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10 Conclusions 
Below, we provide conclusions in two general categories: conclusions and 
recommendations (Sec. 10.1) about the congestion control algorithms we studied and 
conclusions and recommendations (Sec. 10.2) about the methods we applied. Along with 
each set of conclusions and recommendations, we also provide suggestions for related 
future work.   

10.1 Conclusions about Congestion Control Algorithms 
The simulation and modeling studies reported here enabled us to draw a range of 
conclusions about the general utility and safety of seven proposed alternate congestion 
control algorithms for the Internet. We were also able to characterize each of the 
congestion control algorithms we studied. In the end, we developed some 
recommendations about whether it makes sense to deploy alternate congestion control 
algorithms at large scale on the general Internet. Finally, though our study is quite 
comprehensive, we recognize the need for future work to investigate some questions that 
we did not study. We address these topics, in turn, below. 

10.1.1 Utility and Safety of Alternate Congestion Control Algorithms 
Our simulation and modeling experiments showed that deploying alternate congestion 
control algorithms can provide improved user experience under specific circumstances. 
As discussed below, the nature of such circumstances bound the utility that alternate 
congestion control algorithms may provide. In addition, the experiments showed that 
some proposed algorithms can be deployed without driving large changes in macroscopic 
behavior throughout a network. On the other hand, other proposed algorithms altered 
behavior in undesirable directions under specific spatiotemporal situations. We address 
these topics in detail.   
 
10.1.1.1 Increase Rate. One of the key questions for any data transport protocol is: How 
fast can the maximum available transfer rate be achieved on a network path? Assuming 
no congestion (i.e., no losses) protocols that can quickly attain the maximum rate will 
spend the largest portion of a file transfer at that rate. Each TCP flow begins without any 
knowledge of the maximum available transfer rate. For this reason, TCP specifies an 
initial slow-start process where the source transmits slowly but then, as feedback arrives 
from a receiver, quickly increases the transmission rate until reaching a specified (initial 
slow-start) threshold or encountering a loss. This initial slow-start process is not altered 
by any of the proposed alternate congestion control algorithms that we studied. 

Assuming no (or low) congestion, the setting of the initial slow-start threshold can 
be quite important when comparing goodputs experienced by users on TCP flows with 
goodputs for users on flows operating under alternate congestion control algorithms.1 
                                                 
1 Note that in real TCP flows receivers may convey a receiver window (rwnd) that can restrict goodput 
quite severely because sources pace transmission based on the minimum of the congestion window (cwnd) 
and rwnd.Tthe following may hold: rwnd < cwnd. In our studies, we assume an infinite rwnd in order to 
compare the effects of congestion control algorithms adjusting the cwnd. The goodput on many TCP flows 
in a real network might well be constrained by rwnd. In such cases, alternate congestion control algorithms 
would provide little advantage over TCP congestion control procedures. 
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When the initial slow-start threshold is set arbitrarily high, on average all flows achieve 
maximum transfer rate with the same quickness. Under such situations, the goodput seen 
on TCP flows and flows running alternate algorithms appears quite comparable. Flows 
carrying short files (e.g., Web objects and document downloads) tend to complete while 
in initial slow-start, which means that alternate congestion control procedures (restricted 
to the congestion avoidance phase of a flow) do not operate. Even flows conveying long 
files can operate for extended periods under initial slow-start because such flows do not 
enter congestion avoidance until encountering a loss. 

When the initial slow-start threshold is set low (e.g., 64 Kbytes) all of the 
alternate congestion control algorithms that we studied increase transmission rate more 
quickly than the linear increase provided by the standard TCP congestion avoidance 
procedures. Thus, under low congestion, when the initial slow-start threshold is set low 
compared to the size of files transferred (and assuming the receiver window – rwnd – is 
not constraining transmission rate) users on TCP flows will see much lower goodput than 
users of alternate congestion control algorithms. The larger the file sizes being transferred 
the larger the goodput advantage of the alternate algorithms. The alternate congestion 
control algorithms provide different degrees of goodput improvement over TCP 
congestion avoidance procedures. As discussed below (Sec. 10.1.2), these goodput 
differences can be tied directly to the speed with which the alternate algorithms reach the 
maximum available transmission rate. 

Under conditions of heavy congestion the setting of the initial slow-start threshold 
matters less because initial slow-start terminates upon the first packet loss and then a flow 
enters the congestion avoidance phase, which is where the alternate congestion control 
algorithms differ from TCP procedures. In such situations, the main difference in goodput 
experienced by users relates to the loss/recovery procedures defined by the alternate 
algorithms. We turn to this topic next. 
 
10.1.1.2 Loss/Recovery Processing. Two key questions arise when a data transport 
protocol experiences a packet loss. (1) How much should the protocol reduce 
transmission rate upon a loss? (2) How quickly should the protocol increase transmission 
rate after the reduction? The standard TCP congestion avoidance procedures reduce 
transmission rate by one-half on each packet loss. Subsequently, TCP congestion 
avoidance procedures increase transmission rate linearly. The alternate congestion control 
algorithms we studied specify various procedures for transmission rate reduction and 
increase following a lost packet. 

One group of algorithms (Scalable TCP, BIC2 and HSTCP) reduce transmission 
rate less than TCP after a packet loss. As a result, these algorithms tend to retain a higher 
transmission rate and associated buffers than is the case for TCP flows. Smaller rate 
reduction can allow these algorithms to provide established flows with higher goodputs 
following packet losses. We found this effect to increase with increasing loss rate and 
also file size. In addition, these algorithms can be somewhat unfair (see Sec. 10.1.1.3) to 
algorithms (such as TCP) that exhibit a more reduced transmission rate following a loss, 

                                                 
2 Note that on repeated losses occurring close in time, BIC can reduce cwnd substantially more than the 
standard TCP congestion avoidance procedures; thus, on paths with very severe congestion BIC can 
actually provide lower goodput than TCP and can also occupy fewer buffers. 
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as well as to flows that have not had sufficient time to attain a high transmission rate 
prior to a loss. 

