform pseudo-random number streams to control various aspects of the simulation, 
such as assigning congestion control algorithms to sources, generating think times, assigning network-
interface speeds, starting sources, determining file sizes and file types, and selecting flow receivers. 
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3.2.2 Parameters Defining User Behavior 
Parameters defining user behavior determine the demand that users will generate on the 
simulated network. The parameters defining user behavior represent two main aspects: 
think time and file size. Parameter lambdaOFF specifies the average number of time steps 
that a user delays between file transfers. This parameter is the mean of an exponential 
distribution. Parameter lambdaON specifies the average number of packets that a flow 
transfers. This parameter is the mean of a Pareto distribution. Parameter alpha is the shape 
of the Pareto distribution of file sizes. The Pareto distribution results in heavy-tailed file 
sizes, which some researchers have observed on the Internet [33-36]. 

The fundamental file size parameter (lambdaON) should be construed as 
representing files sizes of typical Web pages on the Internet. Sometimes, users may 
decide to download files, linked from web pages. For example, a user may download a 
report, a dataset, a song, a photograph or a video. The parameter Fp represents the 
probability with which a user decides to download a linked file. In general, linked files 
would be larger than typical web pages, so the parameter Fx represents the multiplier by 
which linked files will be increased beyond normal Web page sizes. Thus, a user will 
select a file size with an average of lambdaON. Then, with probability Fp, the file size will 
be multiplied by Fx to represent a linked file3. 

MesoNet can also simulate specific periods during which DD flows (between 
sources and receivers under pairs of directly connected access routers) exchange very 
large scientific datasets. Parameter Jon defines the proportion of total simulated time that 
must elapse before this mode of operation commences and parameter Joff defines the 
proportion of total simulated time that must elapse before this mode of operation ceases. 
Thus, this special mode commences when simulated time steps reach M x MI x Jon and 
ceases when simulated time steps reach M x MI x Joff. When this mode is operational, the 
selected file size of any DD flow will be multiplied by parameter Jx. Setting Jon > 1.0 
disables this mode of operation.  

3.2.3 Parameters Adapting Network Topology 
While requiring specification of a basic network topology (such as defined in Sec. 3.1.2), 
MesoNet permits an experiment designer to adapt that topology in several ways. 
Parameter settings allow adjustment of link propagation delays, router speeds and buffer 
sizes in routers. 

Parameter deltaX is set to a factor that is used to multiply the link propagation 
delays that were specified in the base topology. Setting deltaX = 1.0 means that base 
propagation delays will remain unchanged. Setting deltaX > 1.0 increases propagation 
delays by the specified factor. Setting deltaX < 1.0 reduces propagation delays by the 
specified factor. 

 Parameter R1 establishes the basic forwarding speed (in packets per time step) of 
the backbone routers; however, since backbone routers handle transit traffic as well as 
inbound and outbound traffic, the actual capacity of backbone routers is set to R1 x 
BBspeedup, where BBspeedup could be set to reflect the number of transit links for a 
typical backbone router in a given topology. By default, BBspeedup = 1. MesoNet 

                                                 
3 In Chapter 8 we introduce additional file-size probabilities and multipliers that allow simulation of larger 
files, such as software service packs and movie downloads. 
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enforces the usual relationship that backbone routers are faster than POP routers, which 
are faster than typical access routers. To ensure this relationship, parameters R2 and R3 
are set to divisors4 that are used to reduce R1. The speed of POP routers is set to R1/R2, 
while the speed of typical access routers is set to R1/R2/R3. Recall, though, that MesoNet 
topologies allow for some heterogeneity with respect to access routers: some access 
routers may be faster than typical access routers and some access routers may be 
connected directly to backbone routers. Parameters Bfast and Bdirect are used to increase 
the speed of such routers. Fast access routers are assigned a capacity of R1/R2/R3xBfast. 
The capacity of each directly connected access router is set to R1/R2/R3xBdirect. 

In addition to assigning buffer sizes directly for routers, MesoNet also implements 
two alternative buffer-sizing algorithms. One algorithm, which embodies recommended 
practice [40, 44], sizes each router’s buffer to accommodate the estimated average round-
trip time (RTT) for routes transiting the router multiplied by the router’s capacity (C). 
Thus, this algorithm sets the buffer size of each router to RTTxC, where RTT is the 
average round-trip time for the topology and C is the capacity of the specified router – so 
faster routers will have larger buffers and larger propagation delays will increase buffer 
sizes in all routers. The second algorithm, following the suggestion of McKeown and 
colleagues [37], divides the computed buffer size by the square root of the expected 
number of flows transiting a router. This algorithm then sets buffer sizes to 
RTTxC/SQRT(N), where N is the expected number of flows transiting a given router. 
MesoNet estimates N by aggregating the number of sources and receivers under a router 
(or under subordinate routers) and then dividing by two. 

Parameter QszAlg specifies which buffer sizing algorithm to use: 1 means RTTxC; 
2 means RTTxC/SQRT(N); 3 means (RTTxC + RTTxC/SQRT(N))/2; and a higher 
number means all buffer sizes are set directly to the given number. Setting QszAlg = 3 
amounts to interpolating between algorithms 1 and 2. The buffer size, as set or as 
computed by the specified algorithm, is then multiplied by parameter Qfactor to establish 
the final buffer size of each router. Setting Qfactor = 1.0 uses the computed or assigned 
buffer size, while setting Qfactor > 1.0 increases buffer size and setting Qfactor < 1.0 
decreases buffer size.  

3.2.4 Parameters Describing Sources and Receivers 
MesoNet uses several parameters to control the number, distribution and speed of sources 
and receivers in the fourth tier of the network topology. Every access router in the 
simulated topology contains some number of sources and receivers. Parameter 
baseSources defines the relative scale of the number of sources (and receivers) under a 
typical access router. For example, if baseSources = 100, then access routers will have on 
the order of 100 sources each, subject to variations arising through specification of 
related parameters, as discussed below. If one knows the number of access routers (Na) in 
a given topology, then one can compute Na x baseSources, which gives the approximate 
maximum number of active flows. For example, the topology in Fig. 3-1 has 139 access 
routers, so for baseSources = 100 the maximum number of active flows would be about 
13.9 x 103. In order to reduce the blocking probability for a source seeking a receiver in 
any given domain, MesoNet ensures that the base number of receivers under each access 

                                                 
4 We use the symbol “/” to designate division 
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routers is 4 x baseSources. In the example used here, then, the number of receivers would 
be on the order of 4 x 100 x 139 = 55.6 x 103. 

Parameter deltaU permits linear scaling of baseSources in order to increase or 
reduce the approximate number of sources and receivers in a given topology. The 
approximate number of sources under each access router is then computed as deltaU x 
baseSources. Continuing the example, assume that deltaU = 2.0; then the approximate 
maximum number of active flows would become 2 x 100 x 139 = 27.8 x 103 and the 
number of receivers would be on the order of 2 x 4 x 100 x 139 = 111.2 x 103. 

The sources and receivers in a topology must be distributed in some fashion. One 
possibility is to assign an equal number of sources and receivers to each access router. 
This would suggest a peer-to-peer world [20], where flow patterns are equally likely 
between any pair of access routers. Another possibility is to concentrate sources in a 
selected set of access routers and to place most receivers in a different set of access 
routers. This would suggest a client-server world [23], where flow patterns reflect the 
location of customers and the popularity of content providers. MesoNet provides six 
parameters that can alter the distribution of sources and receivers among access routers in 
each of three classes: normal (N-class), fast (F-class) and directly connected (D-class). 

Given a set of sources and one access router of each class, parameters probNs, 
probNsf and probNsd specify, respectively, the probability that a source is located under 
the N-class router, the F-class router and the D-class router. Since each access router 
could contain deltaU x baseSources sources, three access routers would contain 3 x deltaU 
x baseSources sources. To distribute those sources under each class of access router, one 
multiplies the appropriate probability by the number of available sources. Continuing the 
example, given one access router in each of the three classes, one would find 3 x 2 x 100 
= 600 sources. Suppose that probNs = 0.1, probNsf = 0.6 and probNsd = 0.3. Each N-class 
router would contain 600 x 0.1 = 60 sources, each F-class router would contain 600 x 0.6 
= 360 sources and each D-class router would contain 600 x 0.3 = 180 sources. Given the 
topology shown in Fig. 3-1, this distribution changes the maximum number of active 
flows to 17.46 x 103, i.e., 105 (N-class routers) x 60 (sources) + 28 (F-class routers) x 360 
(sources) + 6 (D-class routers) x 180 (sources). This means that more flows will originate 
from fast and directly connected access routers than from normal access routers. Similar 
adjustments can be made with respect to the distribution of receivers. 

