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2 Method and Related Work 
The work described in this report supports an overarching goal to develop and evaluate a 
coherent set of methods that can be applied to understand behavior in large distributed 
systems, such as the Internet, computational grids, service-oriented architectures and 
computing clouds. Large distributed systems may exhibit emergent behaviors, which are 
global behaviors arising from independent decisions made by many simultaneous actors, 
which adapt their behavior based on local measurements of system state. As a result of 
actor adaptations, system state shifts, influencing subsequent measurements made by the 
actors, which leads to further adaptations. This continuous cycle of measurement, 
adaptation and changing system state produces a time-varying (emergent) global behavior 
that influences performance experienced by individual actors within specific 
spatiotemporal regions of a large distributed system. For this reason, any proposed 
changes in decision algorithms taken by actors must be examined within the context of a 
large spatiotemporal scale in order to predict the effects of such algorithms on overall 
system behavior, as well as the resulting implication for individual actors. 

In this study, we develop methods to investigate global system behavior within 
the context of a challenge problem: comparing selected proposed changes to the standard 
congestion control algorithm [9-10] for the Internet. As we show later, in Chapter 10, 
using our methods we were able to draw conclusions (1) about likely network-wide 
behaviors and user experiences that may arise if the Internet adopts any one of the 
algorithms we studied and (2) about the efficacy of the methods we used. In this chapter, 
we introduce the challenge problem, describe the current state-of-the-art techniques used 
to address the problem and outline a proposed advance in the state of the art. We consider 
some approaches that might be adopted to achieve our intended improvement in practice 
and then we explain the approach we adopted for the current study. We identify five hard 
problems we had to solve to develop our approach and we discuss some possible 
solutions to the problems and identify the solutions we adopted for the current study. We 
conclude with an argument that the methods we develop and apply in the current study 
should be generally applicable to a wide array of large distributed systems.   

2.1 Challenge Problem 
The fundamental design of the Internet protocol suite [3] assumes that network elements, 
such as routers, are relatively simple – receiving, buffering and forwarding packets 
among connected links and dropping packets when buffers are insufficient to 
accommodate arriving packets. Under this assumption, computers connected to the 
Internet must implement decision algorithms to pace the rate at which packets are 
injected into the network. Such decision algorithms, known typically as congestion 
control mechanisms, operate independently for each network flow between a source and 
receiver. The overall network, with a goal of achieving satisfactory service and a fair 
distribution of resources among all simultaneously active flows, relies upon each network 
source to measure congestion and then adapt the rate at which the source injects packets 
into the network – injecting faster when congestion is low and slower when congestion is 
high. Thus, congestion in the Internet is an emergent property of the simultaneous 
operation of many independent sources. 



Study of Proposed Internet Congestion Control Mechanisms NIST 
 

Mills, et al. Special Publication 500-282 7 

In current practice, congestion control mechanisms are implemented as part of the 
transmission control protocol (TCP) that operates within every computer attached to the 
global Internet. While TCP congestion control procedures have proven quite successful 
[2] at achieving desired global properties, numerous researchers [46-51] have postulated 
potential changes in relationships among bandwidth and propagation delay as the speed 
of network links increases toward 10s and 100s of gigabits per second (Gbps). Under the 
envisioned circumstances, researchers predict that TCP congestion control procedures 
will prove insufficient, leading to substantial underutilization in network resources and 
preventing end users from achieving high transfer rates, potentially reaching or 
surpassing one Gbps. These predictions have stimulated researchers to propose alternate 
congestion control procedures [52-61] that might achieve higher network utilization and 
better user performance as network speeds increase. Given the increasing number of 
proposals, interest is growing [62-68] in developing procedures to fairly and effectively 
evaluate properties of the various proposals. Evaluating the implications of adopting 
proposed changes to TCP congestion control procedures requires investigating global 
behaviors that result when such changes are deployed on a large scale throughout an 
Internet-like network. This is the challenge problem we tackle within the current study.   

2.1.1 Current State of the Art 
As part of proposing changes to standard congestion control procedures, researchers 
typically model, simulate and implement prototypes and then explore how candidate 
congestion control mechanisms might affect the Internet and its users. In general, 
researchers investigate candidate algorithms using three primary approaches: (1) 
empirical studies, (2) simulation studies and (3) analytical studies. In this section we 
outline and critique the current state of the art with respect to these approaches.  
  
2.1.1.1 Empirical Studies. A fundamental approach to studying proposed changes to TCP 
congestion control procedures involves deploying a few computers, acting as sources and 
receivers, connected to Gigabit Ethernet switches in a dumbbell topology, where the 
network links are represented by a single computer that can be parameterized with 
specific bottleneck speed, buffer size and propagation delay. Several, typically two to ten, 
long-lived flows share the bottleneck path in the dumbbell topology and various 
measurements are made regarding traits such as fairness of resource allocation, 
responsiveness to changing conditions and link and buffer utilizations. Additional sources 
are often added to investigate the response of the proposed congestion control algorithms 
in the presence of background traffic, sometimes TCP flows and sometimes user-
datagram protocol (UDP) streams. Usually the background traffic crosses the bottleneck 
link in an orthogonal direction to the long-lived flows. Several examples of such studies 
appear in the literature [65-68] and the basic approach is being considered by a group of 
researchers [62] intending to standardize procedures to characterize proposed changes to 
TCP. 

Simple empirical studies have several merits. First, a topology involving few 
computing elements can be constructed conveniently in a laboratory setting. Further, the 
fundamental characteristics (speed, buffer size and propagation delay) of a bottleneck 
path can be reliably established to provide a suitable basis for head-to-head comparisons 
of alternate congestion control algorithms in identical, controlled situations. Third, 
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empirical studies investigate actual implementations of proposed algorithms as would be 
distributed in code used by computers on the Internet; thus, there is no room for modeling 
error. Of course, code bugs can exist; however, those code bugs, if undiscovered, would 
be actually deployed on the Internet. Fourth, as demonstrated in a recent study [67], 
empirical measurements in a simply topology can reveal behavioral properties that might 
well have significant implications. For purposes of our study, the major shortcoming of 
simple empirical studies is an inability to investigate the influence on global network 
behavior should proposed congestion control algorithms be adopted on a large scale. As 
we discuss below in Sec. 2.2.1, some researchers are investigating techniques to support 
configuration of larger empirical networks, which might be used to study global network 
behavior.  
 
2.1.1.2 Simulation Studies. Another approach is to implement proposed congestion 
control algorithms within a simulation modeling framework and then to construct (or 
generate) simulated topologies representing large networks and conduct experiments to 
evaluate global behavior and user experience. In fact, many of the proposed congestion 
controls we investigate in the current study have been implemented within a widely 
accepted simulation framework, ns2 [79].  

Simulation provides a convenient vehicle for defining controlled experiments that 
can be used to compare alternate congestion control algorithms, head-to-head, with 
respect to potential effects on global network behavior. Further, using simulation, an 
experimenter can measure many network-wide properties that might be difficult or 
impossible to measure in a large, empirical network. Several simulation studies [46, 48, 
54-56, 61, 64] have been conducted using the ns2 framework, but all of these studies 
have simulated small topologies with a limited number of flows, perhaps up to hundreds. 
Simulations at such small scales are unlikely to reveal the influence of alternate 
congestion control algorithms on global network behavior. Large topologies must be 
simulated while simultaneously transporting up to hundreds of thousands of active flows. 
The computational and memory demands of ns2 are significant, which discourages 
experimenters from attempting large simulations. We certainly decided that we could not 
achieve our goals using ns2 simulations. 