A second group of algorithms (CTCP, FAST and FAST-AT) reduce transmission 
rate in half following a loss. HTCP appears to be a hybrid, reducing transmission rate 
variably, between 20% and 50%, depending on conditions. The higher reduction occurs 
when transmission rate had been changing substantially in a round-trip time and the 
lower reduction occurs when transmission rate is less variable. To obtain higher goodput, 
these algorithms increase transmission rate more quickly than TCP flows following a rate 
reduction. As discussed below (Sec. 10.1.2), the rate of increase varies with the specific 
algorithm. Typically, HTCP and CTCP are less aggressive than FAST and FAST-AT 
when increasing transmission rate after a reduction. Though, FAST-AT will be less 
aggressive when sufficient congestion exists to force a reduction in the  parameter. An 
aggressive rate increase following a rate reduction can induce additional losses on a path. 
When such losses affect TCP flows, then linear recovery procedures lead to lower 
goodputs. Under severe congestion, CTCP and HTCP can provide better goodput than 
FAST and FAST-AT, which can underperform TCP. 

In areas and at times of extreme congestion, most of the alternate algorithms we 
studied include procedures to adopt standard TCP congestion avoidance behavior. These 
procedures appear motivated by the theory that when congestion is sufficiently severe 
then existing TCP behavior provides the best approach to fairly share the limited 
available transmission rate. The most typical technique employed is to set a low-window 
threshold. When the congestion window (cwnd) is below the threshold then TCP 
congestion avoidance procedures are used. When cwnd is above the threshold then 
alternate congestion avoidance procedures are used. Specific values for the threshold vary 
among the alternate congestion control algorithms. The combination of different 
thresholds and different file sizes can lead to modest differences in user goodputs. 

HTCP handles adaptation to TCP procedures somewhat differently than the other 
alternate algorithms we investigated. After a loss, HTCP adopts linear rate increase for a 
time. The time period is an HTCP parameter, set in these experiments to one second. We 
found that HTCP then adapts to TCP linear increase after every loss, regardless of file 
size or cwnd value. For larger files, which tend to have higher cwnd and to experience 
more losses during transmission, this approach tends to lower goodput significantly 
relative to other alternate algorithms, which do not adopt linear increase after every loss. 

 FAST and FAST-AT do not use standard TCP congestion avoidance procedures 
under any circumstances. In times and areas of heavy congestion, failure to adopt less 
aggressive rate increase can lead to oscillatory behavior and to an associated increase in 
loss rate. Increased losses lead to lower user goodputs. FAST-AT does somewhat better 
under heavy congestion because the  parameter can be lowered, causing less aggressive 
rate increases. Still, under many conditions, FAST-AT can exhibit a similar increased 
loss rate to FAST. 
 
10.1.1.3 TCP Fairness. TCP fairness denotes the situation where competing flows 
transiting a shared path in the Internet will all receive an equal share of available 
goodput. Comparing alternate congestion control algorithms with respect to TCP fairness 
can be somewhat difficult because the alternate algorithms are designed to give better 
goodput than TCP for large file transfers on high bandwidth-delay paths. Thus, for 
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example, all of the alternate algorithms can increase transmission rate more quickly than 
TCP given a low initial slow-start threshold and large file sizes. Further, all alternate 
algorithms take steps to provide loss/recovery improvements over the standard TCP 
congestion avoidance procedures. On the other hand, most of the alternate algorithms 
take steps to adopt TCP congestion avoidance procedures when congestion is sufficiently 
high. Given these factors, one would expect all alternate congestion control algorithms to 
provide better goodput than TCP under optimal conditions. In addition, some of the 
alternate algorithms are assured of performing no worse than TCP under suboptimal 
conditions. The usual measures of TCP fairness do not apply in such circumstances 
because they would tend to measure how much of a goodput advantage a given alternate 
algorithm provides over TCP procedures. Instead, we measured relative TCP fairness by 
ranking the average goodput achieved by TCP flows when they competed with each 
alternate congestion control algorithm under the same conditions. We considered the 
average rank across four file sizes: Web objects, documents, software service packs and 
movies. In this way, we could elicit the relative TCP fairness of the alternate algorithms.  

We found that CTCP and HTCP were most fair to TCP flows. We found FAST-
AT third fairest to TCP flows under high initial slow-start threshold. Under low initial 
slow-start threshold, FAST-AT proved more unfair to TCP flows because of its quick 
increase in transmission rate after passing the initial slow-start threshold. Injecting more 
FAST-AT packets into the network induced more losses in TCP flows, which could not 
recover as quickly. 

We found Scalable TCP, BIC and FAST to be most unfair to TCP flows. 
Established Scalable and BIC flows (large files) tended to maintain higher transmission 
rates after losses, while competing TCP flows cut transmission rates in half. By 
maintaining higher transmission rates and, thus, more buffer space, Scalable and BIC 
flows induced more losses in TCP flows. FAST could recover more quickly from losses 
than TCP flows and so FAST flows could occupy more buffers and induce more losses in 
TCP flows. In addition, like FAST-AT, FAST exhibited unfairness under low initial 
slow-start threshold because of its quick increase in transmission rate upon entering 
congestion avoidance. 

HSTCP appeared moderately fair to TCP flows, especially under conditions of 
lower congestion and under a low initial slow-start threshold. HSTCP showed TCP 
unfairness, similar to Scalable TCP, under conditions of heavy congestion. 

We believe that Scalable TCP, BIC and HSTCP could also be unfair to competing 
flows that are newly arriving. Given that some large flows operating under Scalable TCP, 
BIC and HSTCP have established relatively high transmission rates and associated large 
buffer states and given that newly arriving flows induce losses, the established flows will 
not reduce transmission rate very much and will maintain large buffer states. The newly 
arriving flows will be forced into congestion avoidance on the loss. Further, Scalable 
TCP and HSTCP do not increase transmission rate very fast early in a flow’s life, so 
newly arriving flows of these types can face difficulty increasing transmission rate. 
 
