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Appendix A Understanding, Improving and Applying   
                      Fluid-Flow Models 
In order to insure efficient and stable operation of the Internet it is important to be able to 
estimate network performance characteristics under TCP traffic, which today constitutes 
the bulk of Internet data freight. The main obstacle to achieving this goal is posed by the 
dynamic nature of TCP congestion control: very complex collective behavior arises as a 
result of interactions between congestion control algorithms of concurrent flows. A good 
analogy that we will return to below is that of gas or fluid dynamics in which relatively 
simple interactions between molecules comprising the substance lead to familiar but 
complex bulk properties such as viscosity, temperature, and pressure, which are not 
easily understood or computed from the microscopic, molecular description. 

As in fluid dynamics there are two possible approaches to gauging the properties 
of an aggregate network — by simulating the microscopic dynamics of transmission and 
transit of individual packets or by studying heuristically derived high-level 
approximations describing the packet traffic as a kind of a continuous substance flowing 
along the network links. The advantage of the former approach (adopted in the main body 
of this study) is that it yields very detailed information that is easily compared against 
traces collected on experimental test beds, for example, for verification. On the other 
hand, simulating a network of a realistic size over a large number of network parameter 
combinations may prove computationally infeasible. The fluid approximation models by 
comparison have very modest resource demands, although they are also less detailed. 
Fluid approximation models have another advantage over simulations in that they can 
sometimes give precise mathematical relationships between performance and network 
parameters, which can then be used as a guide in design of future networks and protocols 
as well as to improve the performance of current systems.  

We begin in Sec. A.1 by introducing fluid-flow approximation models for TCP 
Reno flows and then we discuss the utility and limitations of such models. In Sec. A.2, 
we use fluid-flow approximation to develop response functions for TCP Reno, as well as 
CUBIC [56] and Compound [58] TCP and then compare the estimated equilibrium 
throughput of these alternatives. We close in Sec. A.3, where we outline future work 
related to fluid-flow approximation of Internet congestion control algorithms. 

A.1 Fluid-flow Approximation Models 
How would the Internet appear when visualizing packets as points moving along links 
and through routers? With hundreds of thousands of packets crossing a typical router 
every second they would appear to be an uninterrupted blur of motion, as if a fluid were 
flowing through pipes rather than a series of discrete packets flowing along links. This is 
the basic idea of fluid approximation: if the number of packets in the network is very 
large and they are moving very fast then the packet traffic will be well approximated by 
an abstract continuous stream. 

Although each individual TCP flow behaves deterministically, aggregate 
dynamics, for a network of any significant size, will appear as nearly random. A good 
physical analogy is molecular dynamics in a volume of gas: while each molecule obeys 
simple Newtonian laws of motion, their collective behavior is essentially stochastic. 
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Describing the paths of individual molecules is a hopeless and ultimately useless 
endeavor; on the other hand, bulk properties such as pressure and temperature are neatly 
connected by the ideal gas equations. Similarly, one may hope that for a large collection 
of TCP flows the aggregate throughput may be related to the round-trip delay, capacity 
and buffer size in a simple way. Thus, the ultimate goal of fluid-flow approximation 
models is to develop a kind of TCP network thermodynamics. 

We introduce fluid approximation by briefly describing the congestion window 
and throughput dynamics in the case of an isolated flow. To keep the presentation as 
simple and clear as possible we will discuss the most basic version of TCP Reno 
preserving only the most salient features of the protocol. That is, by TCP we will 
henceforth mean TCP Reno without selective acknowledgment, fast retransmit and fast 
recovery. Mathematical models incorporating these advanced features of TCP have been 
studied elsewhere [127]. For an isolated flow there can only be one bottleneck router 
along its path and so the rest of the path contributes only in terms of propagation delay. 
We assume further that the bottleneck router is positioned immediately in front of the 
source on the outgoing link. The general case is not substantially different. Let the router 
capacity at the bottleneck be denoted by C packets per second (pps), let its buffer size be 
B packets and the round-trip propagation delay T sec. If the variation in the round-trip 
time due to queuing at the router is negligible, the size of the congestion window in the 
congestion avoidance phase is approximated by the differential equation  
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where W(t) interpolates the discrete congestion window size and P(t) is a sum of delta 
functions )−= ∑ jtttP ()( δ , with tj corresponding to moments of congestion window 
reduction due to detection of packet losses. In the case of an isolated connection the 
sequence tj is periodic and can be computed explicitly. Note, also, that if the buffer is 
large T must be replaced with the equilibrium round-trip time that includes the 
equilibrium queuing delay. 