There exist many other network simulation frameworks [76-78, 80-83], both 
commercial and academic, that might be adopted. Most of these frameworks would need 
to be expanded to include simulations of the alternate congestion control algorithms. Still, 
at least one of these simulation frameworks has been used in an experiment transporting 
up to 105 TCP flows [69]. Unfortunately, configuring such a simulation experiment 
requires setting values for thousands of parameters, which must be managed by a 
database. To define a comprehensive set of experiments, such as we envisioned, would 
require significant, perhaps insurmountable effort. Further, we would need to specify 
settings for many parameters that require values but that would not necessarily be 
germane to our experiments. As we discuss below in Sec. 2.2.2, some researchers are 
investigating techniques to support faster simulations of large networks, which might be 
used to study global network behavior. 
 
2.1.1.3 Analytical Studies. A third approach is to construct a model as a system of 
differential equations that represent network flows as fluids rather than as a sequence of 
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discrete packets. A fluid approximation is justified using an argument that when the 
number of packets flowing through routers is very large and when the packets move at 
very high speed then packet flows can be well approximated by a smoothly varying 
continuous data steam with an average flow rate. Continuous systems can be modeled 
with differential equations. Several researchers [107, 112, 114, 119, 122-127] have 
proposed differential equation models for standard TCP congestion control procedures. 

Existing differential equation models for TCP exhibit some significant 
shortcomings for our purposes. First, existing models yield inaccurate results [112-113], 
which derive largely from difficulties in modeling the loss-estimation function in the 
differential equations. Existing models have tried estimating loss probability using an 
M/M/1/B queuing system; however, when considering many flows transiting a single 
router, such models give inaccurate results for many parameter combinations. Second, the 
difficulty of estimating loss probability increases with increasing complexity in network 
topology. For this reason, employing differential equations to model network flows in 
large topologies has received little attention. Third, current differential equation models 
treat only standard TCP congestion control procedures. For our purposes, such models 
must be augmented to include congestion control procedures for the set of alternate 
congestion control algorithms we studied. As we discuss below in Sec. 2.2.3, we are 
investigating techniques to model network flows with differential equations that have 
improved accuracy and that incorporate alternate congestion control procedures. When 
combined with fluid-flow simulators [73], our extended models might prove applicable to 
study global network behavior under various congestion control regimes.   

2.1.2 Proposed Advance in the State of the Art 
As described in the preceding overview, the current state of the art in modeling and 
analysis of distributed systems is limited to relatively small scales. We propose to define 
and apply modeling and analysis techniques that enable measurement and investigation 
of global behavior and actor experience in relatively large models of distributed systems. 
In this study, we explain and investigate our proposed modeling and analysis techniques 
in the context of comparing alternate congestion control algorithms suggested for use on 
the Internet. As a result of our investigation, we provide new insights into likely global 
behavior and user experience should the Internet deploy any of the alternate algorithms 
we study. Further, we characterize strengths and weaknesses of the modeling and analysis 
methods we use. Finally, we suggest additional directions for future investigations in 
modeling and analyzing global behavior in large distributed systems. We expect the 
methods illustrated in our study to advance the state of the art in modeling and analyzing 
large distributed systems because we believe our methods can be applied beyond the 
current study to consider other large-scale feedback processes, such as might arise in 
computational grids, computing clouds and service-oriented architectures.   

2.2 Potential Approaches 
In this section, we consider some potential approaches to achieve our goal to define and 
apply modeling and analysis techniques that enable measurement and investigation of the 
global behavior and actor experience in relatively large models of distributed systems. 
We discuss the possibility of expanding either empirical, simulation or analytical studies 
in order to consider larger systems than possible within the current state of the art.  
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2.2.1 Expanded Empirical Studies 
In increasing numbers, researchers are investigating management frameworks that allow 
experimenters to configure collections of hardware and software components into 
specified, reproducible topologies that enable empirical experiments with distributed 
systems. Emulab [99], perhaps the earliest instance of such a framework, provides access 
to hundreds of configurable nodes made available to experimenters. Emulab has been 
replicated at several sites around the world. Perhaps inspired by Emulab and its clones, 
PlanetLab [101] has connected a network of sites across the globe that allocates hardware 
and software components for configuration into distributed-system topologies for 
controlled experiments. Similar management frameworks, though limited to controlling 
configurations within a single laboratory, have been developed by various university 
researhers [65, 97]. While most of these efforts include innovations with respect to 
system configuration and experiment control, the scale of topologies that can be 
constructed is limited to a few hundred nodes and often such a topology exhausts the 
resources of a given facility. In an effort to overcome such scaling concerns, some 
researchers have reported progress in emulating virtual topologies an order of magnitude 
larger than the available physical hardware [98]. 

Recognizing the limitations of current facilities for configuring topologies in 
support of experiments with large distributed systems, a community of researchers is 
pursuing GENI [100] (Global Environment for Network Innovations), a project 
sponsored by the National Science Foundation (NSF). GENI aims to create a virtual 
laboratory for exploring future distributed systems at scale. The GENI facility promises 
to provide a platform on which we could conduct empirical investigations into global 
implications of deploying various congestion control algorithms. Unfortunately, GENI is 
in early stages of development, so the timing is inopportune for our study. We hope that 
we can use GENI at some later time to validate findings from the experiments we 
conducted.       

2.2.2 Expanded Simulation Studies 
While explaining that simulation models hold a key position when attempting to 
understand behavior in large distributed systems, Paxson and Floyd [72] identify several 
impediments to simulating the Internet. First, the Internet is big; simulating a model at 
scale can require significant, perhaps impractical, computational resources. Second, the 
Internet is diverse with respect to administrative policies and technologies deployed. 
Third, the Internet is evolving in size, technologies, traffic patterns and applications. 
While these impediments might prove difficult to overcome, Paxson and Floyd discuss 
some possible coping strategies. First, they suggest that researchers search for invariants 
that can reduce the parameter space of the models. They identify two candidate 
invariants: (1) model session arrivals with a Poisson distribution and (2) model session 
sizes with heavy-tailed distributions such as log-normal or Pareto (  < 2). Second, Paxson 
and Floyd suggest judiciously exploring the parameter space of a simulation model in 
order to identify parameters to which the model is sensitive. In a subsequent paper, six 
years later, Floyd and Kohler [70], critique the continued poor state of Internet modeling 
and admit that the research community does not know whether their models are valid. 
Floyd and Kohler prescribe four steps that could improve the situation. First, models 
should be limited in scope to the specific research questions under investigation in 
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particular studies. That is, the research community should abandon hopes of developing a 
single model of the global Internet. Second, any model used should be subjected to a 
sensitivity analysis in order to understand how parameter settings affect results. Third, 
with respect to important parameter settings, models should be compared against 
measurements in order to further increase confidence in real-world relevance. Fourth, a 
continuous program of measurements should be conducted with the aim of distinguishing 
between invariant and rapidly changing parameters in the real Internet. This enables 
models to be kept current and allows previous modeling studies to be placed in a 
temporal context. 