10.1.1.4 Utility Bounds. We showed that alternate congestion control protocols could 
provide increased utility (goodput) for users, but we also found that this increased utility 
would be maximized only under specific, bounded circumstances. First, the rwnd must 
not be constraining flow transmission rate. Second, a flow must be using a relatively low 
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initial slow-start threshold. Third, a flow must be transmitting a large file. Fourth, a 
flow’s packets must be transiting a relatively uncongested path (i.e., experiencing only 
sporadic losses from congestion or corruption) or else users must be willing to accept 
marked unfairness (e.g., as seen with Scalable TCP) in trade for increased goodput. These 
bounds arise from some simple factors. 

 If a flow is restrained by receipt of a relatively small rwnd, then the ability of 
alternate congestion control regimes to increase to a high cwnd cannot be used to transmit 
faster on a flow. Assuming rwnd does not constrain flow goodput, flows can increase 
goodput in concert with cwnd by using slow start to discover the maximum transmission 
rate. Given a high initial slow-start threshold, then all flows can discover the maximum 
cwnd with the same quickness. In this case, TCP flows would reach maximum cwnd on 
average with the same pace as flows running alternate algorithms. Only when the initial 
slow-start threshold is low, forcing early entry into congestion avoidance, could flows 
using alternate algorithms reach maximum cwnd more quickly than TCP. If flows are 
transferring large files, then the ability to reach maximum transmission rate quickly 
provides a substantial goodput advantage, and the advantage increases with file size. 
Under small files a transfer could complete under initial slow-start and, thus, the 
advantage inherent in congestion avoidance increase procedures for the alternate 
algorithms would not be realized. When flows transit heavily congested paths in the 
network, then most of the alternate congestion control algorithms adopt standard TCP 
congestion avoidance procedures, which negate any goodput advantage over TCP flows. 
Though FAST and FAST-AT do not adopt standard TCP congestion avoidance 
procedures, we found that heavy congestion can cause the transmission rate to oscillate 
on FAST and FAST-AT flows, which leads to higher loss rates, more retransmissions and 
lower goodput. 

We are unable to determine how likely a particular flow is to operate under the 
bounded circumstances required for alternate congestion control algorithms to provide 
improved goodput over standard TCP. Certainly it would be possible to engineer a 
network, or segments of a network, to provide specific users with high utility from 
alternate congestion control algorithms. On the other hand, we suspect a rather low 
probability for such circumstances to arise generally in a network. Thus, we conclude that 
alternate congestion control algorithms can provide improved user goodput, but most 
users seem unlikely to benefit very often.   
 
10.1.1.5 Safety. Given that on occasion some users could benefit from the increased 
goodputs available from alternate congestion control algorithms, we need to consider 
whether widespread deployment of such algorithms could induce undesirable 
macroscopic characteristics into the network. In other words, are there significant costs 
that might offset the modest benefits associated with deploying alternate congestion 
control algorithms? We can answer this question only in part because we simulated 
networks where sources used either a single congestion control regime or where some 
sources used a selected alternate congestion control algorithm while other sources used 
standard TCP congestion control procedures. There could be additional cautionary 
findings that arise from a heterogeneous mixture of alternate congestion control 
algorithms. We postpone such investigations to future work. 
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  In our experiments, we simulated a wide range of conditions and we considered 
numerous scenarios comparing network behavior under specific alternate congestion 
control algorithms, sometimes mixed with TCP procedures. For most algorithms under 
most conditions, we found little significant change in macroscopic network 
characteristics. One exception relates to FAST and FAST-AT. In spatiotemporal realms 
with high congestion, where there were insufficient buffers to support the flows transiting 
specific routers, FAST and FAST-AT exhibited oscillatory behavior where the flow cwnd 
increased and decreased rapidly with large amplitude. Under these conditions, the 
network showed increased loss and retransmission rates, a higher number of flows 
pending in the connecting state and a lower number of flows completed over time. Thus, 
FAST and FAST-AT should be deployed on a wide scale only with great care. There 
appears to be some possibility that FAST could cause significant degradation in network 
performance in selected areas and for selected users. We recommend the need for 
additional study of FAST and FAST-AT prior to widespread deployment and use on the 
Internet.  

10.1.2 Characteristics of Individual Congestion Control Algorithms 
Below, we provide a brief summary of the characteristics found from our experiments for 
each alternate congestion control algorithm. For each algorithm we consider four 
characteristics. The first characteristic, implementation complexity, assesses how much 
code might be required to implement an algorithm. The second characteristic, activation 
trigger, identifies the condition (usually a specific congestion window size) that causes a 
flow to switch between standard TCP congestion avoidance procedures and alternate 
procedures defined by an algorithm.  The third characteristic, goodput latency, measures 
the time required for a flow to achieve maximum transmission rate on long-lived flows 
when operating under an algorithm’s alternate congestion avoidance procedures. The 
fourth characteristic, recovery latency, measures the time required for a long-lived flow 
to recover maximum transmission rate after a period of congestion with sustained losses. 
Table 10-1 compares the seven alternate congestion control algorithms with respect to 
these four characteristics. We discuss the algorithms in alphabetical order, as shown in 
the table. 
 