If B≈CT and the variation in queuing delay is significant, then queue length has to 
be explicitly included in the model. Equation (1) then becomes  
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where )(tQ  is the buffer queue length at the router and  χ[0,B](x)  is the characteristic 
function of [0,B]. 
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While equations (1) and (2) describe the evolution of the congestion window, the 
quantity of real interest is usually the transmission rate. It is not hard to see that the rate at 
which the TCP sliding window1 advances, and hence the transmission rate, is equal to 
W(t) divided by the total round-trip delay T+Q(t)/C. So long as queuing delay is small 
relative to the total round-trip propagation time, the transmission rate, X(t), can be 
approximated by W(t)/T. Dividing (1) through by T we have 
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Note that, as expected, transmission rate attains its maximum value C at W=CT and stays 
at this value even as W continues to increase. This means that when the buffer size is 
comparable with the bandwidth-delay product X(t) does not carry enough information to 
reconstruct the system state completely because it is impossible to compute X(t) 
following a congestion window reduction given only the value of X(t) before the 
reduction. In this case, throughput has to be computed by solving (2) first. 

When considering the case of multiple flows, the complexity of the problem increases 
in two ways. First, as the number of flows increases, the simple periodic congestion 
window dynamics described above breaks down because packet loss now depends on the 
collective behavior of all flows. Consequently, the evolution of congestion windows 
becomes more and more complex and chaotic. The difficulty of the problem also 
increases with increasing complexity of the network structure. As the web of interactions 
among flows becomes increasingly complicated so does the global dynamics of the 
network. This topological aspect of the problem has so far received comparatively little 
mathematical treatment, mainly because describing a large number of flows in a simple 
topology is already a formidable challenge. Most mathematical models in current 
literature treat very simple network topologies. The one most often considered is that of a 
single bottleneck link shared by a large number of identical flows. While this simple 
topology may not exhibit the full range of dynamics that may exist in more complicated 
networks, it is, nevertheless, an important special case both practically and theoretically. 
We turn to this case next. 

A.1.1 Modeling Many Flows on One Link 
We briefly outline the derivation of the fluid approximation for the one-link-many-flows 
case. Let the number of flows N be large and let capacity and buffer size of the router 
scale with N as NC and NaB, 0≤a≤1, respectively. Then the number of packets passing 
through the shared link per unit time will be large, satisfying the intuitive condition 
necessary for the fluid approximation to hold. While the system as a whole will remain 
deterministic as N grows, the packet loss process will be increasingly well approximated 
by a stochastic one. Thus it makes sense to model evolution of congestion windows with 

                                                 
1 The sliding window is the interval of packet numbers corresponding to already sent but not yet 
acknowledged packets. The size of the sliding window is bounded by the size of the congestion window; its 
right edge advances when a new packet is sent and its left when a previously sent packet is acknowledged 
[9]. 
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a corresponding collection of random processes. Let WN(t) be the random process 
describing aggregate congestion window size when the number of concurrent flows is N  
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where WN

i (t) describes the congestion window size of flow i at time t. Since the flows are 
identical, it is reasonable to assume that the WN

i (t) are identical random processes. We 
will also assume that the WN

i (t) become independent as N tends to infinity. Applying the 
law of large numbers we have that 1/N WN(t) converges to some deterministic process 
w(t) as N goes to infinity. The deterministic process w(t) is the fluid approximation of 
WN(t). 