The perceptive critique from Floyd and colleagues provides a context for 
considering current research into network simulation. Much of the current work revolves 
around developing improved simulation frameworks intended to provide a model of the 
global Internet. For example, a group of open-source developers is working on ns3 [80], a 
replacement for ns2 that is motivated by overcoming some perceived software limitations 
that make ns2 difficult to use. Another group of researchers [82] is creating a parallel 
version of ns2 in an effort to allow simulation of larger systems by dividing work among 
multiple processors. Constructing parallel network simulators has been a research topic 
for some time [69, 76, 83]; unfortunately, successful use of such simulators has proven 
elusive for network models. Some researchers [71] have begun to investigate hybrid 
models as a technique to reduce the resources required by network models, which might 
allow larger topologies to be simulated. Various other simulators [77, 78, 81] have been 
developed in order to teach university students about both networks and about software 
development. 

While parallel simulators and hybrid models hold promise to increase the size of 
systems that can be simulated, few existing simulation research projects are motivated 
specifically to address the critique of Floyd and colleagues. Under some preliminary 
work leading up to the current study, Yuan and Mills [74] conducted a judicious search of 
a model parameter space to investigate the influence of various transport protocols on 
correlation structure in network traffic. The study, which adopted a cellular automaton 
model of a network of sources and receivers interacting within a grid topology, also 
adopted some of the invariants identified by Paxson and Floyd. Later, Yuan and Mills 
[75] converted the model to include a four-tier topology, which was used to study 
detection methods for distributed denial of service attacks within the Internet. The 
cellular automaton model, including the four-tier topology, was used to conduct 
preliminary experiments for the current study. Specifically, the model was subjected to a 
sensitivity analysis (using an approach explained in Chapter 4). Unfortunately, as 
explained in Sec. 3.1, scaling the cellular automaton model to represent a network with 
Internet-like speed and size proved computationally infeasible. 

A hybrid network simulation model [71], combining discrete events with 
continuous approximation of discrete variables, may provide an attractive alternative 
because published computational and memory requirements appear quite promising. 
Specifically, the model appears to have required about 2 hours of processor time to 
simulate 30 long-lived flows operating for 11 simulated hours in a partial topological 
model of the Abilene backbone with 10 Gbps links. The published results for the hybrid 
model indicated the scenario was infeasible using ns2. Further, the hybrid model included 
many of the alternate congestion control models we studied. On the other hand, the 
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hybrid model included only a two-tier topology with sources and receivers connected 
directly to the backbone. In addition, the hybrid model did not include the existing 
measurement and parameterization capabilities included within our cellular automaton 
model. We did not explore the computational implications of expanding the hybrid model 
to add (access and point-of-presence) tiers to the topology, to expand the number of 
sources to hundreds of thousands, to introduce the TCP connection phase, to add various 
scenarios and to incorporate addition measurement code. Based on comparing the 
published computation requirements of the hybrid model and with the measured 
computational requirements of a discrete-event simulator (see Appendix B), we conclude 
that the hybrid model warrants further investigation (as discussed below in 2.5.1).  

2.2.3 Expanded Analytical Studies 
To employ analytical methods for our study, we needed to overcome three limitations of 
existing fluid-flow models: (1) improve accuracy in modeling queue evolution in order to 
obtain realistic estimates of loss probability, (2) construct differential equation models for 
alternate congestion control algorithms under study and (3) determine how to evaluate the 
resulting models in topologies of sufficient size and complexity. We believe we can 
leverage existing fluid-flow simulators [73], solved using numerical methods, to scale 
fluid-flow models to large networks. Solving the other two problems required more 
research, but we believed we could make some progress. Unfortunately, to complete our 
study in a timely fashion we needed solutions sooner rather than later. We decided to 
investigate analytical solutions to more accurately model queue evolution and then to 
construct differential equation models for some alternate congestion control algorithms. 
These investigations, documented in Appendix A, ran in parallel with our main study. At 
a later date we could use our analytical models to repeat our current studies and compare 
the predictions obtained and the resources required. 

2.3 Selected Approach 
Lacking a sufficiently large emulation facility and without an accurate fluid-flow model 
for the congestion control algorithms under study, we had little choice but to adopt 
simulation for our study. Following recommendations from Floyd and colleagues [70, 
72], we aimed to reduce model scale and improve model quality by focusing the model 
on the study at hand, by adopting some recommended invariants, by conducting a 
sensitivity analysis of model parameters and by comparing key model behaviors with 
empirical measurements. We did not adopt ns2, or similar existing simulation 
frameworks, because the parameter spaces of such models are too large for our needs and 
because the computational and memory requirements are too costly for tractable 
simulations of systems of the size we envisioned. We also did not adopt our existing 
cellular automaton model because the computational costs made it infeasible to simulate 
networks of very high speeds and large sizes. On the other hand, the parameter space of 
our cellular automaton model was quite concise and appropriate for the studies we 
envisioned. 

We decided to convert our cellular automaton model to a discrete-event 
simulation (DES), which we call MesoNet (see Chapter 3 for a description of the 
simulator). The DES simulator proved significantly faster than the cellular automaton, 
especially as simulated network size and speed increased. As described in Chapter 5, we 
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extended MesoNet, adding six alternate congestion control algorithms to the standard 
TCP congestion control procedures. We also found it necessary to add TCP connection-
establishment procedures to the simulator. To allow exploration of flow dynamics under 
a range of network conditions, we adopted a single, heterogeneous topology for our 
study. As explained in Sec. 3.1.2, we modeled the topology after characteristics of 
existing network topologies and traits revealed by studies of topologies used by 
commercial Internet service providers. Given a concise set of model parameters, we 
applied statistically-based, experiment design techniques, as used typically in rigorous 
scientific and engineering studies. We then leveraged statistical properties of the 
experiment designs to conduct statistical analyses of response data. We say more 
regarding our approach below in Sec. 2.5, where we outline solutions (and possible 
alternatives) to five hard problems we had to solve in order to develop the details of our 
approach. First, though, we introduce the hard problems we faced. 

2.4 Hard Problems 
The approach we adopted for our study could not be developed and applied without 
devising solutions to five hard problems. We describe these problems below. 

2.4.1 Model Scale 
Simulating networks of the size and speed we envisioned presents two significant 
impediments: substantial computation and large parameter space, which combine to 
create a significant scaling problem. Models with thousands of parameters usually 
include many details. Such detailed simulators, while perhaps easy to relate to real 
systems, can require substantial computation to process each packet. The more packets 
processed the greater the computational time required for a simulation run. For networks 
of large size and high speed that are simulated over minutes or hours of operation, the 
number of packets per simulated second can prove quite high, so reducing per-packet 
processing time can substantially reduce computation demands for a given simulation 
run. A large parameter space requires simulating many runs to cover various parameter 
combinations. The computational requirements for simulating a specific combination 
multiplied by a large number of combinations can lead to an infeasible demand for 
computation. Reducing the number of runs required can substantially reduce computation 
demands for a particular simulation study. Beyond influencing computation demands, 
large parameter spaces require significant intellectual and practical effort from 
experimenters who must design and configure experiment runs. Experimenters must 
select the parameters of interest to vary for a given study. For other parameters, 
experimenters must determine fixed values for use throughout the study. Further, under a 
large parameter set, configuring parameters requires significant automation aid, such as 
databases or scripting. Even with automation, erroneous configurations can lead to 
incorrect experiment executions, which not only waste precious processing resources but 
also require significant intellectual effort and time to detect. A similar problem (see 2.4.3 
below) can arise when simulations produce a large response space. Analyzing 
multidimensional data can prove intellectually challenging and can consume substantial 
processing resources. These problems of scale should be quite familiar to experimenters 
who use network simulations.  
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2.4.2 Model Validation 
Whatever solution is adopted to reduce model scale, the resulting representation is likely 
more abstract than that provided by a typical detailed simulation model, such as ns2, and 
certainly less realistic than a deployed network. With a reduced model in hand, an 
experimenter faces the problem of establishing that the model is valid for purposes of an 
intended study. Often, experimenters compare results from two models, one more 
detailed, in order to establish confidence in a reduced model. Sometimes, experimenters 
compare predictions from simulations against predictions from widely accepted 
analytical models. Such comparisons between two models leave an uneasy feeling that 
perhaps both models might be wrong. Of course, the widely accepted model could be 
wrong and the newly created model correct, so changing the newly created model until it 
yields results aligned with the accepted model might be the wrong course. Further, even 
when two models are compared, experimenters typically consider only a small subset of 
parameter configurations. Fundamentally, when an experimenter produces a reduced-
scale model, some means must be found to determine that the model is error free and that 
the model represents valid behaviors for purposes of the intended study. As software 
developers understand, producing error-free software is quite difficult; demonstrating that 
software is without error even more so. System modeling adds on top of that hard 
problem, the challenge of demonstrating a model is valid for its intended purposes.   