Given a set of receivers and one access router of each class, parameters probNr, 
probNrf and probNrd specify, respectively, the probability that a receiver is located under 
the N-class router, the F-class router and the D-class router. Since each access router 
could contain 4 x deltaU x baseSources receivers, three access routers would contain 3 x 4 
x deltaU x baseSources receivers. To distribute those receivers under each class of access 
router, one multiplies the appropriate probability by the number of available receivers. 
Continuing the example, given one access router in each of the three classes, one would 
find 3 x 4 x 2 x 100 = 2.4 x 103 receivers. Suppose that probNr = 0.8, probNrf = 0.1 and 
probNrd = 0.1. Each N-class router would contain 2.4 x 103 x 0.8 = 1.92 x 103 receivers, 
each F-class router would contain 2.4 x 103 x 0.1 = 240 sources and each D-class router 
would contain 2.4 x 103 x 0.1 = 240 sources. Given the topology shown in Fig. 3-1, this 
distribution changes the maximum number of active receivers to 209.76 x 103, i.e., 105 
(N-class routers) x 1.92 x 103 (receivers) + 28 (F-class routers) x 240 (receivers) + 6 (D-
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class routers) x 240 (receivers). This means that more flows will have receivers in normal 
access routers than in fast and directly connected access routers. 

The example used here might describe a client-server view of the distribution of 
sources and receivers. First, 58 % of data sources reside under the 28 F-class routers 
while the remaining 42 % of data sources reside under the other 111 access routers. 
Second, 96 % of all data sinks are under the 105 N-class routers, while the remaining 4 % 
of data sinks are under the 34 remaining access routers. This distribution of sources and 
receivers also influences the probability of various flow classes (recall the six flow 
classes described above in 3.1.2.3). For the example, 57 % of all flows will be FN flows 
and 35 % will be NN flows. The remaining 8% of flows are distributed as follows: 6.2 % 
DN flows, 1.9 % FF flows, 0.6 % DF flows, and the remaining 0.04 % DD flows. 

Aside from differences in location, sources and receivers might also transmit 
packets at different speeds. For example, many users have computers that transmit at 100 
million bits per second (Mbps), while some users have computers that transmit at 1 Gbps. 
MesoNet provides three parameters to specify speed differences among sources and 
receivers. Parameter Hbase defines the capacity (in packets per time step) of normal 
sources and receivers, while parameter Hfast defines the capacity of fast sources and 
receivers. Parameter FastHostProb specifies the probability that any given source or 
receiver is fast. Upon generation of a source or receiver, capacity is set to Hfast with 
probability FastHostProb and to Hbase with probability 1 – FastHostProb. 

Another key characteristic of sources is the mechanism used to react to congestion 
on flows (see Chapter 5). MesoNet simulates seven alternate congestion control 
algorithms: standard TCP Reno [8-9], Binary Increase Congestion control (BIC) [61], 
Compound TCP (CTCP) [58], FAST [60], High Speed TCP (HSTCP) [52], Hamilton 
TCP (HTCP) [54], and Scalable TCP [53]. Sources are assigned one of these seven 
algorithms with probabilities specified by the following parameters: prTCP, prBICTCP, 
prCTCP, prFAST, prHSTCP, prHTCP and prSCALABLE. Each of these parameters can be set 
to any real value between 0 and 1, provided that the sum of the seven parameter values is 
1. Each source retains its assigned congestion control algorithm for the duration of a 
simulation run. 

Finally, MesoNet uses a probability distribution to determine the initial activation 
time for sources. Parameter prON specifies the probability that a source is activated 
immediately. Parameter prONsecond defines the probability that a source is activated as 
part of a second wave. Parameter prONthird defines the probability that a source is 
activated with the third wave. Remaining sources are activated in a fourth and final wave. 
Sources in the second wave are activated after a random delay, using an exponential 
distribution with a mean 1/3 x lambdaOFF. Sources in the third wave are activated after an 
average random delay of 2/3 x lambdaOFF. The remaining sources are activated after an 
average random delay of lambdaOFF.  

3.2.5 Parameters Specifying Special Long-Lived Flows 
MesoNet allows selected flows to be designated as long-lived flows, which start at a 
specified time and then transmit continuously, subject to congestion control constraints. 
Selected measurements are taken so that the behavior of long-lived flows can be 
monitored individually. Specification of long-lived flows requires the use of six 
configuration parameters. 
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  Parameter maxLongLivedFlows (default value 3) determines the maximum number 
of long-lived flows that can be described, which dimensions the compile-time arrays used 
to hold associated measurements. One may change this parameter if the need arises to 
define more than three long-lived flows. Parameter LL_FLOWS defines the actual number 
of long-lived flows that are specified in a given configuration file. Note that the following 
constraint must hold: LL_FLOWS < maxLongLivedFlows. 

Four parameters describe the characteristics of a long-lived flow. Each of these 
parameters is an array with dimension LL_FLOWS, where a given array index specifies a 
particular long-lived flow and can be used to find the four, associated characteristics. 
Array LL_FLOW_SOURCES contains the access-router identifier under which the source 
of each long-lived flow can be found. Array LL_FLOW_RECEIVERS contains the access-
router identifier under which the receiver of each long-lived flow can be found. Access-
router identifiers are sequentially assigned integers that range between 1 and the number 
of access routers defined in a topology. For the topology defined in Fig. 3-1, access-
router identifiers range over 1 (A1a) to 139 (K2d). For example, suppose 
LL_FLOW_SOURCES = {12, 24, 50} and LL_FLOW_RECEIVERS = {131, 102, 62}. These 
parameters specify three long-lived flows: (a) a flow where a source under access router 
12 (B0a) transmits to a receiver under access router 131 (K0a), (b) a flow where a source 
under access router 24 (C0a) transmits to a receiver under access router 102 (I0a), and (c) 
a flow where a source under access router 50 (E0a) transmits to a receiver under access 
router 62 (F0a). Note that a specific source-receiver pair is created and pre-connected for 
each long-lived flow, so connection establishment procedures are not used.  

Array LLon specifies the proportion of simulation time that must elapse before 
each designated long-lived flow will be activated. For example, given a configuration 
where M = 200 and MI = 7.5 x 103 (i.e., a simulation requiring 1.5 million time steps), then 
a long-lived flow with LLon = 0.4 will start at measurement interval number 3.0 x 103 
(i.e., at time step 60.0 x 104). If the specified LLon value is 0, then the flow begins 
immediately. If the specified LLon value is 1.0 or greater, then the flow will not be 
activated. 

Array SOURCE_TYPE specifies the type of congestion control mechanism to be 
used by the source of each long-lived flow. Acceptable values for the type of congestion 
control mechanism are shown in Table 3-3. Note that any other value for the type of 
congestion control mechanism causes MesoNet to assign a type probabilistically; 
probabilities are as specified in Sec. 3.2.4.     

 
Table 3-3. Specification of Values for Parameter SOURCE_TYPE 

 
SOURCE_TYPE Value Congestion Control Mechanism 

1 TCP Reno 
2 HSTCP 
3 CTCP 
4 Scalable TCP 
5 FAST 
6 HTCP 
7 BIC 
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3.2.6 Parameters for Transport Protocols 
The remaining parameters required to configure MesoNet simulations relate to transport 
protocols. Most of these parameters concern congestion control algorithms, and also have 
recommended values. We defer discussion of these until Chapter 5. Three parameters 
relate to initial slow-start procedures, where MesoNet adopts the same behavior for all 
sources, regardless of congestion control algorithm. 

 Any TCP flow starts without knowledge of the surrounding environment, 
including network-interface speed, access-link speed and congestion on the network path 
to a receiver. For this reason, TCP adopts a probing procedure, known as slow start. 
During initial slow start, a TCP flow transmits relatively few packets. As 
acknowledgments are received successfully, a TCP flow then quickly increases its 
sending rate until a packet loss is signaled. After a packet loss, a TCP flow reduces its 
sending rate. Subsequently, receipt of acknowledgments causes a TCP flow to increase its 
sending rate less quickly than occurred prior to the loss. 

The behavior of initial slow start is dimensioned primarily by two parameters. 
First, the initial congestion window (parameter INITIAL_TCP_CWND) determines the 
number of packets that will be transmitted prior to receiving an acknowledgment. As a 
default, MesoNet sets INITIAL_TCP_CWND = 2, which corresponds to the initial 
congestion window used in several Microsoft Windows™ operating systems [11]. During 
initial slow start, TCP sources increase the congestion window by one packet for each 
acknowledgment received successfully. This amounts to an exponential increase in the 
congestion window (and corresponding sending rate). After the congestion window 
reaches a specified value, known as initial slow-start threshold, further acknowledgments 
increase the congestion window (cwnd) by 1/cwnd, which amounts to a linear increase. 
Thus, a second parameter, INITIAL_TCP_SS_THRESHOLD, defines the value of the 
congestion window after which the increase becomes linear. An appropriate setting for 
this value is not widely agreed upon. Some experts [6] suggest that the threshold should 
be set arbitrarily large in order to quickly discover available bandwidth. Mark Carson 
(personal communication, November 12, 2008) reports that Linux sets the threshold 
based on feedback about the maximum number of packets that can be buffered by the 
receiver. Still others [10] suggest a low threshold might be prudent for its positive 
influence in reducing network-wide congestion. 