Table 10-1. Comparing Four Characteristics of Individual Alternate Congestion Control Algorithms 

Algorithm
Implementation 
Complexity

Activation 
Trigger

Goodput
Latency (avg)

Recovery
Latency (avg)

BIC high 14 packets 18.8 s 71.3 s

CTCP moderate 41 packets 7.9 s 2.9 s

FAST low none 3.7 s 6.6 s

FAST‐AT moderate none 3.7 s 26.0 s

HSTCP low 31 packets 22.4 s 10.0 s

H‐TCP moderate 1 s w/o loss 16.6 s 10.0 s

Scalable TCP low 16 packets 17.8 s 22.5 s
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10.1.2.1 BIC. Clearly, among the seven algorithms we studied, BIC is the most complex 
to code and implement, requiring a potentially substantial amount of processing to adjust 
the cwnd. BIC uses standard TCP congestion avoidance procedures when cwnd is below 
a low-window threshold (14 packets, here). Under congestion with losses spaced 
sufficiently in time, BIC reduces cwnd less quickly than standard TCP, so BIC can 
achieve higher goodputs under sporadic losses by maintaining a high transmission rate 
and associated buffer state. This can be somewhat unfair to newly arriving flows. On the 
other hand, when congestion becomes severe, with losses spaced closely in time, BIC 
reduces cwnd much more quickly than TCP. Under such circumstances, BIC can take 
substantial time (average 71.3 s in our experiments) to recover maximum goodput after 
congestion eases. When considering the rate of increase in transmission speed under low 
congestion after reaching initial slow-start threshold, BIC averaged about 18.8 s to reach 
maximum transfer speed on long-lived flows. This rate of increase ranked fifth (of six) 
overall, and was competitive with HTCP, Scalable TCP and HSTCP. 

  
10.1.2.2 CTCP. The algorithm for CTCP requires periodic processing to adjust an 
auxiliary delay window (dwnd), which increases the processing cost beyond that found in 
standard TCP congestion control. Under congestion, CTCP reduces transmission rate by 
one-half and then recovers relatively quickly. The advantage of CTCP recovery 
procedures appears most obvious after a period of severe congestion on a path. Under 
easing congestion, dwnd can increase quite quickly. Since CTCP augments the cwnd with 
the dwnd, transmission rate can also increase quickly – returning to maximum rate in an 
average 2.9 s in our experiments. In fact, in some situations, the rate of increase in dwnd 
appears unbounded. CTCP implementations should probably include a bound on 
maximum dwnd. Under periods of heavier congestion, increase in dwnd is constrained. In 
addition, the CTCP algorithm appears quite fair to competing CTCP flows as well as 
TCP flows. CTCP had the highest default low-window threshold (41 packets, here) 
among the algorithms we studied. Further, CTCP averaged about 7.9 s to reach maximum 
transfer speed on long-lived flows under low congestion and low initial slow-start 
threshold. This rate of increase ranked second overall behind only FAST and FAST-AT, 
which tied for first. 
 
10.1.2.3 FAST. The algorithm for FAST requires periodic processing to adjust the target 
cwnd. While each adjustment demands little computation, the default periodicity (20 ms, 
here) can require multiple adjustments within a single round-trip time. FAST does not 
have a low-window threshold; thus, after initial slow-start, FAST flows never use 
standard TCP congestion avoidance procedures. Under congestion, FAST reduces 
transmission rate by one-half and then recovers very quickly. The advantage of FAST 
recovery speed appears under both sporadic losses and when congestion eases following 
a period of severe congestion on a path. Under easing congestion, FAST recovered 
maximum transmission rate in an average of 6.6 s in our experiments. On the other hand, 
for flows transiting congested areas, with insufficient buffer space for all flows, FAST 
exhibits oscillatory behavior that increases losses and, thus, retransmissions, which 
reduces user goodput. Under severe congestion, FAST causes an increase in flows 
pending in the connecting state because SYN packets are lost with increased probability. 
In addition, FAST can significantly reduce the number of flows completed over time in a 
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network. Among the algorithms we studied, FAST achieves maximum available 
transmission rate in the shortest time (3.7 s average) on long-lived flows under low 
congestion and low initial slow-start threshold. The ability of FAST to accelerate 
transmission rate led to superior goodputs (under low congestion and low initial slow-
start threshold) for file sizes larger than Web objects, and the advantage of FAST 
increased with file size. The ability of FAST to quickly attain high transmission rates for 
large files tended to induce losses in competing flows. Since TCP flows could not recover 
quickly, FAST flows could attain much higher goodputs than competing TCP flows. 
 
10.1.2.4 FAST-AT. The FAST-AT algorithm augments FAST with periodic procedures to 
monitor throughput and tune the  parameter used when adjusting the target cwnd. 
Without  tuning, FAST sets the  parameter to a fixed value. FAST-AT monitors 
throughput every round-trip time and tunes the  parameter periodically (every 200 s, 
here). As throughput improves past specified thresholds  is increased and as throughput 
declines past specified thresholds  is decreased. FAST-AT exhibits many of the same 
positive and negative properties as FAST. The main difference was that, under severe and 
sustained congestion, FAST-AT reduced the  parameter from a default setting of 200 to 
as low as 8. In such, circumstances FAST-AT recovers much more slowly than FAST. 
When throughput begins increasing, FAST-AT adjusts the  parameter only every 200 s 
and must make two adjustments (8 to 20 followed by 20 to 200) before reaching the 
maximum recovery rate. In our experiments, when recovering from sustained periods of 
heavy congestion, FAST-AT took longer (26 s average) to reach maximum transmission 
rate than all alternate algorithms except BIC. On the other hand, by recovering 
transmission rate more slowly under heavy congestion, FAST-AT proved more TCP 
friendly than FAST. This occurred because under such circumstances FAST-AT did not 
induce as many losses in competing TCP flows.   
 