Considering the simpler case of small buffers a<1 first [120], we have from (1) 
and (5)  
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Note that PN

i (t) are now coupled random variables. Dividing through by N and letting N 
go to infinity we obtain the governing equation for w(t) 
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function. If the variation in round-trip time is small, p(t) can be assumed to depend only 
on w(t−T) (ignoring the rest of the network parameters for the moment). Furthermore, the 
number of packets lost per unit time can be approximated as p(w(t−T))w(t−T)/T, where 
p(w) now stands for the probability that an arriving packet will be dropped due to buffer 
overflow when the aggregate congestion window size is w. Note that because of the 
round-trip delay the source detects packet loss only after a round-trip time T so that p 
depends on the transmission rate T seconds in the past. Formula (7) can be approximated 
as  
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If the buffer is large (a=1) then p(w) will depend not only on w(t−T) but also on buffer 
content q(t−T). Using equations (2) and (5) gives 
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where we assume that the per flow buffer content NtQtq N

N
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continuous deterministic variable. 

A.1.2 Utility of Fluid-flow Approximation Models 
There are two main types of results that can be obtained from models such as equations 
(8) and (9). First, one can deduce existence and uniqueness of the equilibrium, and its 
dependence on network parameters. Secondly, one can analyze stability properties of the 
equilibrium solution and the dependence of the equilibrium solution on the network 
parameters. Both types of results have clear practical applications, the first for optimal 
resource utilization and the second for stable network design. We will give a brief survey 
of both types of results. 

By setting the right side of (8) and (9) to 0 we can obtain the expression for the 
equilibrium mean congestion window size w*  
 

                                                        w*=  
2
p*,                                                              (10) 

 
where p*=p(w*) or p(w*,q*) respectively. This shows that an equilibrium exists, since 
p*≠0 is satisfied. Making the natural assumption that p(w) is monotonically increasing in 
w, equation (10) also shows that the equilibrium is unique [122]. Formula (10) is close to 
experimental measurements [117] and also agrees with first principles derivations [117]. 
Unfortunately, the dependence of w* on T and B is hidden inside the unknown function 
p(w), which limits the usefulness of (10) for making a priori throughput estimates. Simple 

forms for p(w) such as 
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M/M/1/B queuing system have been found to be far from accurate [112-113]. Recently, 
an alternative packet loss model based on the Anick-Mitra-Sondhi on-off fluid queuing 
model has been proposed [112, 114] and found to be substantially more accurate than the 
M/M/1/B model at reproducing dependence of packet loss on w and the network 
parameters. 

Even without knowing the exact expression for p(w), however, sufficient 
conditions for linear stability of equilibrium (10) can be deduced in terms of p* and 
p'*=p'(w*). Using standard methods of control theory it has been shown [126] that 
equilibrium (10) of equation (8) will be stable in linear approximation provided that  
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Inequality (11) is a necessary but not sufficient condition for stability, i.e., if it is violated 
the equilibrium will definitely be unstable but satisfying (11) does not guarantee (non-
linear) stability. Based on (11) one can conclude, for example, that p'* must decrease with 
increasing bandwidth-delay product in order for the equilibrium not to lose stability, 
since larger bandwidth-delay product corresponds to larger equilibrium congestion 
window size w*. With more advanced methods it is also possible to derive conditions 
guaranteeing global stability of equilibrium (10), although, the resulting inequalities 
[124] are considerably more complicated and less informative than (11). 

Fluid approximation models have also been used in a global optimization 
framework for the Internet, originally developed by F.P. Kelly, et al. [125] to show that 
per-flow TCP congestion control can be viewed as optimizing a certain global utility 
function. That is, TCP congestion control can be seen as a decentralized iterative 
algorithm for solving a network wide optimization problem. This point of view 
revolutionized understanding of the effect of TCP congestion control on global network 
dynamics. In particular, it paved the way toward a top-down protocol design, where 
starting with a desirable global network state first, the end-to-end congestion control can 
be tailored to achieve this global state. 

Finally, fluid approximation models have been used to create fast simulators for 
large networks [106, 119] by leveraging fast numerical methods for solving systems of 
differential equations. While not as accurate or detailed as packet level simulators, the 
results from the first implementations are encouraging. 