Floyd observes [7] that using an arbitrarily large threshold in high-speed networks 
can lead to conditions where a long sequence of packets could be lost on a new flow, 
which results in wasted network capacity and poor user performance. Floyd also observes 
that using a low threshold in high-speed networks can lead to conditions where 
insufficient packets are sent early in a flow, which gives poor bandwidth utilization and 
poor user performance. Given the tradeoffs between an initial slow-start threshold that is 
too small and one that is too large, Floyd recommends using a limited slow start, which 
introduces a third parameter, MAX_SS_THRESHOLD. In limited slow start, a TCP source 
increases the congestion window exponentially with successive acknowledgments up to 
MAX_SS_THRESHOLD. Subsequently, receipt of successive acknowledgments causes the 
congestion window to be increased by 1/cwnd/(0.5xMAX_SS_THRESHOLD) until 
INITIAL_TCP_SS_THRESHOLD. In this second stage of initial slow start the congestion 
window increases logarithmically. After the congestion window reaches 
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INITIAL_TCP_SS_THRESHOLD, the congestion window increases linearly with new 
acknowledgments. Floyd recommends a value of 100 for MAX_SS_THRESHOLD. 

MesoNet adopts limited slow start procedures, as recommended by Floyd. By 
default, the relevant MesoNet parameters are set as follows: MAX_SS_THRESHOLD = 100 
and INITIAL_TCP_SS_THRESHOLD = an arbitrarily large integer. To deactivate limited 
slow start set MAX_SS_THRESHOLD > INITIAL_TCP_SS_THRESHOLD. 

Given the relatively small size of Web objects and high (and increasing) network 
speeds and relatively long propagation delays in networks, initial slow-start procedures 
can have a dominating effect on user throughputs. This is because sources must wait for 
feedback before increasing congestion window size and corresponding sending rate. The 
initial size of the congestion window coupled with the rate of increase can dictate 
observed throughput for small to medium sized files. Thus, observed throughputs could 
be biased by file size on individual flows that use variations in initial slow-start 
procedures. For this reason, MesoNet ensures that all TCP flows use the same initial 
slow-start procedures. 

3.2.7 Parameters Identifying Monitored Links 
The configuration file closes with parameters that may be used to identify links in the 
topology for which MesoNet should count packet transmissions over time. The specific 
meaning of these parameters is given below in Sec. 3.3.7. 

3.2.8 Reporting Parameter Settings 
Prior to commencing a simulation, MesoNet writes the settings of parameter values to a 
text file in the directory in which model measurements will be reported. The file and 
directory naming conventions mirror those used for measurement files (see Sec. 3.3.1 
below). The first blank in the general file naming form is replaced by the token 
“ConfigurationSettingsFor”.  So, for example, parameter settings will be written to a file 
with a name similar to “ConfigurationSettingsForRun0TimeStamp41540.txt”. This file 
also reports the value of various derived parameters, which are computed from 
combinations of parameter settings. 

3.3 Model Measurements 
MesoNet measures many facets of the spatiotemporal behavior of a simulated network. 
This section outlines the measurement approach and details some specific measures taken 
and reported during MesoNet simulations. The measures fall into six general categories. 
Summary measures report selected information that indicates general workload and 
performance during a simulation. Aggregate measures describe the temporal behavior of 
the entire network, as it unfolds during a simulation. Flow-class measures indicate the 
average temporal behavior of each of the six flow classes (recall 3.1.2.3) simulated by 
MesoNet. Long-lived flow measures follow the temporal behavior of any specific long-
lived flows (recall 3.2.5) configured in a particular simulation. Per-router measures 
monitor the temporal behavior of each individual router within a simulated topology. 
Optional, link-level measures report the temporal progression of traffic on selected links 
within a simulated topology. To support the needs of specific experiments, MesoNet can 
also be augmented to provide measures that do not fall into any of the predefined 
categories. Below, we describe selected MesoNet measures reported in each category, as 



Study of Proposed Internet Congestion Control Mechanisms NIST 
 

Mills, et al. Special Publication 500-282 51 

well as how such measures may be augmented. Prior to describing specific measures, we 
discuss the general measurement regime, including file naming conventions, applicable to 
all categories of measures. 

3.3.1 General Measurement Regime 
Most of the measurements taken by MesoNet are reported as time series, where each data 
point in each series relates to a designated measurement interval. Thus, a typical 
measurement file will consist of a list of rows, where each row represents a measurement 
associated with a specific time interval. The first column in each row records the 
measurement interval and the remaining columns denote specific measures taken during 
that interval. Given this approach, one may plot each time series and may also compute 
statistical summaries (such as the average, median and variance) over all or part of each 
time series. With the exception of summary measures, MesoNet does not report column 
headers, so one should consult the descriptions below to understand the contents of each 
measurement file. 

 MesoNet uses a convention to name measurement files. The general file naming 
form is: “_____Run_TimeStamp_____.txt”, where the first blank is replaced by the name 
of the specific measure, the second blank is replaced by the value of exID, and the third 
blank is replaced by a timestamp taken from the real-time clock of the computer 
executing the associated simulation. All measurement files for a specific simulation run 
are placed into a single directory, which is named using the following general form: 
“Run_TimeStamp_____”. For example, if a simulation runs with exID = 0 and a real-time 
clock value of 34168, then the simulation would generate measurement files in directory 
“Run0TimeStamp34168”. One file in the named directory would be labeled as 
“ActiveFlowsRun0TimeStamp34168.txt”. This particular file reports the temporal 
evolution of the number of active flows (as discussed below in Sec. 3.3.3). The named 
directory would also contain additional files reporting other measures, as discussed 
below. 

3.3.2 Summary Measures 
MesoNet emits three files containing summary measures. The file that begins with the 
name “TotalPackets” reports two rows per measurement buffer (recall Sec. 3.2.1). The 
first row is a header that defines the columns in the second row. The six columns, from 
left to right, are: (a) the total number of measurement intervals covered by the row, (b) 
the total number of data packets input to the network, (c) the total number of data packets 
output from the network, (d) the total number of flows started during the simulation, (e) 
the total number of flows completed during the simulation and (f) the average number of 
SYN packets that were required to establish a successful connection. This information 
gives a general idea of the workload to which the simulated network was subjected. 

The file that begins with the name “FlowThroughputsByType” reports two rows 
per measurement buffer. The first row is a header that defines the columns in the second 
row. Each row contains six pairs of columns, where each pair is associated with a flow 
class. The first column in each pair reports the total number of completed flows of the 
class and the second column reports the average throughput for a completed flow of the 
class. Flow classes are given in the following order: DD, DF, DN, FF, FN, and NN. 
These measures give an idea about the general user experience in each flow class. 
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MesoNet measures flow throughputs as the file size (in packets) divided by the number of 
time steps required to send the file and then divided by the basicTimeUnit defined for the 
simulation configuration. 

The file that begins with the name “SYNrateByType” reports two rows per 
measurement buffer. The first row is a header that defines the columns in the second row. 
Each row contains six columns, where each column gives the average number of SYN 
packets that were required to establish a successful connection for each flow class. Flow 
classes are reported in the following order: DD, DF, DN, FF, FN, and NN. These 
measures give a general idea of the congestion faced by each particular flow class.  

3.3.3 Aggregate Measures 
MesoNet reports at least 17 aggregate measures depicting spatiotemporal behavior in a 
simulated network. See Table 3-4 for a summary. Each associated measurement file has 
the same general format: a series of two-column rows. The first column in a row gives 
the measurement interval when the measure was recorded and the second column gives 
the reported measure. Aggregate measurement files contain one row for every 
measurement interval in a simulation run. Below we describe each aggregate measure.  

The file beginning with the name “ActiveFlows” reports the number of flows that 
were in the process of transferring packets in the network at the end of each measurement 
interval. This excludes flows that are attempting to establish connections, which are 
reported in the file starting with “FlowsConnecting”. 

The file beginning with the name “AverageSRTT” reports the average smoothed 
round-trip time5 across all active flows at the end of each measurement interval. The 
average smoothed round-trip time (SRTT) is influenced by the network diameter and link 
propagation delays, as well as by queuing delays within each router on the path of each 
flow. To remove the influence of fixed properties (e.g., network diameter and link 
propagation delays) one could subtract the average round-trip propagation time of the 
simulated topology from the SRTT. Doing so would estimate the average queuing delay 
on network paths. 

The file beginning with the name “ConnectionFailures” reports the total number 
of connection attempts that failed during each measurement interval. One could divide 
the number of connection failures by the number of active connections plus the number 
of connection failures to compute a connection-failure rate for each measurement 
interval. 

The file beginning with the name “FlowCongestionWindowOverTime” reports 
for each measurement interval the average size (in packets) of the congestion window 
across all active flows. In general, a larger congestion window suggests less network 
congestion and higher throughputs on flows. 

The file beginning with the name “FlowsAboveThreshold” reports for each 
measurement interval the number of flows that are operating with congestion control 
regimes different from standard TCP. Most alternate congestion control mechanisms 
prescribe normal TCP congestion control rules until the congestion window passes a 
particular threshold value. Thus, this measure reports the number of flows operating past 
                                                 
5 Smoothed round-trip time (SRTT) is computed continuously for each flow using a weighted average that 
can assign greater emphasis to either recent or older observations. Thus, average SRTT is the average of the 
averages computed for each ongoing flow in a network simulation. 
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the associated threshold. Note that the threshold value is likely to be different for various 
alternate congestion control mechanisms (see Chapter 5). Flows operating under standard 
TCP Reno congestion control procedures are reported in the file beginning with 
“FlowsInNormalCongestionMode”. Flows operating within the initial slow-start phase 
are reported in the file beginning with “FlowsInInitialSlowStart”. 