10.1.2.5 HSTCP. The HSTCP algorithm is relatively straightforward, updating the cwnd 
no more frequently than standard TCP. The HSTCP cwnd updates involve somewhat 
costly logarithmic and exponentiation operations. HSTCP uses standard TCP congestion 
avoidance procedures when the cwnd is below a low-window threshold (31 packets, 
here). HSTCP reduces cwnd less on a loss than standard TCP and provides more than 
linear increase in cwnd during congestion avoidance. Under both sporadic and heavy 
congestion, HSTCP retains a higher transmission rate (and associated buffers) than TCP. 
By maintaining more buffered packets, HSTCP can induce losses in competing flows. In 
such situations, newly arriving HSTCP flows can have difficulty increasing transmission 
rate, especially on paths with longer propagation delays. In addition, losses induced on 
competing TCP flows hurt goodput for TCP users because TCP recovers only linearly. 
When recovering from periods of sustained heavy congestion, HSTCP tied for third best 
(10 s average) in our experiments, but the short recovery time can be attributed mainly to 
the fact that, in comparable situations, HSTCP flows did not reduce transmission rate as 
much as most other congestion control algorithms. Under low congestion and low initial 
slow-start threshold, HSTCP achieved maximum transmission rate more slowly (22.4 s 
average) on long-lived flows than all other alternate congestion control algorithms we 
studied.   
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10.1.2.6 HTCP. The HTCP algorithm requires a periodic (250 ms, here) process to 
monitor flow throughput. HTCP uses standard TCP congestion avoidance procedures for 
a specified period (1 s, here) after a packet loss. Under congestion, HTCP behaves like 
standard TCP congestion avoidance. The heavier the congestion, the more time HTCP 
spends using TCP procedures. When recovering from periods of sustained heavy 
congestion, HTCP tied for third best (10 s average) in our experiments. Under sporadic 
losses, HTCP can spend too much time using TCP’s linear increase. In our experiments, 
this trait led HTCP to provide lower goodput than other alternate congestion control 
algorithms on large files. On the other hand, by adopting standard TCP congestion 
avoidance procedures following packet loss, HTCP is quite TCP friendly. Under low 
congestion and low initial slow-start threshold, HTCP achieved maximum transmission 
rate somewhat slowly (16.6 s average), comparable to BIC, HSTCP and Scalable TCP, 
but significantly slower than CTCP, FAST and FAST-AT.  
 
10.1.2.7 Scalable TCP. The Scalable TCP algorithm is a small modification of standard 
TCP congestion avoidance procedures. Scalable TCP increases cwnd by a constant on 
each acknowledgment and decreases cwnd by 12.5 % on each loss. In addition, Scalable 
adopts standard TCP congestion avoidance procedures when cwnd is below a low-
window threshold (16 packets, here). Under congestion, established Scalable TCP flows 
do not reduce transmission rate very quickly. By maintaining more buffered packets, 
Scalable TCP can induce losses in competing flows. In such situations, newly arriving 
Scalable TCP flows can have difficulty increasing transmission rate, especially on paths 
with longer propagation delays. In addition, losses induced on competing TCP flows hurt 
goodput for TCP users because TCP recovers only linearly. When recovering from 
periods of sustained heavy congestion, Scalable performed fifth best (22.5 s average) in 
our experiments, but the recovery time can be attributed mainly to the fact that, in 
comparable situations, Scalable TCP flows did not reduce transmission rate as much as 
most other congestion control algorithms. Under low congestion and low initial slow-start 
threshold, Scalable TCP achieved maximum transmission rate somewhat slowly (17.8 s 
average). In fact, Scalable increased transmission rate very slowly for the first few 
seconds of long-lived file transfers, which means that Scalable provides a steep increase 
in transmission rate only for large files. 

10.1.3 Recommendations 
Under some circumstances, users can benefit from adopting alternate congestion control 
algorithms to transfer files on the Internet. For that reason, it makes sense to deploy such 
algorithms into computers attached to the Internet. Of course, the probability appears 
quite low that a specific user will see benefits on any particular file transfer. Among the 
alternate congestion control algorithms we studied, CTCP appears to provide the best 
balance of properties. Under low congestion, CTCP can increase transfer rate relatively 
quickly when operating in the congestion avoidance phase. Further, CTCP reduces 
transmission rate relatively quickly in the face of sustained congestion and recovers to the 
maximum transmission rate quite quickly when congestion eases. CTCP appears 
relatively friendly to flows using standard TCP congestion avoidance procedures. CTCP, 
along with most of the other alternate congestion control algorithms we studied, is 
unlikely to induce large shifts in the macroscopic behavior of the Internet. FAST and 
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FAST-AT have some appealing properties, especially with respect to achieving 
maximum transmission rate quickly on high-bandwidth, long-delay paths and recovering 
quickly from sporadic losses. Unfortunately, when transiting highly congested paths with 
insufficient buffers to support the flow volume, FAST and FAST-AT can enter an 
oscillatory regime that could significantly increase loss and retransmission rates. Flows 
transiting affected areas would take longer to connect and complete and would receive 
lower goodputs.  

10.1.4 Future Work 
We studied seven proposed replacement congestion control mechanisms for the Internet. 
Despite the comprehensive nature of our study, more work remains to be done in at least 
four directions. First, we limited our study to a bounded set of alternate congestion 
control algorithms for which we could find empirical data against which to validate our 
simulations. Researchers have proposed many congestion control algorithms that were 
not included in our study, so one direction for future work is to consider the behavior of 
additional algorithms. Of particular interest is CUBIC, which has replaced BIC as the 
congestion control algorithm enabled by default in Linux. 

Second, we have not considered scenarios where multiple alternate congestion 
control algorithms are mixed together in the same network. Increasing the heterogeneity 
of algorithms might reveal additional insights about the advantages and disadvantage of 
the various algorithms, as well as uncover undesirable macroscopic behaviors resulting 
from such mixtures. Where undesirable behaviors do not appear, then such a study would 
increase confidence in the safety of deploying alternate congestion control regimes. Of 
course, conducting such a study would likely require substantial increase in demand for 
computation resources in order to simulate long enough network operation to accumulate 
sufficient samples to reveal statistically significant behavioral patterns. 

Third, we have not validated our findings against live, controlled experiments 
configured in GENI or a similar test bed environment. Conducting such a validation 
would substantially increase confidence in the findings of our study. We intend to 
undertake such a validation as soon as we can gain access to sufficient resources to 
support our experiments. In the meantime, we also plan to consider how we might 
attempt to validate our findings using test environments of smaller scale. One way to 
approach this may be to make predictions about behaviors we should see replicated even 
at smaller scale than the network sizes and speeds we simulated. 

Fourth, our study revealed various strengths and weaknesses in the congestion 
control algorithms we investigated. Future researchers could exploit our findings to 
propose algorithm improvements that compensate for identified weaknesses, while 
retaining strengths. Further, our general findings may also help other researchers to 
improve future designs for additional congestion control algorithms. 