A.1.3 Limitations of Fluid-flow Approximation Models 
In spite of great theoretical value, and even some practical applications, the fluid 
approximation framework falls short of being truly useful to practitioners of network and 
protocol design mainly due to lack of accuracy [112-113]. The main obstruction to the 
accuracy of fluid approximation models is lack of an accurate packet loss process model, 
which determines the equilibrium as well as dynamic behavior of the network. At the 
outset, the packet loss process was assumed to be well approximated by the loss process 
in an M/M/1/B queuing system. However, there is experimental evidence against the 
Poisson packet arrival hypothesis [118]. Based on packet traces collected from the 
Internet it was shown that the packet arrival process has rather different statistical 
properties from a Poisson process. In particular, it was observed that it is much burstier 
and is, moreover, bursty on all time scales. Due to the difficulty of mathematical analysis 
of queuing systems fed by such self-similar traffic, relatively little headway has been 
made toward obtaining a closed form expression for packet loss usable in the fluid 
approximation framework. In fact, it is still common in current publications [112, 120, 
122, 123] to find computations based on the M/M/1/B queuing system. 

Elsewhere [112] we proposed and tested a new expression for packet loss based 
on a queuing model of Anick, Mitra and Sondhi (AMS) [121]. Briefly, the model consists 
of a single fixed rate server fed by a superposition of fluid, fixed-rate, on-off sources with 
exponentially distributed “on" and “off" periods. This model is essentially a packet level 
fluid approximation. Observations [112, 114-115] of ns2 traces suggest that TCP sources 
tend to concentrate packets in bursts (corresponding to a single congestion window) 
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rather than transmitting packets at a uniform rate on the time scale of a round-trip time. 
Thus setting the mean duration of the "on" periods to the congestion window size allows 
us to simulate burstiness arising from the non-uniformity in the transmission rate at the 
round-trip time scale. 

The resulting mathematical model turns out to have a closed form solution in 
terms of the basic system parameters such as the number of sources, the server and source 
rates and the mean duration of the “on" and “off" periods. While this model is certainly 
only an approximation, since, for example, the window size distribution is expected to be 
non-exponential [107, 110], numerically it produces much better results than the 
commonly used M/M/1/B model [112]. Moreover there are some indications that the 
AMS packet loss model may be applicable to any unpaced TCP variant and not just TCP 
Reno, for which it was developed. Assuming this is so we can then use the fluid 
approximation framework to easily compare alternative congestion control algorithms in 
a variety of different network set ups with varying link bandwidths, buffer sizes and 
propagation delays. Next, we show how this can be accomplished. 

A.2 Applying Fluid-flow Approximation Models to Compare  
      Alternate Congestion Control Algorithms 
In what follows, we briefly illustrate how the fluid approximation framework can be used 
to compare throughput performance of different TCP variants in a simple network. 
Specifically we consider an extension of the dumbbell topology — a network with a 
single link shared by a large number of continuously transmitting TCP flows with similar 
round-trip times (RTTs). We concentrate our attention on the standard TCP Reno and two 
other TCP variants — CUBIC [56] and Compound [58] TCP — which are currently 
increasingly deployed in the Internet due to their inclusion in Linux and Windows® Vista 
and Server operating systems, respectively [109]. In the following we will be interested 
only in the equilibrium throughput and so we will ignore the transient convergence 
dynamics described by the fluid approximation differential equations model and 
concentrate on the equilibrium solution. As previously explained, because congestion 
control mechanisms regulate transmission speed by opening and closing the congestion 
window, it is this window rather than throughput that is typically the main variable in 
mathematical models of TCP. The throughput is roughly proportional to the congestion 
window size divided by the round-trip time (including propagation and queuing delays). 

The equilibrium mean congestion window size is described by a system of 
equations of the form 
 
                                                    w* = w(p*)                                                                 (12) 
 
                                                   p*  =  p(w*,C,B,T,N)  
 
where w* and p* are the equilibrium congestion window size and packet loss probability, 
respectively. In special cases w(p) may also depend on other network parameters such as 
the round-trip time (RTT). 

Generally speaking one might expect that the second equation in (12), describing 
the dependence of packet loss on network parameters and equilibrium congestion 
window size, is roughly the same for all congestion control algorithms that use ACK self-
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clocking, i.e., insert new packets into the network only in response to acknowledgments 
from the sink. The reason for this is that the sliding window algorithm in combination 
with ACK self-clocking largely determines the statistics of the aggregate packet arrival 
process at the bottleneck router, which, in turn, determines the statistics of packet loss. 
The packet loss statistics will vary with the TCP congestion control algorithm to the 
degree to which the equilibrium congestion window size distribution varies with 
congestion control algorithm. Unfortunately, due to the complexity of the problem 
relatively little is known about the properties of this distribution. For TCP Reno the 
stationary congestion window distribution has been computed under the assumption of 
Poisson losses [107, 110] and for more general additive-increase multiplicative-decrease 
algorithms [116]. On the other hand, the packet loss probability function under the 
assumption of exponential congestion window size distribution has also been derived 
[112]. 