 
Table 3-4. Summary of Aggregate Measures Reported by MesoNet 

 
Aggregate Measure General Definition 

Active Flows Number of flows that are in the process of transferring data 
packets 

Average SRTT Average smoothed round-trip time across all active flows in 
the network 

Connection Failures Number of connection attempts that failed within a 
measurement interval 

Flow Congestion Window Average congestion-window size across all active flows in 
the network 

Flows Above Threshold Number of active flows operating with alternate congestion 
control procedures 

Flows Completed Number of flows completed within a measurement interval 

Flows Connecting Number of flows that are in the process of connection 
establishment 

Flows in Initial Slow Start Number of active flows that are in the initial slow-start 
phase 

Flows in Normal Congestion Mode Number of active flows operating with standard TCP Reno 
congestion control procedures 

Loss Rate Ratio of (packets input – packets output)/packets input for a 
measurement interval 

NAKs Average number of NAK packets received by each active 
flow in the network 

No Receivers 
Number of instances in a measurement interval where a 
source could not find an available receiver under a chosen 
access router 

Packets In Number of data packets entering the network during a 
measurement interval 

Packets Out Number of data packets exiting the network during a 
measurement interval 

Retransmission Rate 
Ratio of file size to number of data packets transmitted 
averaged over each flow completing during a measurement 
interval 

Timeouts Average number of timeouts recorded by each active flow 
in the network 

Window Increases Average number of window increases recorded by each 
active flow in the network 

 
The file beginning with the name “FlowsCompleted” reports the number of flows 

that were completed during each measurement interval. Since the number of flows 
completed depends to some extent on the number of active flows, one could compute the 
flow-completion rate as the ratio of the number of flows completed over the number of 
active flows plus the number of flows completed. As the flow-completion rate 
approaches 50 % the simulated network is operating without much congestion. As the 
flow-completion rate approaches zero the simulated network is quite congested. 
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The file beginning with the name “LossRate” reports for each measurement 
interval the ratio of data packets input minus data packets output to data packets input. 
This gives a rough approximation of the rate at which a simulated network loses packets. 
The approximation is rough because the network also buffers packets in queues and on 
backbone links, so packets input in one measurement interval might leave the network in 
some future interval. Further, the loss rate considers only data packets, while other packet 
types may also be lost. Over time, the average network loss rate should be reasonably 
accurate as data points in the time series represent a sequence of rough approximations 
oscillating around the average. 

 The file beginning with the name “NAKs” reports the average number of NAK 
packets received by each flow during each measurement interval. Generally, as the NAK 
rate increases, the network is becoming increasingly congested. Of course, a congested 
network may lose an increasing number of NAKs, so severe congestion also exerts 
downward pressure on the NAK rate. Further, a higher number of active flows cause a 
given number of NAKs to be prorated over a larger number of flows. 

The file beginning with the name “NoReceivers” reports for each interval the 
number of times a source found no available receiver under an access router selected as 
the destination for a flow. When a simulation is configured properly and when the 
destination-selection algorithm is working correctly, this time series should consist of all 
zeros. This measurement has no value beyond a check that a model is properly 
configured and uses a reasonable algorithm for selecting destinations. 

 The file beginning with the name “PacketsIn” records for each measurement 
interval the total number of data packets injected into a simulated network topology. This 
measure is also used to compute the loss rate. The number of packets input gives a 
reasonable picture of the network load in terms of packets per time step. Of course, the 
actual network load is double the reported number of packets input because data packets 
stimulate ACK and NAK packets in reply. ACK and NAK packets are not included in the 
count of input packets. So, for example, a simulation reporting an input of one million 
packets per time step is actually experiencing a load of two million packets per time step. 
The file beginning with the name “PacketsOut” records for each measurement interval 
the total number of data packets exiting a simulated network topology. This measure is 
also used to compute the loss rate. As with packets input, packets output does not count 
ACK and NAK packets. One could compute an average network utilization by summing 
the rates of all simulated access routers and multiplying that sum by the measurement 
interval size and then dividing that multiplied sum into twice the number of packets 
output. This should yield a utilization value between zero and one6. For example, assume 
a measurement interval size of 200 time steps. Then, given the topology shown in Fig. 3-
1, and given that the 105 N-class access routers operate at 200 packets per time step 
(ppts), the 28 F-class access routers operate at 400 ppts and the 6 D-class access routers 
operate at 2000 ppts, then the entire network can output at most (105 x 200 + 28 x 400 + 6 
x 2000 =) 44.2 x 103 ppts. (Note that, assuming a basicTimeUnit = 0.001 and a packet size 
of 1500 bytes, this equates to about 5 x 1011 bits per second.) In one measurement interval 
then, the simulated network could output at most (200 x 44.2 x 103 =) 8.84 x 106 packets. 

                                                 
6 Note that since the computation is based on direct average measurement of data packets and an estimate 
for acknowledgment packets (as twice the number of data packets) the resulting utilization estimate is 
somewhat crude and can yield a value above one. 
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Assume that the average number of packets output per measurement interval, computed 
from a time series of packets output, is 8.15 x 105, then the average, aggregate network 
utilization can be estimated as [(8.15 x 105 x 2) / 8.84 x 106 = ] 0.184. 

The file beginning with the name “RetransmissionRate” records the average 
retransmission rate across all flows completing in each measurement interval. The 
retransmission rate for a completed flow is computed as the ratio of the number of data 
packets actually sent on a flow minus the file size (in data packets) to the file size. Data 
packets sent beyond the file size comprise retransmitted packets arising from lost (data or 
ACK or NAK) packets or from timeouts. As a reasonable approximation, the average 
retransmission rate for a network should be somewhere around twice the loss rate 
(because both data and acknowledgment packets may be lost). In general, increased 
network congestion leads to increased losses, which lead to an increased rate of 
retransmissions. A lower rate of retransmissions indicates lower network congestion. 

The file beginning with the name “Timeouts” records the average number of 
timeouts incurred on each active flow in each measurement interval. In MesoNet, 
timeouts arise most commonly when a data or acknowledgment packet is lost at the end 
of a data transfer. This occurs because no additional data is sent on a flow to stimulate 
additional acknowledgments. (Recall that MesoNet does not simulate procedures such as 
keep-alive acknowledgments.) Less frequently, timeouts occur when a path experiences 
unexpectedly large queuing delays. More rarely, timeouts might result when a complete 
congestion window of packets are lost. In general, an increased rate of timeouts suggests 
an increased level of network congestion. 

The file beginning with the name “WindowIncreases” records the average number 
of times each active flow increases its window during a measurement interval. In general, 
a higher rate of window increases suggests lower network congestion. Of course, the rate 
of window increases might also be influenced by network capacity and round-trip times.   

3.3.4 Flow-Class Measures 
MesoNet reports at least 13 flow-class measures depicting the average temporal behavior 
of each flow class7 in a simulated network. See Table 3-5 for a summary. Each associated 
measurement file has the same general format: a series of seven-column rows. The first 
column in a row gives the measurement interval when the measure was recorded and the 
next six columns give the reported measure for each flow class in the following order: 
DD, DF, DN, FF, FN and NN. Flow-class measurement files contain one row for every 
measurement interval in a simulation run. Below we describe each flow-class measure. 

The file beginning with the name “ActiveFlowsByType” records the number of 
flows with data transfers in progress in each flow class. This measure gives a good idea 
of the distribution of flows between various types of access routers across the simulated 
network topology. The measured distribution of flow classes can be compared with the 
computed theoretical distribution of flow classes predicted from the simulation 
configuration. This measure also helps explain the degree of variance observed in 
temporal throughputs for flows of each class because some flow classes have decidedly 
fewer active flows than other flow classes. Further, this measure can be used to identify 
periods during which flows of some particular class were not active. A related file 
                                                 
7 Chapter 8 introduces some other measures associated with different techniques to classify flows based on 
various additional characteristics. 
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(“FlowsConnectingByFlowType”) reports the number of flows trying to connect in each 
class. 

The file beginning with the name “ConnectionFailuresByType” records the 
number of connection attempts that failed for each flow class during each measurement 
interval. This measure can be used to compute a connection-failure rate for each flow 
class and to compare failure rates across flow classes. 

 
Table 3-5. Summary of Flow-Class Measures Reported by MesoNet 

 
Flow-Class Measure General Definition 
Active Flows by Type Number of active flows in each flow class  

Connection Failures by Type Number of connection attempts that failed in 
each flow class 

Flow Congestion Window by Type Average congestion-window size for active 
flows in each class 

Flow Retransmission Rate 

Ratio of file size to number of data packets 
transmitted averaged over each completing 
flow in each class during a measurement 
interval 

Flows Above Threshold by Flow Type 
Number of active flows operating with 
alternate congestion control procedures in 
each flow class 

Flows Completed by Type Number of flows completed in each flow 
class 

Flows Connecting by Flow Type Number of flows of each flow class that are 
trying to connect 

Flows In Initial Slow Start by Flow Type Number of active flows in each flow class 
that are operating within initial slow start 

Flows In Normal Congestion Mode by Flow Type 
Number of active flows in each flow class 
that are operating under standard TCP Reno 
congestion control procedures 

NAKs by Flow Type Average number of NAK packets received by 
each active flow in each flow class 

Temporal Flow Throughputs Average packets per time step output by flow 
class, divided by the basicTimeUnit  

Timeouts by Flow Type Average number of timeouts recorded by 
each active flow in each flow class 

Window Increases by Flow Type 
Average number of window increases 
recorded by each active flow in each flow 
class 

 
The file beginning with the name “FlowCongestionWindowByType” records the 

average congestion window for active flows in each flow class. This measure can be used 
to compare congestion windows across flows of various classes. Congestion window size 
is influenced by a complex collection of factors, and may be an interesting measure to 
study. 