10.2 Conclusions about Methods 
The simulation and modeling studies reported here also enabled us to evaluate each of the 
modeling and analysis methods we used. Below, we first discuss the use of discrete-event 
simulation as a technique to model systems at large scale. Subsequently, we evaluate the 
specific methods we applied to solve each of the five hard problems that we identified in 
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Sec. 2.4. We than provide some overall recommendations for those seeking to model and 
analyze large distributed systems. We close with suggestions for future work. 

10.2.1 Discrete Event Simulation 
Recall that our discrete-event simulation model, MesoNet, was constructed because an 
existing cellular automaton model proved unable to scale to simulate networks of the size 
and speed required for this study. The cellular automaton model simply demanded far too 
many computation resources. What about discrete-event simulation? We demonstrated 
that MesoNet could feasibly simulate a network operating for one hour at contemporary 
router speeds while transporting hundreds of thousands of simultaneous flows with a mix 
of 100 Mbps and 1 Gbps sources and receivers sending flows with sizes ranging from 
tens of kilobytes to gigabytes. Of course, running such a simulation for an average 
parameter combination required about 17 ½ days of processing time. In the best case, 
such a scenario required just over 8 days and in the worst case just over 30 days. The 
speed of individual processors seems unlikely to improve much in the future. Instead, 
computer systems will be outfitted with an increasing number of processors that can be 
used in parallel. Increasing parallelization is a nice match for orthogonal fractional 
factorial experiment designs (see Sec. 10.2.2.3 below), but each individual experiment 
run must still be completed within a time budget. We conclude that discrete-event 
simulation is unlikely to support network simulations much beyond the scale we used in 
our study. Even if one is willing to wait 60 or 90 days for a single simulation run to 
complete, the odds seem low that the underlying hardware, operating system, simulation 
environment and model could run so long without incurring some sort of failure. 
Researchers are investigating parallel simulation as a means to increase the scale of runs 
that can be executed, but temporal relationships among elements in network simulations 
will probably restrict the degree of speedup that can be achieved. We conclude that 
increasing the scale of a simulated network will likely require a different paradigm, such 
as fluid-flow or hybrid simulations. We discuss such models further in Appendices A and 
B.     

10.2.2 Scale Reduction Techniques 
We adopted five specific techniques to reduce the scale of parameter and response spaces 
in our experiments. Below, we evaluate each technique in turn. 
 
10.2.2.1 Model Restriction and Parameter Clustering. Restricting model parameters to 
those germane to this specific study led to substantial reduction in intellectual effort 
associated with identifying and assigning values to both fixed and variable parameters. 
Further, reduction in the parameter space lowered the overall computational demand 
associated with individual experiment runs and with experiment campaigns. Clustering 
individual parameters into groups, each representing a key factor driving a simulated 
network, further reduced the intellectual effort needed to parameterize experiments and 
also to analyze responses and assess the influence of particular input factors. Of course, 
the reductions associated with restricting and clustering input parameters were 
insufficient alone to achieve computational tractability for the experiments in this study. 
Other reductions were required (see Sec. 10.2.2.2 and Sec. 10.2.2.3 below). Further, 
significant domain expertise was needed to identify reasonable parameter restrictions and 
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groupings. This may impede studies where such expertise is unavailable. In some cases, 
substantial simulation executions and data analyses were required to identify parameter 
reduction decisions that were inappropriate. For example, we required about one week of 
simulation to identify a gradual trend toward an increasing number of active flows. 
Discovering this trend led us to introduce connection establishment procedures into the 
simulation. This finding illuminated the important role that connection establishment 
procedures play in controlling network-wide congestion. 
 
10.2.2.2 Two-Level Experiment Designs. The largest reduction in computation demand 
for simulations in this study arose from the simple act of limiting parameter settings to 
only two levels. Of course, taking this step incurred several drawbacks. First, the 
experiment designer must select specific values for each level. This requires significant 
domain expertise. Second, the results obtained for each experiment are robust only over 
the range defined by the selected level settings. Third, drawing conclusions from a two-
level experiment design entails an assumption that a model behaves monotonically within 
the range defined by the selected settings. To mitigate these restrictions, the study 
adopted several experiments and varied level settings between experiments. While some 
may cringe at limiting parameter settings to two levels, we demonstrated in this study that 
significant insight can be gained even under such a severe restriction.    
 
10.2.2.3 Orthogonal Fractional Factorial Experiment (OFF) Designs. OFF experiment 
designs enabled us to further reduce computational demand in cases where simulating all 
combinations of parameter settings proved too costly, even after limiting parameters to 
only two levels. In general, OFF designs allow an experiment designer to simultaneously 
vary parameter combinations in a balanced and orthogonal fashion to provide the 
maximum amount of information given a limit on the affordable number of experiment 
runs. Since each selected combination of parameters represents an independent 
simulation run, OFF experiment designs create a suite of simulations that can be executed 
in parallel, across all available processors, one simulation per processor. Recall, however, 
that each individual simulation run must still be computationally feasible (as discussed in 
Sec. 10.2.2.1 above). Another advantage to two-level OFF designs arises from an 
effective match with a ten-step graphical analysis technique developed at NIST (see Sec. 
10.2.4.1 below). Pairing two-level OFF designs with the graphical and analytical 
techniques used in our study reveals substantial information about system behavior – 
within the restrictions of two-level designs (as discussed above in Sec. 10.2.2.2). Of 
course, OFF designs further reduce the potential parameter combinations examined in a 
particular study. In general, no study can cover all potential parameter combinations. The 
most typical approach adopted by network researchers entails fixing all parameter 
settings except one, which is varied across a range of levels. The results of this one-
factor-at-a-time approach can produce nice x-y plots, but any resulting conclusions are 
valid only under a specific combination of fixed parameters. OFF designs provide a 
principled technique to vary multiple parameter settings simultaneously, which yields 
more information about overall behavior of a system. Further, OFF designs can identify 
model errors more readily than one-factor-at-a-time experiments because OFF designs 
probe a model under a larger variety of parameter combinations.   
 