We first, show how TCP variants can be qualitatively compared without knowing 
the form of the packet loss probability function provided it can be assumed to be 
approximately independent of the specifics of the congestion control algorithm. Indeed, if 
the second equation in (12) is independent of the specific algorithm, then the relative 
position of equilibria of TCP variants is determined by the first equation, which strongly 
depends on the particular congestion control algorithm used. The function w(p) is often 
referred to in literature as the response function of the congestion control algorithm. As 
one would intuitively expect it is a decreasing function of p — the less frequent the losses 
the larger the equilibrium congestion window. Since the congestion window growth 
functions used in congestion control typically exhibit polynomial growth due to stability 
requirements, the response function itself is also typically polynomial in p, i.e., w(p)=cp−α 
for some c, α>0. Since the packet loss instances form a random process the form of w(p) 
depends not only on the average loss probability but also on the statistics of the loss 
process. For simplicity, it is usually assumed that each packet is lost with probability p 
independent of previous losses, i.e., packet loss is a Bernoulli process. Suppose two TCP 
variants TCP0 and TCP1 have corresponding response functions w0(p) and w1(p). We will 
say that w0(p) dominates w1(p) if 110 )( )( pwpw >  for p∈[0,1]. If TCP throughput is 
approximated by (1−p*)w*/RTT , then if w0(p) dominates w1(p) (as in Figure A-1) for 
p∈[0,1] and p* not too close to 1, TCP0 will have strictly higher throughput than TCP1. 

In practice2, p* is usually less than 0.10. One must however keep in mind that this 
comparison in itself is an oversimplification in that it omits certain details such as 
bandwidth lost due to retransmissions, which may in practice lead to significantly lower 
overall throughput. For example, if we assume that the packet loss probability is equal to 
the blocking probability in an M/M/1/B queue (an admittedly optimistic scenario) it is not 
hard to show that the throughput increases with increasing w* even when p* is near 1, 
which translates into the best congestion control algorithm being no congestion control at 
all! That is, the faster the sources push packets into the network the higher the predicted 
throughput. Yet it is equally easy to see that this is a recipe for a congestion collapse, 

                                                 
2 For example, the global Internet packet loss rate for 24 hours starting at 12:55 PM on April 22, 2010 
averaged just below 7 %, as measured by the Internet Traffic Report. For the preceding month, the 
measured average loss rate did not reach 10 %.  http://www.internettrafficreport.com/ 
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since with packet loss near 1 the network will quickly fill with retransmitted copies of 
lost packets driving overall throughput to zero. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A-1. Response curves of two hypothetical TCP variants TCP0 (blue) and TCP1 (red) and the 
graph of a hypothetical packet loss function (black). 

 
If a dominance relationship between response functions cannot be established, 

then information about the packet loss function p(w,…) is necessary to compare 
congestion control algorithms. We will base our quantitative comparisons of TCP 
variants below on the packet loss model [112] discussed in Sec. A.1.3 above, since it was 
shown to produce more accurate results than models based on M/M/1/B queuing systems. 

A.2.1 Computing Response Functions 
We begin by computing the congestion response functions of TCP Reno, TCP CUBIC 
and Compound TCP. The response function of TCP Reno is well known and has been 
extensively experimentally verified [117]. We present a brief outline of the derivation as 
a simple illustration, since the computations become more involved for the other two 
variants. 
 
A.2.1.1 TCP Reno. Suppose the per packet loss probability is p, then the average number 
of packets transmitted before a loss occurs is N = (1−p)/p. Suppose the equilibrium 
congestion window size just after a packet loss is w0. Let a round be the number of 
packets equal to the current congestion window size and suppose for simplicity that 
between consecutive losses the number of rounds delivered is always an integer. Then the 
number of rounds k between consecutive losses is related to N by the equation  
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Solving for k gives  
 

         k= 
1
2(−2w0−1+ (2w0−1)2+8N). 