The file beginning with the name “FlowRetransmissionRate” records the average 
retransmission rate for completed flows in each flow class. The measure is computed 
using the same relationships defined for aggregate retransmission rate. 

The file beginning with the name “FlowsAboveThresholdByFlowType” records 
the number of flows in each flow class that are operating with congestion control 
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procedures other than standard TCP. The ratio of this measure to the measure of active 
flows by type reveals the proportion of active flows in each flow class that are operating 
with a congestion window above the threshold defined for the appropriate congestion 
control procedures used for each flow. Related files report the number of active flows in 
each class operating in initial slow-start phase (“FlowsInInitialSlowStartByFlowType”) 
and also operating under standard TCP Reno congestion control procedures 
(“FlowsInNormalCongestionModeByFlowType”). 

The file beginning with the name “FlowsCompletedByType” records the number 
of flows in each flow class that were completed during each measurement interval. This 
measure may be combined with the measure of active flows by type to compute a flow 
completion rate for each flow class. 

The file beginning with the name “NAKsByFlowType” records the average 
number of NAKs received by a flow of each class during each measurement interval. 

The file beginning with the name “TemporalFlowThroughputs” records the 
average instantaneous throughput of flows in each flow class. This measure can be 
divided by the average file size (computed from the simulation configuration) for each 
flow class to estimate the average time taken by each flow class to transfer an average 
size file. For example, if a flow class has an average file size of 50 packets (75 Kbytes) 
and an average throughput of 100 packets (1.2 Mbits) per second, then it would take 
(50/100 =) 1/2 second to transfer an average size file. 

The file beginning with the name “TimeoutsByFlowType” records the average 
number of timeouts that occur for a flow of each class in each measurement interval. 
Similarly, the file beginning with the name “WindowIncreasesByFlowType” records the 
average number of window increases received by a flow of each class in each 
measurement interval. 

3.3.5 Long-Lived Flow Measures 
MesoNet reports up to 8 long-lived flow measures depicting the temporal behavior of 
each long-lived flow configured in a simulated network. See Table 3-6 for a summary. 
Each associated measurement file has the same general format: a series of multicolumn 
rows. The first column in a row gives the measurement interval when the measure was 
recorded and each of the remaining columns report a measure associated with a specific 
long-lived flow. The recording order corresponds to the order in which long-lived flows 
were defined in the simulation configuration. Below we describe each measure recorded 
for long-lived flows. 

The file beginning with the name “LongLivedFlowCongestionMode” records the 
congestion control procedures being used on each long-lived flow at the end of each 
measurement interval. When a long-lived flow is inactive, the measure reports the value 
“NONE”. When a long-lived flow is active but using standard TCP congestion control 
procedures, the measure reports the value “NORMAL”. Otherwise, the measure reports 
the specific congestion control procedure in use on each long-lived flow. Valid values for 
this measure include: “BIC”, “COMPOUND”, “FAST”, “H”, “HS” and “SCALABLE”. 
For long-lived flows operating under FAST congestion control procedures a separate 
measurement file (“LongLivedFlowFASTalpha”) reports the temporal evolution of the 
value of the FAST  parameter (see Chapter 5). 
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The file beginning with the name “LongLivedFlowCWNDs” reports the size of 
the congestion window at the end of each measurement interval for each long-lived flow. 
The file beginning with the name “LongLivedFlowNAKs” records the number of NAKs 
received by each long-lived flow in each measurement interval. The file beginning with 
the name “LongLivedFlowTimeouts” records for each long-lived flow the number 
timeouts experienced in each measurement interval. The file beginning with the name 
“LongLivedFlowWindowIncreases” records for each long-lived flow the number of 
increases in the congestion window that occurred in each measurement interval. The file 
beginning “LongedLivedFlowSRTT” reports the temporal evolution of the smoothed 
round-trip time for each long-lived flow. 

 
Table 3-6. Summary of Long-Lived Flow Measures Reported by MesoNet 

 
Long-Live Flow Measure General Definition 

Congestion Mode Congestion control procedures in use on each long-lived flow at 
the end of each measurement interval 

Congestion Window Size of the current congestion window for each long-lived flow 
at the end of each measurement interval 

FAST Alpha 
Value of the FAST  parameter at the end of each 
measurement interval for each long-lived flow that operates 
under FAST congestion control procedures 

NAKs Number of NAKs received in each measurement interval for 
each long-lived flow 

SRTT Value of the SRTT for each long-lived flow at the end of each 
measurement interval 

Throughputs Average packets per time step output by each long-lived flow, 
divided by the basicTimeUnit

Timeouts Number of timeouts recorded in each measurement interval for 
each long-lived flow 

Window Increases Number of window increases recorded in each measurement 
interval for each long-lived flow 

 
The file beginning with the name “LongLivedFlowThroughputs” reports for each 

long-lived flow the average throughput over each measurement interval. Average 
throughput8 is computed as the number of ACK and NAK packets sent by a flow’s 
receiver in a measurement interval divided by the measurement interval size and then 
divided by the basicTimeUnit configured for the simulation. 

3.3.6 Per-Router Measures 
MesoNet reports measurements associated with each router in the simulated network 
topology. For the topology shown in Fig. 3-1, this would be 172 routers. MesoNet reports 
per-router measures in three classes: (a) backbone routers, (b) POP routers and (c) access 
routers. Six measures are reported for backbone and POP routers, while 12 measures are 
reported for access routers. This section describes the relevant measures and related 
measurement files. The description is divided into two parts: (a) measures common to all 
routers and (b) additional measures recorded only for access routers. 
 

                                                 
8 This measure is often referred to as goodput. 
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3.3.6.1 Measurements Common to All Routers. MesoNet reports six measures for all 
routers. Table 3-7 gives a summary. Two measures (flows completed and packets 
forwarded) are aggregate measures summed over all measurement intervals. The 
remaining measures are time series reported at each measurement interval for each router. 
The measures are described below, beginning with the aggregate measures. 

Files reporting aggregate router measures contain two rows for each measurement 
buffer. The first row is a header identifying the number of measurement intervals over 
which the measures were aggregated and the second row contains an aggregate measure 
for each router. For the topology shown in Fig. 3-1, aggregate measurements for 
backbone routers would contain 11 columns (routers A through K) while aggregate 
measurements for POP routers would contain 22 columns (routers A1 through K2) and 
for access routers would contain 139 columns (routers A1a through K2d). 

 
Table 3-7. Summary of Measures Reported by MesoNet for Each Router 

 
Router Measure General Definition 

Active Flows The number of flows transiting each router at the end of each 
measurement interval 

Flows Completed  The aggregate number of flows carried by each router over all 
measurement intervals 

Losses  The number of packets discarded by each router in each 
measurement interval 

Queue Length For each router, the ratio of packets queued to buffer size at the 
end of each measurement interval 

Packets Forwarded The aggregate number of packets forwarded by each router 
over all measurement intervals 

Utilization The average utilization for each router over each measurement 
interval 

 
The file beginning with the name “BackboneRoutersFlowsCompleted” gives the 

aggregate number of flows that transited each backbone router over all measurement 
intervals. Similar files, beginning with the names “SubnetRoutersFlowsCompleted” and 
“LeafRoutersFlowsCompleted”, give the same measure for each POP9 and access router, 
respectively. The file beginning with the name “BackboneRouterPacketsForwarded” 
records the aggregate number of packets forwarded by each backbone router over all 
measurement intervals. Similar files, beginning with the names 
“SubnetRouterPacketsForwarded” and “LeafRouterPacketsForwarded”, report the same 
measure for each POP and access router. 

Files reporting the spatiotemporal evolution of routers contain a time series with 
one row for each measurement interval. Each row contains multiple columns. The first 
column gives the measurement interval with which the row is associated and the 
remaining columns give a measure for each appropriate router, depending upon category. 
Thus, for the topology shown in Fig. 3-1, time series related to backbone routers would 
contain rows of 12 columns, while time series related to POP routers would contain rows 
of 23 columns. Similarly, any time series related to access routers would contain rows of 
140 columns. 
                                                 
9 MesoNet code refers to second-tier routers as Subnet routers rather than POP routers and refers to third-
tier routers as Leaf routers rather than access routers. 



Study of Proposed Internet Congestion Control Mechanisms NIST 
 

Mills, et al. Special Publication 500-282 60 

The file beginning with the name “BackboneRoutersActiveFlows” records the 
number of active flows transiting each backbone router at the end of each measurement 
interval. Similarly, files beginning with the names “SubnetRoutersActiveFlows” and 
“LeafRoutersActiveFlows” report the number of active flows transiting each POP and 
access router, respectively. The file beginning with the name “BackboneRouterLosses” 
records the number of packets discarded by each backbone router in each measurement 
interval. Similar files beginning with the names “SubnetRouterLosses” and 
“LeafRouterLosses” records drop by each POP and access router. 