Study of Proposed Internet Congestion Control Mechanisms NIST 

Mills, et al. Special Publication 500-282 443 

10.2.2.4 Correlation Analysis and Clustering. Correlation analysis proved an effective 
technique to reduce the response space that we needed to examine. In one of our 
sensitivity analyses (see Chapter 4), for example, we showed how 22 potential responses 
could be reduced to only seven. Assuming availability of a domain expert, correlation 
results may also aid in model validation. For example, a domain expert should be able to 
verify whether or not the correlations make sense. A domain expert should also be able to 
attribute surprising correlations to modeling error or to new insights. We found that a 
given set of correlation results apply only to the specific range of parameter combinations 
used to generate the related responses. For example, the correlations identified in 
Appendix C differ in some ways from the correlations identified in Chapter 4. 
Examination by a domain expert revealed that both sets of correlations are valid; 
differences arose from variations in the range of parameters simulated. We conclude that 
correlation analysis should be applied separately to each suite of experiments where level 
settings differ. 
 
10.2.2.5 Principal Components Analysis (PCA). We used PCA to complement correlation 
analysis3. PCA aims to identify orthogonal variations, so-called principal components, in 
response data and to assign weights to indicate the degree to which responses influence 
each identified principal component. For the models simulated in this study, we found 
that most variation in response data could be accounted for by the first four principal 
components in a given analysis. This implies, for example, that we might be able to 
analyze four responses instead of the 22 used in our sensitivity analysis. Further, a 
domain expert could compare the findings from a PCA against the findings from a 
correlation analysis to determine if the two analyses were consistent. This consistency 
check helps to further validate a model. On the other hand, working with PCA results can 
be somewhat difficult for a few reasons. First, principal components are abstract linear 
weighted combinations of responses, so there is no specific domain interpretation behind 
a given component. An analyst or expert must invest considerable effort to develop a 
domain interpretation of even the top two or three principal components. In some cases 
(e.g., Chapter 4), a clear and reasonable interpretation can be achieved. In other cases 
(e.g., Appendix C), interpretation becomes more difficult. Second, principal components 
can take on both positive and negative values, which present an analyst with difficulty 
assigning meaning. In fact, conducting a main-effects analysis of principal components 
required us to refer to main-effects analyses of raw responses in order to develop an 
interpretation. Third, PCA sometimes identified components that proved coarser than 
similar response groupings developed with correlation analysis. When aiming to reduce 
the response state space, we conclude that PCA provides a reasonable complement to 
correlation analysis, but domain experts will often find correlation analysis more readily 
comprehensible than PCA. 

10.2.3 Model Validation Techniques 
As we discussed in Chapter 2, network researchers typically do not know whether their 
models are valid. For this reason, we took two steps to increase confidence in the validity 
of MesoNet. We evaluate each step in turn. 
                                                 
3 We also used PCA to identify sources of variation in data related to several experiments throughout our 
study. We evaluate PCA in these applications below in Sec. 10.2.4.3.  
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10.2.3.1 Sensitivity Analysis. Sensitivity analysis provided a tractable means to 
investigate the response of MesoNet to various changes in model input parameters. Using 
sensitivity analyses we were able to find and fix errors in early model formulations and, 
ultimately, to develop confidence that the model was fit for its intended role in our study. 
Of course, to conduct such analyses we combined many of the individual methods 
evaluated here, including two-level OFF experiment design, correlation and principal-
components analyses and ten-step graphical analysis. For this reason, our approach to 
sensitivity analysis inherited the strengths and weaknesses associated with the individual 
methods. In particular, the two-level design limited the range of our conclusions about 
model validity. To mitigate that, we conducted a supplementary sensitivity analysis (see 
Appendix C) that adopted different level settings for each input factor evaluated. We also 
used preliminary sensitivity analyses to identify factors that did not much influence 
model responses. We could then reduce the search space in subsequent analyses. We 
conclude that rigorous sensitivity analysis becomes feasible when using a reduced-scale 
simulation model and two-level OFF design, combined with judicious choice of factors to 
vary. Results from sensitivity analyses guided us in designing specific experiments 
associated with our study. We recommend that campaigns of simulation (or numerical) 
experiments use only models that have been examined for sensitivity to changes in input 
parameters.  
 
10.2.3.2 Key Empirical Comparisons. To increase confidence that we had correctly 
modeled specific congestion control algorithms, we relied on key comparisons between 
simulation results and empirical results. Such comparisons were facilitated by the 
existence of published empirical results measured under controlled circumstances in a 
small (“dumbbell”) topology. We were easily able to model the small topology in 
MesoNet and to simulate the same scenarios and parameter settings used in the empirical 
studies. Comparing our simulation results with empirical results enabled us to identify 
errors in modeling several congestion control algorithms. We were also able to correct 
our models and ensure that we obtained results consistent with empirical results. In this 
way, we gained confidence in our models of the various congestion control algorithms 
prior to increasing the scale of topology we simulated. As an added benefit, the empirical 
study identified default parameter settings adopted by congestion control algorithms. We 
were able to adopt those settings for our large simulations. For a given study, empirical 
results may be unavailable, either because the problem under study is not yet 
implemented or because no one has published empirical results. Where feasible, we 
recommend that a small experimental configuration be used to generate empirical 
measurements in order to ground a mathematical model in reality. Preferably, the 
empirical measurements should be made from implementations developed independently 
from the models. The empirical measurements should capture key aspects of system 
behavior on a small scale. When empirical measurements cannot be made available, 
important aspects of a model may go unconfirmed. From our experiences, the resulting 
model can contain significant errors that lead to invalid behaviors. We recommend that 
significant studies endeavor to compare key model aspects with empirical measurements 
taken at small scale. Any reasonable expense required to obtain empirical measurements 
will be repaid by enhancing confidence in models used to study large-scale systems.   
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10.2.4 Data Analysis Methods 
Data analysis comprises the third axis of our method; modeling and experiment design 
comprise the other two axes. We applied and explored four data analysis methods during 
our study. We evaluate each method below.  
 