2.4.3 Tractable Analysis 
One of the significant advantages of modeling a large system using simulation is that any 
conceivable response can be measured at any time. Measuring responses from an 
empirical system can be much more difficult; impossible for some desired responses. In 
an analytical model, the level of detail may be insufficient even to represent various 
behaviors one might wish to measure. The measurement advantage of simulation can 
quickly introduce two challenges: identifying which responses are significant (or 
redundant) and analyzing large volumes of multidimensional response data. The first 
challenge might be rephrased as: What responses should one analyze? The second 
challenge might be rephrased as: Over what spatiotemporal extent should one analyze 
responses? 

2.4.4 Causal Analysis 
Analyzing measurement data from large systems allows various spatiotemporal patterns 
to be discerned. In general, the patterns appear from statistical analyses applied to various 
dimensions of the model parameter space. Existence of significant patterns can be 
detected and revealed to an experimenter using statistical analyses. Such patterns suggest 
that a model behaves in particular fashion under specified conditions. An experimenter 
usually desires to understand causality underlying significant patterns. Bridging the gap 
between statistical patterns and underlying causes represents a significant challenge with 
respect to any large system, including models of such systems. 

2.4.5 Experiment Selection 
Assuming existence of a valid, scalable simulation model where data can be analyzed 
tractably and causality can be established, a remaining challenge relates to selecting 
experiments that will probe a system in a manner needed to reveal key aspects of global 
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behavior that are germane to a particular study. Should an experimenter fail to include the 
necessary parameter values and scenarios then a simulation study may miss significant 
aspects of system behavior that would arise in an analogous real system.    

2.5 Selected Solutions and Possible Alternatives 
The modeling and analysis methods we developed and applied in the current study were 
intended to provide some level of solutions for the hard problems we described above. 
Below, we describe the solutions we adopted to address each problem. The combined 
solutions to the hard problems comprise the modeling and analysis methods we used, so 
we introduce our solutions in some detail. Where applicable, we also identify potential 
alternatives that might be used to address each problem. Before discussing our solutions, 
we provide a general mathematical introduction to the modeling state-space problem. 

y1, …, ym = f( x1|[1,…,k], …, xn|[1,…,k] )

Response State‐Space Stimulus State‐Space  
n Number of inputs (i.e., stimulus factors)
k Factor range (i.e., number of values each factor can assume)
m Number of outputs (i.e., responses)

 
Figure 2-1. The Modeling State-Space Problem 

 
The mathematical transformation shown in Fig. 2-1 represents the modeling state-

space problem as a mathematical equation transforming a set of input parameters into a 
vector of responses. This equation underlies the hard problems associated with model 
scale (2.4.1) and tractable analysis (2.4.3). The equation represents a simulation model as 
a function (f) returning a set of responses (y1 to ym) given a specified combination of input 
parameters (x1 to xn). Each input factor can take on a range (k) of values, often referred to 
in the experiment design literature as levels. The state-space transformation presents few 
problems when values of n, k and m are small; however, for detailed network simulators 
the values can be large. For example, in a network model with 103 parameters, and 
assuming each parameter may be represented as a 32-bit integer1, the stimulus state space 
would comprise (kn =) (232)1000 combinations, which is on the order of 109633. Even if 
each simulation run can be made quite efficient, this is an infeasible parameter space to 
compute. The response state-space can also present a challenge when each of the m 
responses can be assigned to spatial partitions. For example, in a model with a actors 
each characterized by m responses, the response state-space becomes ma. For a model 
with 105 actors and 20 responses, the response state-space becomes 20100000. The response 
state-space can grow in other dimensions. For example, the m responses might be 
assigned to specific time intervals or to particular logical partitions. Spatial, temporal and 
logical partitions can be combined to further increase the response state-space. 

                                                 
1 Model parameters, when represented using floating point notation, may take on even more values. 
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2.5.1 Scale Reduction 
To constrain computational demands for our study, we adopted two main strategies: 
reduce the parameter space and use a two-level (or two-value) per factor orthogonal 
fractional factorial (OFF) experiment design method. Reducing the parameter space 
requires lowering the value of n, while using a two-level OFF requires reducing the 
values of both n and k. In two-level per factor experiments each parameter is assigned 
only 2 of its possible k values. Fig. 2-2 illustrates the theory underlying these strategies. 

As a first step in reducing the scale of computational demands, a domain expert 
creates a model that can be specified with a reduced number (n – r1) of input parameters. 
One practical means to achieve this step is to construct a model that includes only 
parameters germane to an intended study.  For us, this amounted to designing MesoNet 
(see Chapter 3), which can be parameterized with around 56 parameters, depending on 
how one chooses to count. Thus, assuming that a model such as ns2 requires 103 
parameters to configure the experiments we might design, our initial reduction factor was 
quite impressive (r1 = 944). Unfortunately, even with such a large reduction, the 
parameter state space remains infeasible to compute, as shown in Fig. 2-3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-2. A Method to Reduce the Scale of Computational Demands 
 
As a second step in reducing computational demands, a domain expert reexamines 

model parameters to identify those that can be grouped together to represent aspects of a 
single factor. This step requires both domain knowledge and creativity. In particular 
cases, parameter grouping might be guided by knowledge of the type of experiments 
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parameter count to 20 (r2 = 36). As shown in Fig. 2-3, the reduced parameter space still 
requires an infeasible amount of computation. 

Having reduced n significantly, the next step involves reducing k, the range of 
values each parameter may by assigned. Here, we are guided by experiment design 
theory [89], as developed by statistical researchers and as applied in rigorous scientific 
and engineering studies [95]. A major scale reduction is achieved by lowering k to a 
small number of levels (or values), typically 2 or 3. This reduction has two positive 
effects. First, the number of parameter combinations to simulate falls substantially – to a 
number that may be computationally feasible. Second, experiment design theory includes 
procedures for specifying 2-level and 3-level designs that can be subjected to statistical 
analyses that yield fundamental insights into system behavior. For our study, we set k to 
2; as shown in Fig. 2-3, this reduces the parameter space to a point where we need to 
simulate only 106 parameter combinations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2-3. An Example Applying Scale Reduction to MesoNet Simulations – we use O( ) notation to 
denote “on the order of” 
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2 If 103 processors were available, then the 220 simulations could be completed in about one year, but we 
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study. We applied orthogonal fractional factorial (OFF) experiment design methods to 
further reduce n. 

