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Objectives Objectives

 Discuss the characteristics of fingerprint features. Discuss the characteristics of fingerprint features.
 Propose a subset of Level 3 features. Propose a subset of Level 3 features.
 Describe the methods used to identify level 3 features Describe the methods used to identify level 3 features

using Support Vector Machines. using Support Vector Machines.
 Review characteristics of Support Vector Machines. Review characteristics of Support Vector Machines.
 Discuss typical features in the training and test sets. Discuss typical features in the training and test sets.
 Present performance results. Present performance results.
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live-scanned fingerprints.

A Preliminary Report A Preliminary Report

 This is a project in progress. This is a project in progress.
 Current results are based on a small data set witCurrent results are based on a small data set with h

only a pore feature set collected only a pore feature set collected from 500 dpi from 500 dpi
livelive--scanned images. scanned images.

 Ultimate goal Ultimate goal is to reliably detect several is to reliably detect several
different level 3 features in latent, inked, and different level 3 features in latent, inked, and
live-scanned fingerprints. 

Strategy Strategy

 Difficult to determine how human fingerprint Difficult to determine how human fingerprint  
examiner makes decisions examiner makes decisions
 Highly intuHighly intuitive decisions itive decisions
 Expressing decisions as rules is probably iExpressing decisions as rules is probably immpossible possible

 Instead, emulate examinerInstead, emulate examiner’’s decisions by training s decisions by training
a learninga learning machine  machine
 Capture expertise implicitly in exCapture expertise implicitly in examples amples
 Train SVM (Support Vector MaTrain SVM (Support Vector Machine) to duplicate chine) to duplicate

examiners observed behavior examiners observed behavior
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Level 1 Features Level 1 Features

Level 2 Features Level 2 Features

3 



 Incipient Ridges 

 Scars

Level 3 Features Level 3 Features

 In the broadest sense, level 3 features are any In the broadest sense, level 3 features are any
not classifiable as Level 1 and Level 2. not classifiable as Level 1 and Level 2.

 There is no generally agreed upon definitThere is no generally agreed upon definitiion of on of
Level 3 features. Level 3 features.

 A NIST working group is in the process of A NIST working group is in the process of
defining Level 3 features. defining Level 3 features.
 No conclusions as this is written No conclusions as this is written

Some Level 3 Feature Candidates Some Level 3 Feature Candidates

 Pores Pores  Warts Warts

 Ridge Shapes Ridge Shapes  Creases Creases

 DeformationsDeformations Incipient Ridges 

 Scars 

From: BIOMETRICS 
Dr. Andrzej Drygajlo 
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Sweat Pore Chosen As Feature
 The sweat pore feature was selected for this first 

portion of the study by two criteria:
 Usefulness to examiners
 Detectability by Support Vector Machines

 Disadvantage: Sweat pores may not be visible 
 Ink and powder tends to fill pores

 Advantages
 Numerous

 2700 per square inch (approx.)
 Distinctive

 Highly variable in:
 Size: 88 to 220 microns

 In any position across ridge
 Shape: round, oblong, triangular

Sweat Pore Chosen As Feature 
 The sweat pore feature was selected for this first

portion of the study by two criteria: 
 Usefulness to examiners 
 Detectability by Support Vector Machines 

 Disadvantage: Sweat pores may not be visible 
 Ink and powder tends to fill pores 

 Advantages 
 Numerous 

 2700 per square inch (approx.) 
 Distinctive 

 Highly variable in: 
 Size: 88 to 220 microns 

 In any position across ridge 
 Shape: round, oblong, triangular 

 Spacing  alongSpacing dge appr x.)dgeridge is random (9along ridge is random (9-18 pores/cm or ri o18 pores/cm or ri  approx.) 