 
Thus at the end of a loss free period, just before packet loss occurs, the expected 
congestion window size will be  
 

       w0+k=w0+ 
1
2(−2w0−1+ (2w0−1)2+8N). 

 
Since we assume the connection to be in equilibrium w0 should be constant on average so  
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Solving the above equation for w0 and discarding constant terms small in comparison 
with N we get  
 

   w0=  
2/3
N =  

2/3(1−p)
p  

 
Finally, to obtain the equilibrium mean congestion window size we multiply w0 by 3/2  
 

w(p)=  
3/2(1−p)

p . 

 
Since in practice p is usually close to 0 an approximation w(p)= (3/2)/p is often used. 
 
A.2.1.2 Cubic TCP. CUBIC TCP differs from TCP Reno in several important respects, 
two of which make computation of the response function considerably more difficult as 
compared to the Reno computations outlined above. First, CUBIC’s congestion window 
growth function depends on time rather than the number of acknowledged packets. 
Second, the congestion window growth function depends not only on the congestion 
window size before the packet loss (as in Reno) but also on how this value compares with 
the congestion window size at the end of the previous loss free period. Thus congestion 
window size alone no longer determines the full state of the algorithm and an additional 
parameter — last maximum achieved — must also be tracked to have a full state. Finally, 
nonlinearity of the congestion window growth function, the very feature that is supposed 
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to improve performance, makes computation of expectations hard. In view of these 
difficulties we are forced to content ourselves with the few rough approximations that are 
computable. 

Let us begin by considering a very simple case when the packet losses are 
periodic in time. In this case the congestion window growth function can be shown to 
converge to the convex part of the cubic root, which drastically simplifies computations. 
Let the time between losses be τ and the congestion window just before a loss be w0 then 
the congestion window at the end of the loss free period will be  
 

( ) 0
3 +− wkc τ  

where 3 /= cwk β  and β and c are constants [56]. Since in equilibrium the w0 is constant 
we have  
 

        ( ) .=+− 00
3 wwc κτ  

 
Substituting in for k and solving for w0 we get  

w0= 
cτ3

β . 
 
Thus in equilibrium k=τ. We can now compute the equilibrium mean congestion window 
size as a function of τ  
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To convert this into a function of p we compute the number of packets sent during a loss 
free period, which is approximately  
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where T is the round-trip time, which we assume to be approximately constant. Solving 
for τ we get  
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Substituting for τ in (13) we get  
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Finally, assuming only one packet is lost in each congestion event so that p=1/N we get  
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which for the default settings of β=.2 and c=.4 gives  
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This is the formula derived by the designers of CUBIC [56]. 

In practice, however, packet losses are never periodic even in the case when there 
is only one connection on the link. Therefore, we consider a more realistic case of a 
Poisson loss process with rate λ. That is, we assume that a loss event occurs on average 
every 1/λ seconds. Two possibilities have to be considered because the congestion 
window at the end of a loss free period can now fall below as well as above the last 
maximum. We assume that w0 and k are stationary independent random variables. This is 
still not enough to make explicit computations possible, so we further replace w0 and k by 
deterministic variables equal to the mean values of the respective random variables. With 
these, admittedly very crude, simplifying assumptions we can write down a pair of fixed 
point equations for w0 and k  
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The first equation can be solved numerically in terms of k. Substituting the resulting 
equation into the equation for k and solving numerically over a range of λ indicates, as 
one might expect, that the equilibrium value of k is very nearly proportional to 1/λ with 
coefficient of about 1.3. This gives  
 

w0= 
c(3+0.8β)

βλ3 . 

 
for equilibrium congestion window just before a loss and  
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for mean congestion window size. Expressing the above in terms of losses per number of 
packets sent and substituting the default values for β and c we get  
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which is remarkably close to the simple formula (14). 
 