To develop an OFF design, the experimenter first determines how many 
experiment repetitions are feasible. Suppose the experimenter decides to devote at most 
2.048 x 103 processor hours to our sample experiment. Since 8 processor hours are 
needed to run each simulation, the experimenter can afford to investigate only (2.048 x 
103 / 8 =) 256 different combinations of parameters. Thus, given that k = 2, the 
experimenter requires that n = 8. This means that 220 parameter combinations must be 
divided by 212, leaving only 28 combinations. In this example, as shown in Fig. 2-3, the 
reduction factor r3 is 12. 

Experiment design theorists have developed rules [89] to select which subset of 
parameter combinations to examine. The rules compose parameter combinations in a 
balanced and orthogonal form. A balanced design ensures that every factor is assigned 
each of its levels an equal number of times. An orthogonal design ensures that the subset 
of parameter combinations selected is spread evenly throughout the full set of parameter 
combinations. Further, the resulting design can be assessed precisely with regard to any 
confounding that may occur. Confounding means that given results cannot be attributed 
clearly to a main effect (i.e., single parameter) because the results might be due to 
interactions between two or more parameters. An experimenter should strive to select a 
Resolution IV design [89], where main effects are not confounded with two-parameter 
interactions; confounding between main effects and three-parameter interactions is 
usually acceptable because most systems are not driven by three- parameter interactions. 
When data analysis points to two-parameter interactions as drivers of system behavior, 
then a domain expert can usually determine which of the two is most likely. 

A Resolution IV experiment design requires a sufficient number of simulations 
(n) to estimate a leading constant, each parameter (p) and each pair of parameters (p 
choose 2). This means the example given in Fig. 2-3 requires a least 211 (n = 1 + 20 + 
190) simulations for a Resolution IV design. For a two-level design, choose the next 
higher power of 2 above n, i.e., 256 runs, which identifies the need for a 220-12 design. 
Reducing the number of simulations below this would lead to confounding between main 
effects and two-parameter interactions.  

The ultimate result of statistically based experiment design is that all experiment 
parameters (often called factors) are varied simultaneously. This powerful technique for 
reducing the search space stands in stark contrast to the approach typically adopted in 
networking simulation studies. For example, Paxson and Floyd [72] recommend holding 
all factors fixed except for one element, which becomes a single factor that is varied over 
a range during a particular simulation experiment. Varying only one factor at a time 
yields little information about overall system dynamics. Instead, such experiments 
indicate only the influence of the single varied factor given the fixed combination of 
other parameters. By varying all factors simultaneously, the system being investigated is 
examined over a much wider range of conditions. Of course, to derive useful information 
the resulting system responses must be analyzed with statistical methods matched to two-
level OFF designs. We say more about this aspect of our approach in Sec. 2.5.3. 

As shown above, reducing the parameter space of a model and applying two-level 
OFF designs can significantly reduce computation demands when simulating large 
systems. Of course, interpreting results from such experiments entails a key assumption 
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that system behavior is monotonic in regions between selected parameter values. OFF 
experiment designs will not reveal any nonmonotonicity that occurs within such regions. 
For this reason, an experimenter might wish to cover more than two levels in a design. In 
addition, the processing cost of running each simulation might require an experimenter to 
select an r3 reduction value that provides an insufficient number of runs for a Resolution 
IV design, leading to an undesirable confounding structure. Thus, there exists a tradeoff 
between the cost of running each simulation and the number of simulations that might be 
desired. 

In our study, we found that experiments with MesoNet require substantial 
computation when simulated network speeds mirror modern Internet speeds and when 
network size reaches hundreds of thousands of sources. Fortunately, though costly 
(averaging about 420 processor hours per simulation), such large simulations were not 
infeasible3 with MesoNet, as is typically the case with more detailed simulators. Further, 
we found that we could obtain similar results when simulating a network with an order of 
magnitude lower router speed and only tens of thousands of sources. The smaller scale 
simulations were much less costly (averaging about 24 processor hours per simulation). 
Even with the smaller scale simulations, simulating 256 combinations of parameters can 
require more than 6 x 103 processor hours. Given 48 processors, the necessary 
simulations can be carried out within a week. Increasing the number of processors used to 
256 would allow such simulations to be completed in about a day. Thus, smaller scale 
simulations are quite affordable and computationally feasible. Running a larger scale 
simulation experiment with 256 parameter combinations would take about 3 months 
when 48 processors are available and about 3 weeks when 256 processors are available. 
Thus, running larger simulations and more parameter combinations could be made more 
cost effective if the computation requirements for each simulation could be reduced. An 
alternative modeling method, known as hybrid systems, promises to reduce computation 
demand for network simulations. 

Lee and colleagues [71] apply a combination of continuous-time dynamics and 
event-based logic to model long-lived flows transiting a portion of the Abilene backbone. 
In addition to TCP congestion control procedures, the hybrid model includes three of the 
congestion control algorithms examined in our study. As described in Appendix B, we 
used MesoNet to replicate an experiment reported by Lee and colleagues where 30 long-
lived flows transmitted packets for 11 simulated hours. While MesoNet and the hybrid 
model obtained similar results, the hybrid model appears to require about two orders of 
magnitude less computation. Thus, for a study such as ours, a hybrid model combining 
continuous-time dynamics with event-based logic might offer a promising alternative to 
reduced-scale discrete-event simulation.  

2.5.2 Sensitivity Analysis and Key Empirical Comparisons 
To establish the validity of MesoNet for our study, we adopted two main strategies: (1) 
sensitivity analysis and (2) key empirical comparisons. Paxson and Floyd [72] 
recommend conducting a judicious exploration of a model’s parameter space. Floyd and 
Kohler [70] repeat this advice. Floyd and colleagues also indicate that such explorations 
are seldom, if ever, practiced in the network simulation community. A main motivation 
                                                 
3 Of course, the model code, the simulation framework, the underlying operating system and all required 
hardware must be highly reliable in order to run such large simulations without failures. 
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for exploring a model’s parameter space is to understand how responses change with 
combinations of input parameters. Generating such knowledge can help identify 
parameter combinations for which experiments could yield insights and can build 
confidence in the operation of a model. We implemented the aims of Floyd and 
colleagues by conducting a sensitivity analysis of MesoNet. We designed the sensitivity 
analysis (described in Chapter 4) as a 211-5 orthogonal fractional factorial (OFF) 
experiment4, which requires 64 individual simulations. We interpreted the results of the 
experiment using statistical analysis methods, which we outline in Sec. 2.5.3 and explain 
in detail in Chapter 4. Given results from a 211-5 OFF experiment, a domain expert 
determined if the results were as expected for a valid network model. In the case of 
unexpected results, the domain expert established whether the new insights were 
legitimate or whether the model exhibited errors. The sensitivity analysis of MesoNet 
uncovered both legitimate and illegitimate unexpected results. Where illegitimate results 
were identified, MesoNet was corrected and the sensitivity analysis was conducted again. 
In the end, the sensitivity analysis helped us to reduce the parameter space in later 
experiments so that we could focus on the top handful of factors influencing model 
behavior. In addition, related analyses (see Sec. 2.5.3) allowed us to reduce the response 
space we needed to examine in subsequent experiments. And, of course, the sensitivity 
analysis increased our confidence in MesoNet as a simulation platform on which to base 
further experiments. 