Examples of Sweat Pores at 500 dpi Examples of Sweat Pores at 500 dpi

5 



 Contrast and brightness enhancement by level 
adjustments

 Sharpening (un-sharp mask)
 500 dpi original image

 Captured with solid-state fingerprint sensor

Image Enhancement Image Enhancement

 Conservative enhancement used to preserve Conservative enhancement used to preserve
information information
 Contrast and brightness enhancement by level 

adjustments 
 Sharpening (un-sharp mask) 

 500 dpi original image 
 Captured with solid-state fingerprint sensor 

Image Enhancement Example Image Enhancement Example
Original Enhanced 
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Support Vector Machines

 Support Vector Machines (SVM) 
 Learning machines based on statistical learning theory

Training and Evaluation Methods

 Trained  using SVM-light software

Support Vector Machines 

 Support Vector Machines (SVM) 
 Learning machines based on statistical learning theory 
 Trained by examplesTrained by examples 
 Classifies previously unseen inputsClassifies previously unseen inputs 

 Solid mathematical foundation inSolid mathematical foundation in VapnikVapnik-ChervonenkisChervonenkis theory [theory [VapnikVapnik,, 
1995a][Smola, 2000]1995a][Smola, 2000] 

 Maps training vectors into higher (possibly infinite) dimensionaMaps training vectors into higher (possibly infinite) dimensional spacel space 
 UsingUsing ““kernel trickkernel trick”” all computation is done with dot products in lowall computation is done with dot products in low

dimensional training vector space.dimensional training vector space. 
 All the following were once considered to be different classes oAll the following were once considered to be different classes of Artificialf Artificial 

Neural Networks.Neural Networks. 
 Radial Basis FunctionRadial Basis Function 
 SigmoidalSigmoidal MultiMulti-layerlayer PerceptronPerceptron 
 PolynomialPolynomial 
 LinearLinear 
 Many othersMany others 

 All the above have been shown to be special cases of an SVMAll the above have been shown to be special cases of an SVM 

Training and Evaluation Methods 

 Trained using SVM-light software 
 Courtesy ofCourtesy of ThorstenThorsten JoachimsJoachims [[JoachimsJoachims, 2002a] [, 2002a] [JoachimsJoachims,, 

2002c] [2002c] [KlinkenbergKlinkenberg,, JoachimsJoachims, 2000a] [, 2000a] [JoachimsJoachims, 2000b], 2000b] 
JoachimsJoachims, 1999a], 1999a] 
 Available without charge atAvailable without charge at http://svmlight.joachims.orghttp://svmlight.joachims.org 

 Another version [CHANG 2001], LIBSVM, also availableAnother version [CHANG 2001], LIBSVM, also available 
without chargewithout charge 

 Radial Basis Function Kernel was usedRadial Basis Function Kernel was used 
 K(xK(xii,, xxjj) = exp) = exp ((-γγ |||| xxii 

TT – xjxj ||||22)) 

 Accuracy evaluated by leaveAccuracy evaluated by leave--oneone--out methodout method 
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Characteristics of Characteristics of SVMs SVMs

 Generalizes fGeneralizes frrom training examples om training examples
 Constructs arbitrarily complicated, optimal, nonConstructs arbitrarily complicated, optimal, non--linear decision linear decision

surfaces surfaces
 Every solution is global; no local minima Every solution is global; no local minima
 Training is a conventional Training is a conventional  quadratic programming problem quadratic programming problem

 Many different optimizerMany different optimizers can be used s can be used
 Specialized optimizers improve performance Specialized optimizers improve performance

 Training complexity is calculable Training complexity is calculable
 Cubic in number of support vectors Cubic in number of support vectors
 Support vectors are typically Support vectors are typically much fewer than traimuch fewer than training ning

vectors vectors
 Provides confidence level on decisions Provides confidence level on decisions
 Accuracy estimate is produced with little additional computation Accuracy estimate is produced with little additional computation

 LeaveLeave--oneone--out cross validation out cross validation

Training Set Selection Program Training Set Selection Program
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 Computer program determines training vector components

 Save as training vector
 Components currently based on:

 Central intensity pattern
 Radial intensity pattern

 Ridge slope is estimated
 Will be used for other level 3 features

Estimating Accuracy
 Cross validation, the basic procedure

 Separate data set into two sub sets
 Training set
 Test set

 Train classifier on Training Set
 Measure accuracy on Test Set

 n set Cross validation improves accuracy
1. Separate data into n sub sets
2. Train on n 1 subsets, reserving one subset
3. Measure accuracy on reserved sub set
4. Repeat 2 through 3 for all sub sets



1. Train on all but 1 example
2. Classify that example
3. Repeat steps 1 and 2 for all examples

Training Set Example Selection Training Set Example Selection

 Select correct classification Select correct classification
 Click on an image point Click on an image point

 Computer program determines training vector components 

 Save as training vector 
 Components currently based on: 