  The file beginning with the name “BackboneRoutersQLength” reports the ratio 
of packets queued to buffer size for each backbone router at the end of each measurement 
interval. Similar files, beginning with the names “SubnetRoutersQLength” and 
“LeafRoutersQLength” report the same ratio for each POP and access router. The file 
beginning with the name “BackboneRouterUtil” records the ratio of packets forwarded to 
capacity for each backbone router in each measurement interval. Similar files, beginning 
with the names “SubnetRouterUtil” and “LeafRouterUtil” record the same ratio for each 
POP and access router. 

 
3.3.6.2 Measurements Unique to Access Routers. MesoNet reports six additional 
measures that are recorded only for access routers. These additional measures relate to 
the activity of flows transiting specific access routers. Table 3-8 gives a summary. 

 
Table 3-8. Summary of Added Measures Reported by MesoNet for Access Routers 

 
Access-Router Measure General Definition 

Connection Failures The number of failed connection attempts for flows transiting 
each access router 

NAKs The average number of NAKs on flows transiting each access 
router 

No Receivers The number of instances when no receivers where available 
under each router 

SYN Rate The ratio of SYNs sent to first SYNs sent on flows transiting 
each access router  

Timeouts The average number of timeouts on flows transiting each 
access router 

Window Increases The average number of window increases on flows transiting 
each access router 

 
The file beginning with the name “LeafConnectionFailures” reports the number of 

connection failures during a measurement interval for flows that would have transited 
each access router. This includes flows where either an intended source or receiver was 
subordinate to the access router. The file beginning with the name “LeafNAKs” records 
for each measurement interval the average number of NAKs received on flows transiting 
each access router. Similar files, beginning with the names “LeafTimeouts” and 
“LeafWindowIncreases”, report for each measurement the average number of timeouts 
and congestion-window increases, respectively, on flows transiting each access router. 
The file beginning with the name “LeafNoReceivers” reports for each measurement 
interval the number of times each access router could not accommodate a flow because 
no receiver was available. Finally, the file beginning with the name “LeafSYNrateLeaf” 
records for the ratio of SYNs sent to first SYNs sent during connection establishment 
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procedures involving each access router. This file reports the average SYN rates each 
time a measurement buffer is dumped. Each report is preceded by a header line indicating 
the number of measurement intervals over which the SYN rate was averaged.   

3.3.7 Optional, Link-Level Measures 
MesoNet allows an experimenter to select up to one simulated (unidirectional) link to 
monitor in each router tier. Link selection is controlled by three parameters in the 
configuration file. Parameter BB_LINK_TO_MONITOR identifies which backbone link in 
the topology will be monitored. Backbone links are numbered sequentially for a specified 
topology. For example, given Table 3-1, setting BB_LINK_TO_MONITOR = 1 would 
monitor the link from backbone router A to B, while setting the parameter to 2 would 
monitor the link from backbone router B to A. Similarly, assigning a valid POP-router 
identifier from a topology to POP_LINK_TO_MONITOR will activate monitoring on the 
incoming link from a parent backbone router to the designated POP router. POP routers 
are identified with sequentially increasing integers from one (POP router A1 in Fig. 3-1) 
to the number of POP routers (i.e., the identifier is 22 for POP router K2 in Fig. 3-1). A 
third parameter, ACCESS_LINK_TO_MONITOR, controls monitoring on an incoming link 
from a parent router (either backbone or POP) to an access router. The link is specified 
by assigning ACCESS_LINK_TO_MONITOR a valid access-router identifier. Access routers 
are identified with sequentially increasing integers from one (access router A1a in Fig. 3-
1) to the number of access routers (i.e., the identifier is 139 for access router K2d in Fig. 
3-1). By default all link-selection parameters are set to zero, which means that no links 
are monitored. 

When link monitoring is active, MesoNet records the number of packets transiting 
each monitored link during each measurement interval and writes this information as a 
time series, where each row contains one two-column observation. The first column 
identifies the measurement interval and the second column gives the number of packets 
observed transiting the associated link during the measurement interval. The file 
beginning with the name “MonitoredBBLink” contains the time series for the specified 
backbone link. Similar files, beginning with the names “MonitoredSubnetLink” and 
“MonitoredLeafLink”, hold the time series for the specified POP and access links. Link-
monitoring files will not be produced if link monitoring is inactive. 

3.3.8 Augmenting Measures 
MesoNet can be augmented by an experimenter to make specific measures that are not 
already incorporated. The purpose of this section is to describe the general approach one 
should take to accomplish such augmentation. The approach is illustrated by an example 
involving capturing a traffic-flow matrix. This augmentation is already incorporated into 
MesoNet as a set of comments. Reviewing these comments should provide further 
guidance regarding how to augment the measures recorded by the simulation. 

To extend measurements made by MesoNet, one must add: (a) an array to hold 
the measurement of interest, (b) code to write the measurements to disk, (c) code to clear 
the measurement array and (d) in-line code to make the required measurements at the 
appropriate points in the model. To illustrate how this might be done, we consider an 
example where an experimenter decides to monitor traffic flows from selected 
observation points in a network to each access router. 
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First, one would define an array to hold the measurement of interests. In this case, 
the definition is for a three-dimensional array: 

 
int inBoundPackets[NUMBER_OBSERVATION_POINTS][LEAF_ROUTERS][M_BUFFERS] 

 
used to count packets. The first dimension is the number of observation points; the 
second dimension is the number of access (leaf) routers; the third dimension is the 
number of measurement intervals in one measurement buffer. In this case, the number of 
observation points is defined to equal the number of POP routers plus the number of 
directly connected access routers. The definition of the number of observation points is 
applied automatically, as long as the number of POP routers and the number of directly 
connected access routers is specified in the topology file. 

Next, one adds code to the write_measurements( ) procedure. The added code must 
do four things: (1) define a name for the file in which measurements are recorded, (2) 
open the file, (3) append the measurements to the file and (4) close the file. The 
conventions for naming measurement files are to prefix a directory name (Dname) to the 
file name chosen by the experimenter and to append a time stamp (RTC), followed by the 
extension “.txt”. The values for Dname and RTC are already defined by the program, so 
the experimenter must use them. Here is an example of the code to define the name for 
the file to record a traffic-flow matrix: 

 
write string=Fname(Dname, RTC) ".//_//FlowMatrix_.txt". 

 
This code places the constructed file name into the variable Fname. This must be 
followed by a statement that opens the file for append. Then one provides code to loop 
through the three-dimensional array and write out each measurement. In this case, each 
line written will contain four fields: (1) the number of the observation point where the 
traffic was observed, (2) the number of the access router to which the traffic was bound, 
(3) the measurement interval in which the observation was made and (4) the number of 
packets observed. The measurement-writing code automatically tracks the starting 
(previousEnd) and ending (currentEnd) measurement intervals for the measurement buffer; 
thus, the measurement interval is identified by adding the appropriate loop-control 
variable to the variable previousEnd. (For more details, the reader should see the related 
source code at the end of the write_measurements( ) procedure.)  After writing out the 
buffer, the file must be closed because the file descriptor is reused for each file that is 
written. 

 The experimenter must also provide code in the clear_measurements( ) procedure 
so that the measurement buffer can be cleared after it is written to disk. The exact nature 
of the clear code depends on the construction of the measurement array. At the outermost 
level, the clear procedure loops through the measurement intervals (i) in the buffer. Thus, 
for arrays dimensioned only on time, one can simply add code in this outer loop. The 
clear procedure also loops through various second (j) dimensions (e.g., POP routers, 
access routers, backbone routers, flow types and long-lived flows). Due to this, one can 
add code to clear the flow matrix under the loop through access routers. However, the 
flow matrix has a third (k) dimension (observation points), so one must add a loop over 
the observation points. Inside this innermost loop, one simply sets inBoundPackets[k, j, i] 
equal to zero. 
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All that remains is to add code to record the required measurements. This must 
either be done in-line in elements of the model or in the forever loop within the actions 
clause of the class StateMonitor. Where to add the measurement code depends on the 
nature of the measurements. Sample-oriented measurements, taken periodically, should 
be added to the class StateMonitor, while event-oriented measurements, recorded when 
they occur, should be added in-line within the appropriate model elements. Recording of 
the flow matrix requires event-oriented measurements, so code must be added in-line. In 
this case, we wish to record each packet that successfully reaches an outgoing access 
router when sent from each source or receiver. This means that we must increment the 
inBoundPackets array in both sources and receivers. For a source, this requires 
incrementing the array each time a packet is injected successfully. A source injects 
packets in four places: (a) upon initially attempting to connect (SYN), (b) upon retrying a 
connect attempt (SYN), (c) when initially sending a data (DT) packet after becoming 
connected and (d) when sending each subsequent data (DT) packet. Thus, one must add a 
line of code to increment the array in each of these places. For a receiver, there is only 
one place where packets are injected into the network; thus, one must add a line of code 
at this point to increment the array. (The user can find these five places in the model code 
by searching for inBoundPackets).   