A.2.1.3 Compound TCP. Compound TCP (CTCP) attempts to use delay measurements to 
estimate the number of buffered packets and alleviate congestion. CTCP’s congestion 
window is decomposed into two components: the standard Reno congestion window, 
which increases by one over the window size for every acknowledgment received, and 
the delay based component which grows polynomially but only as long as the number of 
buffered packets, as measured by the increase in the round-trip delay, is below a certain 
threshold γ, which is itself dynamically adjusted to match available buffer space. Because 
the queue length measurements are performed for every returning acknowledgment and 
the congestion window growth rate modified accordingly, the window growth function is 
tightly coupled to the queue length. Thus, in general, analysis of CTCP must include an 
explicit model of queue lengths along the connection’s path. Unfortunately, modeling 
queuing dynamics is in itself a complex and largely unsolved problem and so we are 
again forced to make crude simplifying assumptions. Specifically, we will assume that 
statistical fluctuations dominate dynamics so that the smoothed round-trip delay remains 
roughly constant once the network reaches equilibrium. Under this assumption analysis 
of the congestion window response function simplifies because γ does not change over 
time. Moreover, dynamic γ tuning insures that on average congestion window growth is 
polynomial right up to the moment of loss. Proceeding as before we thus have  
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for the congestion window size at the end of a loss free period of duration τ given that the 
starting congestion window size is w0 [58]. Since the window is reduced by 1−β upon 
detection of packet loss the equilibrium w0 is determined by the equation  
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Computing the equilibrium mean congestion window size as a function of τ we get  
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Substituting for w0 we have  
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The number of packets transmitted in a time interval τ is given by  
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which gives  
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Finally, substituting τ into (16) and assuming p=1/N as before, we obtain  
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for the response function of CTCP. For the default values of α=1/8, β=1/2 and k=3/4 [58] 
this is  
 

w(p)≈0.25 
1

p4/5 .                                                                (17)    

A.2.2 Comparing Congestion Control Algorithms 
We begin performance comparison with the qualitative method described in the A.2 (see 
Fig. A-1).  Since all computed response functions are approximations we must allow for 
errors in the resulting models. At present, however, there is no theoretical framework for 
computing fluid model error bounds and we are forced to make a somewhat arbitrary, but 
we hope conservative, assumption that the model equilibrium congestion window size is 
within 50% of the average window size that would be observed in a similar physical 
network. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-2. Response curve for CUBIC (blue) with a ±50% error region (blue) vs. TCP Reno (red). 

 
Fig. A-2 shows congestion window size as a function of packet loss for CUBIC 

and TCP Reno. For TCP Reno we do not plot the error region because the TCP Reno 
response function has been shown to be reasonably accurate [117]. As can be seen from 
the diagram, for the same probability of packet loss, CUBIC is likely to have a larger 
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congestion window, and so a higher throughput, for equilibrium packet loss rates up to 
about 1 %. We did not compute the response curve for higher loss rates because both 
CUBIC and TCP are likely to have limited throughput as loss rates become substantially 
higher. The response function plot for CTCP (Fig. A-3) shows that it will likely have a 
higher throughput than TCP Reno if equilibrium packet loss is below about .3 %. The 
plot also suggests that for equilibrium packet loss rates above about .5 % TCP Reno may 
actually outperform CTCP.  

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-3. Response curve for CTCP (blue) with a ±50% error region (blue) vs. TCP Reno (red) 

 

Comparing response functions of CTCP and CUBIC (Fig. A-4) we observe that 
CUBIC is likely to have higher throughput than CTCP for the same equilibrium packet 
loss rate. However, because the error regions overlap considerably it is hard to say 
conclusively which of the two algorithms is likely to achieve higher throughput in 
practice. 

We can also obtain some quantitative measures of the algorithms’ performance by 
using a specific packet loss model, such as the one we introduced [112], to compute 
equilibrium throughput over a range of network parameters. Specifically we take  
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where N is the number of concurrent flows, T is round-trip propagation delay, C is router 
capacity and B is buffer size. Tables A-1 through A-3 show average throughput for 1000 
continuously transmitting flows over a 1 Gbps link for a range of propagation delays and 
buffer sizes. These quantitative results, unsurprisingly, largely agree with the above 
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qualitative analysis, but they also suggest some unanticipated conclusions. First, for 
round trip propagation times below 150 ms the alternative TCP variants do no better, and 
sometimes worse, than TCP Reno. This is presumably because the equilibrium packet 
loss rate for these scenarios is relatively high. Of course, CUBIC and CTCP were by 
design optimized for links with high capacity and long propagation delay (also called 
“long-fat pipes") and so their under-performance on links with relatively low bandwidth-
delay product may be a chosen and accepted trade-off. Note, also, that this justifies the 
Reno-to-alternative mode switch present in most of the new TCP variants, including 
CUBIC and CTCP. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A-4. Response curves for CUBIC (thick blue) and CTCP (thick red) with corresponding error 
regions 
 