One shortcoming of our sensitivity analysis arose from limiting parameter settings 
to only two levels. As mentioned earlier, behaviors might not be monotonic between the 
chosen levels. In addition, outside the range of the chosen levels a model might not 
exhibit the same behaviors. To address these shortcomings to some extent, we conducted 
a second sensitivity analysis where we chose different values to represent the two levels 
for each parameter. We document this second sensitivity analysis in Appendix C. We 
also took further steps to explore MesoNet. Some researchers [71] had conducted a 
hybrid simulation aimed at replicating findings expected from accepted analytical 
insights into TCP flows. As described in Appendix B, we repeated this published 
experiment using MesoNet and we compared our results to the published results. 
Demonstrating that MesoNet could reproduce findings predicted from accepted analytical 
models also raised our confidence. 

Establishing MesoNet as an effective simulator of TCP flows transiting a network 
topology was a necessary, but insufficient, validation for the experiments we intended to 
conduct. Since we added six proposed alternate congestion control algorithms into 
MesoNet, we needed some means to establish that our models correctly implemented the 
algorithms. Fortunately, in a recently published paper, researchers [67] reported some 
empirical results from studying five of the six algorithms in a dumbbell topology. 
Another paper [66] provided empirical results for the sixth algorithm in a similar setting, 
                                                 
4 The actual process involved multiple repetitions of sensitivity analyses, which enabled us to eliminate 
some model parameters from our experiments. In addition, we chose to fix selected parameters because 
they were not germane to the issues we intended to study. This is the reason we focused our sensitivity 
analysis on 11 parameters instead of 20. In later work we conducted a full sensitivity analysis using all 20 
parameters in MesoNet. This later sensitivity analysis used a 220-12 OFF design, which required simulating 
256 parameter combinations. This later sensitivity analysis revealed that MesoNet is driven primarily by 6 
or 7 of the 20 model parameters. This result confirmed our choice to use about 32 conditions for each of 
our experiments, described in Chapters 6-9. 
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though with different parameter combinations. Since MesoNet could be configured with 
various topologies, we were able to simulate parameter combinations from the empirical 
study within a dumbbell topology. As described in Chapter 5, we compared behaviors 
generated from our MesoNet simulations against the published empirical results. In fact, 
we continued to improve our models of the alternate congestion control algorithms until 
the simulated behavior generated by MesoNet matched the empirical behavior reported in 
the literature. By making these key empirical comparisons, we gained confidence that we 
had correctly simulated the congestion control algorithms under study.    

2.5.3 Statistical Analysis Methods 
By adopting two-level OFF designs as the basis for all of our experiments, we enabled 
the application of numerous statistical analyses that could provide insights into 
relationships between patterns of input parameters and observed responses. We explain 
the analysis methods we used in detail at each point in our study where we apply them 
(see Chapter 4 and Chapters 6 through 9). Here, we introduce the key analysis methods in 
outline form, focusing on the major contributions of each method. As a general 
contribution to tractable analysis, all methods we adopt either reduce the dimension of 
multidimensional data, concisely summarize multidimensional data in succinct form or 
both.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-4. Reducing the Space of Model Responses using Correlation and/or Principal Components 
Analysis 
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experimenters with the possibility to measure many different system responses. 
Correlation analysis can identify where only a subset of responses need be analyzed in 
order to portray system behavior. As an alternate or complementary approach one could 
also apply principal components analysis. Fig. 2-4 illustrates the general idea behind 
these two analyses. Given a set of m responses, principal components analysis can find 
that a lower dimension m – d1 can capture the variation in response data. Alternatively, 
correlation analysis can suggest that fewer responses m – d2 can suitably represent 
variation in system behavior. Given two different proposals for reducing the response 
space of a model, a domain expert may then choose which responses to analyze for 
subsequent experiments. Chapter 4 provides a specific example where we applied these 
methods to MesoNet. 

Another reason to apply correlation and principal components analyses is to help 
validate a model. A domain expert likely has expectations that selected responses mirror 
similar aspects of system behavior. Correlation analysis can provide clusters of similar 
responses that an expert can verify. Surprising correlations may indicate errors in a model 
or else new findings. Similarly, a domain expert may have expectations about general 
network characteristics that drive behavior. By examining results from a principal 
components analysis, an expert can verify these overall aspects of system behavior, as 
represented by a model. 

We also adopted a 10-step technique developed at NIST [92] to support analysis 
of data generated by two-level experiments designed using OFF. Each of the 10 steps 
produces a graphic (or plot) aimed at concisely summarizing some aspect of response 
data. The plots include: (1) ordered data plot, (2) scatter plot, (3) main effects plot, (4) 
interaction effects matrix, (5) block plot, (6) Youden plot, (7) |effects| plot, (8) half-
normal probability plot of |effects|, (9) cumulative residual standard deviation plot and 
(10) contour plot of two dominant factors. We explain each of the plots in detail in 
Appendix D, and we apply selected plots in Chapter 4 to support of our sensitivity 
analysis of MesoNet. We also demonstrate in Chapter 4 how two-level OFF designs can 
aid other exploratory data plots to reveal insights about system behavior. 

As demonstrated in Chapters 6 through 9, we used cluster analysis in many of our 
experiments to provide a concise summary of multidimensional response data. Cluster 
analysis computes multidimensional distances between sets of responses associated with 
specified parameters, or combinations of parameters, and then groups the combinations 
based upon similarities in distances. For example, we might cluster responses associated 
with each congestion control algorithm for each combination of experiment parameters 
(i.e., experiment condition) to produce a set of dendrograms5, one per condition (e.g., Fig. 
6-4). Clustering can help us identify patterns among responses. For example, we might 
find that two algorithms always cluster near each other (i.e., have similar responses). Or 
we might find that three different algorithms cluster together only under selected 
conditions. We sometimes combine cluster analysis with other methods to reveal 
additional patterns. For example, we use an ordered data plot to classify the relative 
levels of congestion associated with each condition and then overlay the classification 
onto a set of clustering dendrograms (e.g. Fig. 6-8) to identify how congestion level 
influences clustering. 
                                                 
5 A dendrogram is a tree diagram frequently used to depict the arrangement of clusters, as produced by 
some hierarchical clustering algorithm. 
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In addition to clustering, we also used time series plots (e.g. Fig. 6-6) to 
investigate particular response dimensions highlighted by other analyses. Given a time 
series plot, we could determine if specific responses can be adequately summarized with 
an average value over particular time periods of interest. In addition, comparing time 
series of aggregate flow states allowed us to see how changing parameter combinations 
influence the pattern of flow states. We also applied time series of selected responses in 
selected situations (i.e., time periods and conditions) to investigate particular detailed 
behaviors. 

Aside from the standard available statistical analyses, we combined various 
statistical methods into custom analysis visualizations aimed at revealing patterns for our 
particular experiments. We constructed such custom visualizations to provide concise 
summaries of multidimensional response data. We used a specific visualization (e.g., Fig. 
6-9), which we designated a detailed analysis plot, to compare residuals about the mean 
(y axis) for each congestion control algorithm under each experimental condition, sorting 
the conditions on the x axis in increasing magnitude of difference. We generated one 
such plot for each response of interest. We labeled each condition (x axis) with a 
multidimensional set that included: experiment factor settings, algorithm identifier, order 
of magnitude in dispersion among the residuals, percentage difference in absolute 
response and a discriminating statistic derived from a test for outliners. We introduce and 
explain the details of our custom analysis plots in Chapter 6. We also used custom plots 
in Chapters 7 through 9. 