 Central intensity pattern 
 Radial intensity pattern 

 Ridge slope is estimated 
 Will be used for other level 3 features 

Estimating Accuracy 
 Cross-validation, the basic procedure 

 Separate data set into two sub-sets 
 Training set 
 Test set 

 Train classifier on Training Set 
 Measure accuracy on Test Set 

 n-set Cross-validation improves accuracy 
1. Separate data into n sub-sets 
2. Train on n - 1 subsets, reserving one subset 
3. Measure accuracy on reserved sub-set 
4. Repeat 2 through 3 for all sub-sets 



1. Train on all but 1 example 
2. Classify that example 
3. Repeat steps 1 and 2 for all examples 
4. 4. Calculate error rate as: number Calculate error rate as: number ofof e errors rrors / nu/ nummbbeerr of  of  traitrainining ng eexamxampples les
 ImpracImpractiticcaall  f foor r manymany ty typepes ofs of c cllassiassiffiieerrs: requs: requiirrees res re--traintrainining g  fofor eachr each examp example le

 SVM performs LeaveSVM performs Leave--OneOne--Out aOut accccururacy acy estiestimation with littmation with little extle extrra a  
computation computation

LeaveLeave-OneOne-Out methodOut method, limit of n, limit of n-set method, still more accurateset method, still more accurate 
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.03 seconds.

Estimated Accuracy by 
Leave-One-Out Method

Training Process Training Process

 Training set size: 483 samples Training set size: 483 samples
 CPU time for training: < .01 seconds CPU time for training: < .01 seconds
 CPU time for classificatCPU time for classification: < .01 seconds ion: < .01 seconds
 CPU time for leaveCPU time for leave--oneone--out out crosscross--validation: validation:

.03 seconds. 

Estimated Accuracy by 
Leave-One-Out Method 

 No errors found by crossNo errors found by cross--validation validation
 Recall: Recall: 100% 100% (TAR(TAR x 100)  x 100)

 Percentage oPercentage off pores correctly classified pores correctly classified (221 pores;  (221 pores; 221 221
correctly clascorrectly classified) sified)

 Precision: 100% Precision: 100%
 Percentage oPercentage off samples classified as a pores that a samples classified as a pores that acctually are tually are

pores pores
 Overall accuracy: 100% Overall accuracy: 100%

 483 samples; 483 correctly classified, 0 misclassified 483 samples; 483 correctly classified, 0 misclassified
 262 pores; 262 correctly classified. 0 misclassified 262 pores; 262 correctly classified. 0 misclassified
 221 non221 non-pores, pores, all correctly classified all correctly classified
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Estimated Accuracy Estimated Accuracy

 TAR (True Accept Rate) = 1.0 TAR (True Accept Rate) = 1.0
 FAR (False AcceptFAR (False Accept Rate) = 0.0  Rate) = 0.0

Discussion Discussion

 Results are suggestive, but not conclusive Results are suggestive, but not conclusive
 Sample size is too small to make useful accuracy estimates Sample size is too small to make useful accuracy estimates

 Because thBecause there were no errere were no errors, with 95% confidence, the error rators, with 95% confidence, the error rate e
is known to be less than 0.621%is known to be less than 0.621% (3/sample size) (Rule of 3)  (3/sample size) (Rule of 3)
[[GamassiGamassi, 2004] [Louis 19, 2004] [Louis 1981] [81] [Jovanovic Jovanovic 1997] [1997] [Wayman Wayman 2000] 2000]

 Errors are too few in number Errors are too few in number
 ““To be 90% confident thTo be 90% confident that the true erat the true error rate is within ror rate is within ± ± 30% of 30% of

the observedthe observed error rate, there must be at least 30 er error rate, there must be at least 30 errors.rors.” ”
[[GamassiGamassi, 2004] [, 2004] [DoddingtonDoddington, 2000] (, 2000] (Rule of 30) Rule of 30)
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Future Research Future Research

 Expand and evaluate pore training set Expand and evaluate pore training set
 Scan image for pores and display detection regions Scan image for pores and display detection regions
 CalculatCalculate ROC using confide ROC using confidence levels ence levels
 Evaluate performance on otEvaluate performance on other level 3 features her level 3 features
 Expand study to include Expand study to include 1000 dpi fingerprints 1000 dpi fingerprints
 Scan latent fingerprint images and display Scan latent fingerprint images and display

detection regions detection regions
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