3.4 Tracing Flow Behavior 
To support debugging or to enable monitoring of individual behavior of flows, MesoNet 
provides facilities to print traces associated with selected flows. The model traces only 
one flow at any given time and randomly selects which flows to trace. When the flow 
currently being traced is closed, then tracing also ceases for that flow. When a flow turns 
on and no flow is currently being traced, then the new flow is selected for tracing. (If one 
knows the identity of a specific flow that should be traced, then the tracing variable may 
be set directly in the code to ensure that the desired flow is traced.) 

 In general, the tracing of flow behavior is disabled10 because copious file writes 
occur and the model can be slowed significantly or (for large, long runs) can produce 
massive amounts of trace information. To enable flow tracing, one needs to define a 
symbol TRACE_TCP. This symbol is already defined in the code; however, by default the 
symbol is commented out – thus, to activate tracing, one simply must uncomment this 
symbol. Once tracing is activated, MesoNet will generate two files: (a) one file, whose 
name begins with “TCPstate”, that records the values of flow state variables at the time of 
particular events by the source associated with the flow being traced and (b) a second file, 
whose name begins with “TCPmessages”, that records each packet sent or received by 
the source associated with the flow being traced. 

3.4.1 Tracing Flow States 
For each flow being traced, MesoNet records the values of the variables defining the state 
of the flow’s source. These state variables are recorded each time a significant event 
occurs. Significant events include: (a) initial congestion window (CWND) established, 
(b) CWND increased, (c) CWND decreased and (d) timeout. Additional recording is 

                                                 
10 The user is advised to activate flow tracing only for small, short simulations. Typically, flow tracing is 
used only for purposes of debugging or verification. 
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possible by defining a symbol WINDOW_CHECK. When this symbol is defined, state 
variables will also be recorded each time an ACK is received and a check is made 
regarding whether or not the CWND should be increased. 

 Each state recording consists of a single line in the associated file. The line 
contains 22 state variables. The first variable (Time) gives the time step when the event 
occurred, while the second variable (Event) identifies the stimulating event. The next six 
variables describe the flow, giving the source (Tx) and receiver (Rx), the type of 
congestion control algorithm (Type) used on the flow, the flow class (Flow), the time the 
flow started (OnAt) and the number of packets (MustDeliver) in the flow. Two additional 
variables outline the general progress of the flow, including (UnDelivered) how many 
flow packets remain undelivered (i.e., have not yet been acknowledged by the receiver) 
and (DTsSent) how many flow packets have been sent. The remaining dozen values give 
the detailed state of the flow variables, including (Phase) the phase of the flow (e.g., slow 
start or congestion avoidance), the current size (cwnd) of the congestion window and the 
current value (ssthresh) of the slow-start threshold. These state variables also include 
(unSentDTs) the number of packets that can be sent by the source and (unACKed) the 
number of unacknowledged packets that have been sent. Also provided are the values of 
four sequence numbers: (a) (nexSEQ#) the next sequence number that may be sent by the 
source, (b) (HighestACK) the highest sequence number from the receiver, (c) (lastNAK) 
the value of the source’s next sequence number to be sent when the last NAK was 
processed by the source and (d) (TOseq) the value of the source’s next sequence number 
when the last timeout occurred. The remaining three state variables relate to establishing 
a timeout period. These variables include the next time step (CRTO) when a timeout will 
occur, the number of time steps (RTO) that will be added to the current time to establish 
the time of the next timeout and the latest estimate of the smoothed round-trip time 
(SRTT) measured on the flow.   

3.4.2 Tracing Packets 
MesoNet also traces packets as they are sent and received by the source on each flow that 
is traced. Each packet transmission and reception is recorded on one line of the associated 
trace file. Each line records five variables from the packet. The recorded variables 
include: the time step (Time) when the packet was sent or received, the source (Tx) and 
receiver (Rx) of the flow associated with the packet, the type (Type) of the packet and the 
sequence number (SQ#) of the packet. Note that packets sent by the receiver will be 
recorded only if and when they reach the source. On the other hand, packets sent by the 
source will be recorded when they are sent, regardless of whether or not they reach the 
intended receiver.  

3.5 Notes on Model Construction with SLX 
This subsection provides a brief guide to the model constructed using the SLX [84-85] 
simulation language and development environment. The intent of this section is to guide 
those who wish to review the model source code. This section is not intended to provide a 
detailed description of the code11. MesoNet is constructed from three SLX files: (a) a 

                                                 
11 MesoNet source code is freely available from the authors. Note, however, that executing MesoNet 
requires the SLX run-time environment, which is available commercially from Wolverine Software. 
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configuration file, (b) a topology file and (c) a file defining behavior of model elements. 
Each of these files is described below in a separate subsection. The file descriptions are 
followed by a short discussion of the performance properties of MesoNet. 

3.5.1 Configuration File 
The configuration file (e.g., MesoNetconfigDE.slx) provides the vehicle for defining 
configuration parameters, explained in Sec. 3.2. The configuration-file parameters are 
grouped (using comments) with the same headings as given in the subsections of Sec. 
3.2; the parameter names in the source file conform to the parameter names used in those 
subsections. To support sensitivity analyses and other experiments, the model 
configuration file may be broken into two parts containing: (a) model parameters that 
remain fixed across experiment runs and (b) model parameters that change with each run, 
as guided by an experiment plan. In such cases, the variable portion of the file may be 
constructed by a configuration generator. This approach was used for the experiments 
described in subsequent sections of this report. When reviewing the source code 
associated with these experiments, one will likely find two configuration files for each 
run, where the parameters described in Sec. 3.2 are divided among the two files 
depending upon whether the parameters remain fixed or are varied from run to run. 

3.5.2 Topology File 
The topology file (e.g., MesoNet-AbileneTopologyIIc.slx) defines the layout and 

characteristics of routers and links under which sources and receivers will be deployed. 
The information in the topology file is used at the start of a simulation to construct a 
simulated topology. A topology file begins by defining the number and type of routers 
included in the topology, as well as the number of backbone links. The file also includes 
some type definitions to define the classes of routers that may attach to backbone routers 
and to POP (subnet) routers, as well as the classes of access (leaf) routers included in the 
topology. For each backbone link, the topology file defines (see array LP_DELAY) the 
one-way propagation delay (in time steps). These delays are scaled by the value of the 
deltaX parameter, which may alter the link propagation delays. Since the deltaX parameter 
is defined in the configuration file, the topology file must be included after the 
configuration file. 

 The topology file also contains a 2-D matrix (FORWARDING_LINK) defining the 
backbone link over which packets should be forwarded when bound between two 
backbone routers. The first dimension represents the source backbone router and the 
second dimension represents the destination backbone router. Two auxiliary matrices 
(SOURCE_BACKBONE_ROUTER and SINK_BACKBONE_ROUTER), which are indexed by 
backbone link, define the source and sink backbone router associated with each backbone 
link. This information is used to connect backbone routers and links when generating the 
topology. 

Another 2-D matrix (ROUND_TRIP_DISTANCE) defines the round-trip times used 
to seed initial estimates of the round-trip delay in each direction between any pair of 
backbone routers in the topology. The estimates are computed by summing the one-way 
propagation delays associated with all backbone links transited along the forward and 
reverse path defined for each route between each pair of backbone routers. A variable 
(EB_DELAY) defines an estimated buffer delay (in time steps) that is added to the round-
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trip propagation delay in order to account for some amount of queuing delay that may be 
experienced on a route. The seed estimates from ROUND_TRIP_DISTANCE are used by 
flows as an initial guess for the round-trip time that might be expected on a path. The 
initial guess for the round-trip time is used to set the initial timeout period for a flow.  

Connections of POP and access routers to backbone routers are described by a 2-
D matrix (SUBNET_PER). The first dimension represents the backbone routers in the 
topology. The second dimension represents the class of routers (e.g., POP and directly 
connected access routers) that may connect to the backbone. The information contained 
in this matrix is used to generate POP and directly connected access routers under each 
backbone router in the topology. 

Connections of access routers to POP routers are specified by a three-dimensional 
matrix (LEAF_PER). The first dimension represents a backbone router. The second 
dimension represents the maximum number of POP (subnet) routers that may exist under 
any backbone router. The third dimension represents the class of access routers (e.g., fast 
or normal) that may exist under a POP router. The information contained in this matrix is 
used to generate (fast and normal) access routers under each POP router in the topology. 
Several topology files have been defined for use with MesoNet. 

3.5.3 Model Behavior File 
The main model file defines the behavior of model elements (as discussed previously in 
Sec. 3.1.1) and the overall behavior of the simulation. The main model file also defines 
measurement buffers, parameter mappings, auxiliary procedures and sets into which 
model elements of various types are sorted. Below, we discuss these features of the 
model in the following categories: (a) model elements, (b) simulation control, and (c) 
measurement buffers. We do not discuss parameter mappings or sets, which should be 
obvious from examining the source code. 
 
 3.5.3.1 Model Elements. The primary model elements are defined using SLX “active” 
classes, each of which has an individual behavior defined within an “actions” block. The 
active classes include: (a) LeafRouter, (b) SubnetRouter, (c) BackboneRouter, (d) 
BackboneLink, (e) Source and (f) Receiver. The behavior of each of these classes mirrors 
the description given earlier in Sec. 3.1.1. Each SLX class also includes an “initial” 
block, which is executed when the class is created. The “initial” block acts as a class 
constructor, establishing initial conditions. One active class, Source, also contains two 
methods (state and message) that support flow tracing. (Note that all active classes 
defined in this model are self-activating because the last statement of the “initial” block 
activates the class.) One “passive” class, Packet, encompasses the remaining model 
element. The contents of the Packet class mirror the description given above in Sec. 3.1.3.  
 