Though each custom detailed analysis plot provided a significant amount of 
information about a single response, the plots, when taken together, obscured any overall 
pattern that might arise across responses. To overcome this limitation, we designed a 
second custom visualization, which we called condition-response summaries – introduced 
in Chapter 6 and applied also in Chapter 7. Condition-response summaries (for example 
see Fig. 6-10) are constructed as matrices of responses (columns) by conditions (rows), 
where each cell is either blank or contains the identifier assigned to a specific congestion 
control algorithm under test. To generate a condition-response matrix, we analyzed 
(automatically) each detailed response to identify cases where some algorithm was 
identified as a significant outlier under the corresponding combination of parameters. In 
such cases, we placed the identifier assigned to the outlying algorithm into the 
corresponding condition-response cell of the summary matrix. If the algorithm was a high 
outlier then the identifier was colored green. If the algorithm was a low outlier then the 
identifier was colored red. Further, we could apply filtering so an outlier would be 
included in the summary only where additional criteria were satisfied. For example, as 
shown in Fig. 6-11, we might specify that the outlier must show at least a 10% absolute 
difference from the mean of all responses for the same condition. Condition-response 
summaries enabled us to identify patterns where algorithms became outliers under 
specific conditions.  

We generated several other custom visualizations, introduced in Chapter 8 and 
also applied in Chapter 9, to support our analyses comparing relative goodput6 of TCP 
flows and competing flows running alternate congestion control algorithms. One 

                                                 
6Goodput is application level throughput, i.e. the number of useful packets per unit of time forwarded by 
the network from a certain source to a certain destination, excluding protocol overhead, and excluding 
retransmitted data packets. 
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visualization (e.g. Fig. 8-34) comprised a set of scatter plots (one per alternate congestion 
control algorithm) of goodput on alternate flows (x axis) vs. goodput on TCP flows (y 
axis), where each data point represented the goodputs associated with a specific 
combination of input parameters for a particular flow group7. We used these plots to 
identify algorithms that outperformed competing TCP flows. We augmented the scatter 
plots with a set of bar graphs (e.g., Fig. 8-35), one per combination of input parameters, 
ordered by increasing congestion. Each bar graph contained seven bars, one per alternate 
congestion control algorithm. One end of the bar represented the higher of the average 
goodputs (either on TCP flows or alternate flows) and the other end represented the 
lower. The bar was colored green when the alternate algorithm gave flows higher 
goodput and colored red when TCP flows gave higher goodput. These bar graphs enabled 
us to discern patterns associated with conditions under which specific alternate 
congestion control algorithms gave better goodputs than TCP. Finally, we designed a 
custom visualization (e.g., Fig. 8-12), which we called rank matrices8, to explore patterns 
associated for relative goodput among alternate congestion control algorithms and among 
TCP flows competing with alternate algorithms under the same conditions. We generated 
a pair of rank matrices for each alternate congestion control algorithm. One matrix in the 
pair analyzed flows running the alternate algorithm and the second matrix in the pair 
analyzed TCP flows competing with the alternate algorithm. Each matrix intersected flow 
groups (columns), sorted by decreasing file size, with conditions (rows), sorted by 
increasing congestion. Each cell in a matrix contained a number representing the relative 
rank in goodput when considering all alternate congestion control algorithms under the 
same flow group and combination of input parameters. We used rank matrices to 
compare goodput among the alternate congestion control algorithms and to judge their 
relative influence on competing TCP flows. 

2.5.4 Data-Supported Domain Expertise 
The statistical analysis methods we adopted proved quite effective at identifying overall 
patterns from summarizations of experiment data. Further, the analysis methods that 
incorporated level settings for experiment input parameters could sometimes yield 
information that suggested causality. Unfortunately, not all of the statistical analysis 
methods we adopted considered input parameters. Further, in many cases specific input 
parameters did not directly identify causes. For example, while we inferred that varying 
levels of congestion in our simulations caused behavioral differences with respect to 
some measured responses, various parameter combinations tended to influence observed 
congestion. Thus, we sometimes established causality by classifying combinations of 
parameters with respect to responses indicating congestion (e.g., packet loss or 
retransmission rates). In that way, we could match patterns in other response data to 
changes in congestion. A similar approach could be used to classify combinations of 
parameters with respect to other macroscopic patterns, such as delay and demand from 
packets or flows. Domain expertise was required to decide which larger patterns to 
classify and which responses represented such patterns. Similarly, results from statistical 

                                                 
7 A flow group is defined by three attributes: the relative potential for congestion on a path through the 
topology, the file size and the maximum achievable goodput on the path. 
8 Rank matrices report the relative ordering from lowest (1) to highest (7) goodput achieved by a particular 
congestion control algorithm when compared against the competing congestion control algorithms. 
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methods, such as correlation and principal components analyses, provided a basis for 
patterns on which domain experts needed to superimpose interpretations. 

  Establishing causality in our study always required a domain expert to interpret 
data. In many cases, the summarized data we used for statistical analyses was insufficient 
to establish causality. For this reason, we instrumented our simulation model to capture 
data at more detailed levels. For example, most responses reported by MesoNet were 
captured as time series9, so that we could observe temporal evolution. In addition we 
were able to capture spatiotemporal evolution by producing time series of many 
characteristics (e.g., queue size, utilization, losses and count of transiting flows) for every 
router in our simulated topology. We did not capture spatiotemporal evolution for every 
source or flow. The reason we did not is twofold: (1) the model could potentially simulate 
hundreds of thousands of sources and (2) billions of flows could come and go over the 
course of a simulation. In order to gather insight into detailed behavior of flows and 
sources, we took two steps. First, we enabled experimenters to define long-lived flows 
between specified pairs of routers. The experimenter also specified when each long-lived 
flow would start and stop. We coded MesoNet to capture detailed temporal information 
(such as congestion window size, goodput, window increases, losses and timeouts) for 
each long-lived flow. Second, we enabled experimenters to capture message and state 
changes for a random sample of flows. We also instrumented MesoNet to capture 
temporal evolution with respect to logical classifications such as flow types. Finally, we 
included the option for an experimenter to capture time series of packet counts on 
selected links in a simulated topology. We explain these detailed measurements in 
Chapter 3. 

Given patterns revealed by statistical analyses and armed with detailed temporal 
and spatiotemporal data captured from the same simulations, we investigated causality 
using the scientific method. When statistical analyses revealed a significant pattern, we 
developed a hypothesis regarding the cause. We then used detailed data to test the 
hypothesis; usually positing evidence that should exist if the hypothesis proved correct. If 
detailed data provided supporting evidence, then we considered the hypothesis 
confirmed. Where detailed data did not provide supporting evidence, we developed a 
different hypothesis and sought supporting evidence among the detailed data. For a given 
pattern of interest, we iterated the approach until we found a hypothesis supported by the 
data. For the patterns investigated in the current study we were able to find detailed data 
providing evidence of causality. 