A second unexpected observation is that CTCP does not perform significantly 
better than TCP Reno even when round-trip delay becomes large, at least for the network 
parameters considered. Examining the graph of the CTCP response function (Fig. A-3), 
we see that this is most likely the result of a relatively high equilibrium packet loss rate, 
in the range of .3 % to .5 %, where the difference between response functions for CTCP 
and TCP Reno is small. On the other hand, in agreement with the qualitative analysis, 
CUBIC comes out ahead with an estimated improvement in throughput in the range of 10 
% to 15 % over TCP Reno for networks with round-trip propagation delays longer than 
150 ms. 

While far from being exact or scalable to a network as large and complicated as 
the Internet, the mathematical models and methods presented here provide a cheap and 
fast way for evaluating alternative TCP congestion control algorithms even before any 
code is written. The value of these techniques is even greater when they are used as 



Study of Proposed Internet Congestion Control Mechanisms NIST 
 

Mills, et al. Special Publication 500-282 480 

design guideposts in the earliest stages of the development process of new TCP 
congestion algorithms. 

 

Table A-1. Estimated throughput (p/ms) for CUBIC for 1000 concurrent flows on a link with a 122 
p/ms capacity (for 1 KB packets) 
 

CUBIC 
B (pkts) 

50 100 150 200 250 300
50 108 114 116 118 118 118

100 98 107 111 113 114 115
T (ms) 150 90 101 106 109 111 112

200 84 96 102 105 108 110
250 79 91 98 102 105 107
300 76 88 94 99 102 105

 
 

Table A-2. Estimated throughput (p/ms) for CTCP for 1000 concurrent flows on a link with a 122 
p/ms capacity (for 1KB packets) 
 

CTCP 
B (pkts) 

50 100 150 200 250 300
50 112 115 117 117 118 118

100 98 107 111 113 115 116
T (ms) 150 87 98 104 108 110 112

200 78 91 98 102 105 107
250 70 84 92 97 101 103
300 65 79 87 92 96 99

 
 

Table A-3. Estimated throughput (p/ms) for TCP Reno for 1000 concurrent flows on a link with a 
122 p/ms capacity (for 1 KB packets) 
 

TCP Reno 
B (pkts) 

50 100 150 200 250 300
50 115 116 116 117 117 118

100 102 109 112 114 115 116
T (ms) 150 89 99 105 108 110 112

200 78 91 97 101 104 107
250 70 83 90 95 99 102
300 64 77 85 90 94 97
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A.3 Future Work 
Given that accurate modeling of packet loss is the key to accurate fluid approximation 
models, an important direction for future research is in the improvement and refinement 
of queuing models for TCP traffic. While the new packet loss model described in Sec. 
A.1.3 performs better than the commonly used, but highly inaccurate, M/M/1/B model, 
there is still room for improvement. In particular, the packet loss model in Sec. A.1.3 
includes a finite buffer correction factor that is a rather crude patch in lieu of a solution 
for the finite buffer system. The model given in Sec. A.1.3 can also be improved by 
considering sources with non-exponentially distributed on-off periods since there is 
reason to expect that congestion window sizes have a non-exponential distribution. 

Utility of the fluid approximation framework would also be greatly improved if 
response functions of the various new alternative congestion control algorithms could be 
computed more precisely. An important related question is: how do the specifics of the 
congestion control algorithm affect the congestion window size distribution? Answering 
this question would determine the sensitivity of the packet loss model to the TCP variant 
and hence the robustness of the comparison above. 

The question of how network topology affects the equilibrium and stability of 
TCP traffic is another important direction for future work. Recently fluid approximation 
models have begun to be used for numerical simulations of large networks [108]. The 
low resource demands and high speed of these simulators permit, for the first time, an 
extensive exploration of the space of network topologies under a variety of simulated 
network conditions. 