3.5.3.2 Simulation Control. The simulation is started and controlled from the SLX “main” 
procedure, which is located at the end of the source file. The “main” procedure is also 
supported by a few auxiliary classes and procedures, which are discussed as the need 
arises. Model execution begins by constructing the timestamp (RTC) and the directory 
name (Dname) used to identify the model output files. If flow tracing is enabled, the 
associated output files are also created and opened at this time. Subsequently, the 
topology is examined, using procedure computeAverageRTT( ), and the associated round-
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trip propagation delays are reported. Then the simulated topology is created, starting from 
the backbone routers downward. Each backbone router creates its own subordinate 
routers and those subordinate routers create their own children. The backbone links are 
constructed after the routers. Once the topology is constructed, the average buffer size is 
computed and reported for each router class (i.e., backbone, POP and access). 

Next, the “main” procedure uses procedure createLongLivedFlows( ) to set up any 
long-lived flows that have been defined in the configuration file. Each long-lived flow is 
scheduled, using procedure scheduleLongLivedFlow( ), which creates a new source and 
receiver for the flow and sets initial conditions so that the flow is already connected and 
ready for data transfer at the desired time. As a final step, the procedure uses the SLX 
anonymous “fork” construct, which splits the processing into two independent “threads”, 
the calling thread and a forked thread. Upon returning from the procedure, the forked 
thread waits until the simulation reaches the time step when the long-lived flow should 
begin and then completes activation of the associated source and receiver. 

The main procedure uses the procedure writeConfiguration( ) to generate a file 
containing the settings of MesoNet parameters for a given run. When adding parameters 
to MesoNet, one should also insert related parameter-reporting code in procedure 
writeConfiguration( ). The inserted reporting code should follow the pattern of existing code 
within the procedure. 

Prior to commencing the simulation, the “main” procedure also creates an 
instance of the StateMonitor class, which periodically makes measurements of the 
simulated system, manages the measurement buffers, writes measurement data to files 
and clears measurement buffers. To accomplish some of these operations, the StateMonitor 
class uses procedures write_measurements( ) and clear_measurments( ). As the last step 
before starting the simulation, “main” reports the date and time when the simulation 
started. The simulation commences when the “main” procedure delays itself, using an 
SLX “advance” statement, for the duration of the configured simulation time. In fact, the 
delay is slightly longer than the required time in order to permit the final measurement 
interval to be taken. Upon completing the simulation, the “main” procedure reports the 
date and time the simulation finished12. If appropriate, the flow-tracing files are closed 
and the “main” procedure terminates. 

3.5.3.3 Measurement Buffers. The measurement buffers defined for the simulation appear 
after the comment line reading “MEASUREMENT INFORMATION”. Note that some of 
the measurement buffers are guarded by #ifdef statements using the symbol SUBNETS. 
Similarly, one will find measurement statements within the source code also guarded by 
the same symbol. This permits these measurements to be skipped when a topology is 
defined without any POP routers.  

3.5.4 Performance Properties of MesoNet 
Performance of MesoNet is largely influenced by the performance of the SLX simulation 
compiler and run-time. As we will show, SLX performance is quite good. On the other 
hand, characteristics of the simulated configuration will also influence both processing 
time and memory requirements. We address these issues using samples from two 
experiments described in later chapters (Chapter 4 and Chapter 6). Table 3-9 provides a 
                                                 
12 Later versions of MesoNet include logic to periodically estimate a projected completion time. 
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summary of characteristic performance for MesoNet when used to conduct the two 
experiments. Both experiments adopt the topology presented earlier (recall Sec. 3.1.2). 

In a sensitivity analysis experiment, MesoNet was used to simulate 20 minutes of 
network evolution with an average of about 30 x 103 sources and 160 x 103 receivers. In 
these simulations, backbone routers operated at either 4.8 Gbps or 9.6 Gbps (depending 
on the configuration). A typical run required simulating about 10 million flows and 
processing around 1.2 billion packets. At any given time, about 10 x 103 flows were 
active and around 65 x 103 packets where in transit across the network. For a simulation 
of this scale, MesoNet required about 5.7 hours of processing time and around 166 
Mbytes of memory. 
 

Table 3-9. Characteristic Performance for MesoNet in Two Experiments 
 

 Experiment 
 Sensitivity-Analysis Comparison-Robustness 
Simulated Minutes 20 25 
Sources (avg.) 28.81 x 103 22.63 x 104 
Receivers (avg.) 160.79 x 103 167.52 x 104 
Total Flows (avg.) 971.557 x 104 874.4 x 105 
Total Packets (avg.) 607.814 x 106 554.833 x 107 
Active Flows (avg.) 9.991 x 103 32.194 x 103 
Packets in Transit (est. avg.) 63.291 x 103 350.949 x 103 
CPU Hours (avg.) 5.7 6.7 x 101 
Memory in Mbytes (avg.) 166 119.2 x 101 

 
In a comparison-robustness experiment, MesoNet was used to simulate 25 

minutes of network operation with an average of about 225 x 103 sources and 1.7 million 
receivers. In these simulations, backbone routers operated at either 96 Gbps or 192 Gbps 
(depending on the configuration). A typical run required simulating over 85 million flows 
and processing aver 11 billion packets. At any given time, about 32 x 103 flows were 
active and around 350 x 103 packets where in transit across the network. For a simulation 
of this scale, MesoNet required about 67 hours of processing time and around 1.2 Gbytes 
of memory.       

The comparison-robustness experiment increased the simulated system size by 
about an order of magnitude and ran the simulation for 25 % more simulated time, as 
compared with the sensitivity-analysis experiment. Thus, one might expect resource 
requirements to grow on the order of 12.5 times. The actual processing requirements 
grew by 11.75 times, which is within range of the estimate. (This nearly linear growth13 
in processing time may be attributed to the excellence of the SLX compiler and run-time 
environment.) The actual memory requirements increased only sevenfold. This increase 
was lower than the expected tenfold increase. The smaller than expected increase may be 
attributed to changes in the measurement strategy adopted between the two simulations. 
Further details about processing requirements and memory requirements are provided 
below. 
                                                 
13 In subsequent experiments (see Chapter 9 vs. Chapter 8), simulating much larger networks with much 
higher router speeds for one hour of network operation, we found a 10-fold increase in network size and 
speed led to a 16-fold increase in processing time. We attribute this to a substantial increase in the size of 
the event lists that SLX needed to manage. 
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Table 3-10. Processing Requirements for MesoNet in Two Experiments 

 
 Experiment 
 Sensitivity-Analysis Comparison-Robustness 
CPU Time (s) per  
simulated flow-minute 0.17 0.49 

CPU Time (us) per  
simulated packet 33 44 

3.5.4.1 Processing Requirements. As shown in Table 3-10, for the sensitivity-analysis 
experiment, MesoNet required an average of 170 milliseconds of CPU (central-
processing unit) time to process a simulated flow-minute, while requiring 490 
milliseconds per flow-minute under the comparison-robustness experiment. Table 3-10 
also shows that the processing time per packet increased (by 33%) from the sensitivity-
analysis experiment to the comparison-robustness experiment. The increase in per-packet 
processing time may be attributed to the increase in the size of simulation state (e.g., 
event lists) that SLX needed to process under the comparison-robustness experiment. The 
increase in processing times exhibited between the two experiments is quite reasonable. 
 

Table 3-11. Memory Requirements (Mbytes) for MesoNet in Two Experiments 
 

 Experiment 
 Sensitivity-Analysis Comparison-Robustness 
Sources 16.8 100.6 
Receivers  20.6 214.4 
Sets and Membership 25.5 256.9 
Simulation Processing State 26.7 251.6 
Measurement Buffers 40.5 10.1 
Other Memory 38.3 299.1 

 
3.5.4.2 Memory Requirements. Table 3-11 shows the average allocation of memory by 
SLX for each of the two experiments. The memory allocated to sources and receivers 
reflects the number of each of these objects in the simulation. Sets and set membership 
includes memory associated with static model categories, as well as packet queues within 
routers, links, sources and receivers. Simulation processing state encompasses memory 
allocated to active objects, as needed to manage time evolution of the simulation. 
Measurement buffers are allocated as directed by the configuration file. The remaining 
memory is associated with the SLX run-time, with routers and links and with packets 
transiting the simulated network.   

As shown in Table 3-11, and as expected, memory requirements generally expand 
by about an order of magnitude across the board. The exception is memory allocated for 
measurement buffers, which decreases for the comparison-robustness experiment to ¼ 
the size required for the sensitivity-analysis experiment. This occurs because the 
sensitivity-analysis experiment allocates measurement buffers to cover 6 x 103 
measurement intervals, while the comparison-robustness experiment allocates memory 
for only 1.5 x 103 measurement intervals. As a tradeoff, the measurement buffers must be 
written to disk five times during each run of the comparison-robustness experiment but 
only once at the end of the sensitivity-analysis experiment. 