In addition to supporting the findings in the study, our approach to establishing 
causality also proved useful in identifying occasional errors within our simulation. For 
example, during one experiment, statistical analysis of summary data revealed that under 
lightly loaded conditions one of the alternate congestion control algorithms exhibited 
both a higher retransmission rate and a larger average congestion window10 size. These 
two patterns seemed unlikely to occur simultaneously, so we needed to determine a 
cause. Here, we adopted an exploratory approach. We turned to detailed data mapping 
temporal evolution of average congestion window size for a particular flow type under a 

                                                 
9 Data subjected to statistical analyses were derived from summarizations of time series captured by the 
simulation model. 
10 Congestion window defines the number of packets that may be sent prior to receiving an 
acknowledgment. A larger congestion window generally means a higher potential goodput. 
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specific combination of conditions. We compared related time series for eight congestion 
control algorithms. In seven of the algorithms, the temporal evolution of the average 
congestion window was flat. For the eighth algorithm, congestion window increased 
linearly with time. The eighth algorithm was the same algorithm identified by the 
statistical analysis. The comparison of time series indicated that something was wrong 
with respect to congestion window adjustment in the eighth algorithm. Armed with this 
information we examined the specific temporal evolution of the congestion window for a 
long-lived flow managed by each of the algorithms under the same conditions. 
Comparing these time series revealed that, early in the flow’s life, the offending 
algorithm increased the congestion window much more quickly than the other algorithms. 
Detailed examination of the related time series identified the exact time when the 
incorrect algorithm began its unexpectedly sharp rate of increase in the congestion 
window. The time was coincident with the point where the flow had reached the initial 
slow-start threshold, which initiated congestion avoidance procedures even in the absence 
of a loss. Examination of the related code revealed that the model failed to record the 
time of the transition into a variable intended to hold the time of the last congestion 
event. After correcting the error, the experiment was rerun and the results (both summary 
and detailed) were compared with the previous erroneous results, which established that 
the cause had been identified and corrected. 

2.5.5 Domain Expertise and Incremental Design 
We adopted an incremental approach to experiment selection. We relied on domain 
expertise to design the initial experiment (described in Chapter 6). Designing an 
experiment involves three main activities: (1) deciding which input parameters to vary 
and which input parameters to fix, (2) selecting values for both the variable and fixed 
input parameters and (3) specifying any spatiotemporal scenario embodied within the 
experiment. In deciding which input parameters to vary and fix, we were guided initially 
by findings from the sensitivity analysis of the simulation model. The factors that most 
influenced model behavior were selected as input variables for the first experiment; less 
influential factors were assigned fixed values. In selecting values for fixed and variable 
parameters, we were guided by our understanding of networks, by the intended aims of 
the study and by results from the sensitivity analysis. For the initial experiment, we 
identified an interest in investigating: (1) how congestion control algorithms behave 
under normal Web-browsing traffic, (2) how congestion control algorithms respond to the 
onset of heavy spatiotemporal congestion caused by a period of large file transfers and 
(3) how well congestion control algorithms recover as congestion eases when traffic 
transitions back toward normal Web-browsing. This naturally led to an experiment 
scenario encompassing three separate time periods. In addition, we wished to show that 
MesoNet could simulate networks of significant speed and size. This led to selecting 
parameters to simulate a large, fast network. To investigate how congestion control 
algorithms behave on various types of paths within a network, we constructed a simulated 
topology that permitted heterogeneity in network paths. 

The design for the second experiment (described in Chapter 7) was influenced by 
two main factors: (1) determining whether similar findings (to the first experiment) could 
be obtained when simulating a smaller, slower network and (2) investigating the 
influence of the initial slow-start threshold. Given these incremental objectives, we 
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simply repeated the first experiment while specifying lower values for network speed, 
network size and initial slow-start threshold. 

After reflecting on results from the first two experiments, we decided to extend 
the range of simulated user traffic in the third experiment (described in Chapter 8). This 
decision tests the intended purpose of the alternate congestion control algorithms: to 
improve user performance on large files. We specified four sizes for user flows: 
increasing from Web objects to documents to service packs to movies. Of course, users 
could transmit such files over paths with various congestion profiles, and constrained by 
the maximum interface speed of a source or receiver. For this reason, we introduced new 
code to measure flows in groups, based upon three dimensions: (1) file size, (2) network 
path type and (3) interface speed. This enables goodputs to be compared with respect to 
flows sharing similar characteristics. Given that the previous two experiments exercised 
the algorithms under relatively heavy congestion, we also decided to significantly reduce 
overall congestion in the parameter combinations specified for the third experiment. We 
eliminated variation in temporal congestion; the scenario considered the network 
operating under the same traffic mix for a single, one-hour time period. Spatial 
congestion could still arise due to many flows transiting particular areas of the network, 
but the overall level of congestion was much reduced from previous experiments. To 
investigate the influence of various alternate congestion control algorithms on competing 
TCP flows, we decided to include a mix of flows: some operating under TCP and others 
operating under one of the alternative algorithms. To represent a network that might be 
moving incrementally toward replacing TCP, we introduced a new model parameter and 
selected two settings: (1) more TCP flows and (2) more alternate flows. Finally, because 
the first two experiments suggested that the initial slow-start threshold exerted significant 
influence on network behavior, we chose to replicate the third experiment twice: once 
with a high initial slow-start threshold and once with a low initial slow-start threshold. 

After reflecting on results from the third experiment, we decided on a fourth 
experiment (described in Chapter 9) to increase the size and speed of the network by an 
order of magnitude and to retain other parameters from the third experiment. This 
decision reflects two main purposes: (1) to investigate behavior of alternate congestion 
control algorithms under networks of speed and size comparable to modern Internet-
based networks and (2) to demonstrate that simulating large, fast networks with large 
files may be computationally feasible under MesoNet. Of course, the computational 
requirements proved substantial, so we chose to repeat only one instance of the third 
experiment: the case with a high initial slow-start threshold. The choice of a high initial 
slow-start threshold was motivated by desire to focus on the influence of loss/recovery 
procedures in the alternative congestion control algorithms. 

Only a domain expert can decide on the specific experiments to run and the 
parameters and values to fix and vary. No general method exists for making these 
decisions. By designing experiments incrementally, the motives and results of preceding 
experiments can be considered when selecting the aims and designs for subsequent 
experiments.   

2.6 Conclusions 
In this chapter, we described the motivation underlying our goal to develop and evaluate 
a coherent set of methods that can be applied to understand behavior in large distributed 



Study of Proposed Internet Congestion Control Mechanisms NIST 
 

Mills, et al. Special Publication 500-282 28 

systems. We introduced a challenge problem: comparing alternative congestion control 
algorithms proposed for the Internet. We described and critiqued current state-of-the-art 
approaches adopted by researchers to compare congestion control algorithms. We 
outlined how our research aims to advance the state of the art. We considered several 
approaches that might be used to achieve our intended advances. We described the 
approach we developed, which required solving five hard problems. We explained the 
solutions we adopted to address each problem. In the remainder of this study, we use the 
challenge problem to develop and evaluate our methods. 

While the current study investigates a specific challenge problem, the methods we 
apply should be generally applicable to a wide array of large distributed systems. 
Discrete-event simulation (DES) is applied to study a diverse range of scientific and 
engineering problems. Though DES requires substantial computation to represent large 
systems, computing power is becoming more cost-effective as system designers adopt 
multi-core, multiprocessor (MCMP) designs. Orthogonal fractional factorial (OFF) 
designs have a long history of application in rigorous scientific and engineering studies. 
Further, OFF experiment designs construct simulation runs that each considers a 
specified combination of input parameters. Such designs provide a good match for 
MCMP computer systems because each simulation can be run in parallel. Thus, the more 
processors available, the faster the simulation campaign can be completed. The statistical 
analysis methods we adopted are largely independent of the details of specific system 
models. Even our custom visualizations are based on general analysis approaches. Of 
course, the methods we developed and applied in the current study have limitations that 
must be considered. We discuss these limitations in Sec. 10.2, where we evaluate the 
methods we used to compare alternate congestion control algorithms.  
 