10.2.4.1 Ten-Step Graphical Analysis. In support of exploratory analysis, NIST designed 
a ten-step graphical method (explained in Appendix D), where each step generates an 
individual plot designed to answer one specific question regarding a data set. We 
employed this ten-step method as a main part of our sensitivity analysis, where we 
applied all ten steps to each response. The analysis method is designed to match well with 
a two-level OFF experiment design. Clearly, for our application, the main-effects plot 
(D.3) proved most insightful – revealing changes in system responses resulting from 
changes in input factors. The interaction effects matrix (D.4) also helped to identify that 
MesoNet was driven primarily by main effects, rather than by two-factor interactions. 
Other plots proved useful for specific, limited purposes. For example, the ordered data 
plot (D.1) identified specific combinations of factor settings that produced significant 
effects on the responses. The multi-factor scatter plot (D.2) summarized how the 
distribution in responses changed with respect to changes in input factors. Several other 
plots provided redundant information, which served to confirm related results or to 
identify analysis errors. For example, the Youden plot (D.6) identified the most 
significant factors driving particular responses, which could also be ascertained from 
main effects plots, as well as a number of other plots. The |Effects| plot (D.7) and the 
cumulative residual standard deviation plot (D.9) helped to visualize whether a linear 
model could approximate a system’s response to input factors. A derived contour plot 
(D.10) suggested how specific changes in the two main factors influencing a response 
might drive the response in particular directions. For our purposes, the box plot (D.5) did 
not provide significant new information. Overall, the ten-step graphical analysis proved 
quite useful in analyzing a model’s sensitivity to changes in input parameter settings. We 
applied all ten steps to our initial sensitivity analysis. Subsequently, we used only main 
effects plots and interaction effects matrices, which provided the most important 
information for our supplementary sensitivity analysis. We recommend applying all ten 
steps of the graphical analysis during early stages of model development and 
investigation. The various plots reveal a range of confirming and complementary 
information that could prove quite insightful. In later stages of analysis, we recommend 
limiting selected plots to only those necessary to address specific questions of interest.  
 
10.2.4.2 Cluster Analysis. We employed cluster analyses to reveal overall patterns of 
similarities and differences in multidimensional responses. We sought patterns in 
behavior among selected congestion control algorithms under conditions, composed of 
combinations of input parameters. Because parameter combinations varied greatly, we 
clustered algorithms only with respect to individual conditions. To identify clustering 
patterns, we needed to characterize differences among conditions. Such characterization 
required external analyses. Given dendrograms for each condition, along with 
characterizations of each condition, we were able to identify patterns where selected 
algorithms clustered together. These clustering patterns provided general relationships 
among algorithms and congestion. On the other hand, the patterns did not identify 
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specific relationships among responses that led to the patterns; for this we required more 
detailed analyses (see 10.2.4.3 below). Cluster analysis appears well suited to identify 
general patterns where such patterns exist. Further, using cluster analysis, we were able to 
identify close correspondence in the behaviors of two congestion control algorithms, 
which enabled us to make informed decisions about more detailed analyses. On the 
whole, cluster analysis can provide a concise overview of patterns in data sets, but one 
should not expect cluster analysis alone to provide complete insight about causality. At 
best, we found that cluster analysis could help to identify aspects of the data that should 
be given closer scrutiny.  
 
10.2.4.3 Custom Multidimensional Visualizations. Using Dataplot, a statistical scripting 
language and supporting run-time environment developed at NIST, we could construct 
custom visualizations designed to explore specific relationships among multidimensional 
data sets. We developed several custom, multidimensional, visualizations for our study. 
The resultant representations provided substantial insight into overall system behavior. In 
fact, custom visualizations provided launching points for many causality analyses (see 
Sec. 10.2.5). Custom visualization can provide a domain expert with concise and precise 
information regarding the questions under study. Further, detailed custom visualizations 
can be subjected to custom summarizations that identify key patterns in experiment data. 
On the other hand, successful custom visualizations entail collaboration between an 
expert in statistical visualization and a domain expert, who must iterate over the design 
and construction of each visualization until a useful result emerges. We found, however, 
that a few (four or five) well-crafted multidimensional visualizations could be reused to 
analyze data from most experiments in our study. We recommend custom 
multidimensional visualizations as a key tool for analysis of data sets for complex 
systems. Of course, we were fortunate that one study participant was expert in the design 
and programming of statistical visualizations. Custom visualizations would be difficult to 
create and apply without access to the necessary expertise.    
 
10.2.4.4 Exploratory Multidimensional Interactive Visualization. Early in our study, we 
collaborated with visualization experts, who constructed DiVisa, a general purpose 
system for interactive exploration of multidimensional data. DiVisa enables an analyst to 
view multiple, related, data simultaneously, while assigning custom visual attributes to 
represent various dimensions in the data. For example, visual attributes may include 
color, size and shape. Altogether, DiVisa allowed an analyst to assign up to eight 
different attributes to data. In using DiVisa, an analyst needs to remember how attributes 
are assigned. The resulting visualizations proved quite abstract and difficult to interpret. 
Late in development, and at the request of a domain expert, DiVisa was extended to 
support display of topological information associated with a given simulation. Since a 
topology is quite natural for a networking expert, DiVisa acquired increased utility for 
our study. In fact, given voluminous spatiotemporal information, such as queue sizes 
changing over time in every router in a network topology, DiVisa could replay the 
dynamic behavior of a MesoNet simulation, which enabled us to detect unwanted 
behaviors in various simulations and to adjust model parameter settings as necessary to 
achieve desired effects. Unlike custom multidimensional visualizations, interactive 
visualization systems require a domain expert to explore system data and to develop 
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revealing representations by assigning attributes to data dimensions. We found this quite 
difficult to do. Perhaps our experience would have been different had we collaborated 
with an expert in interactive multidimensional visualization. We do not recommend using 
abstract interactive systems for visualizing multidimensional data unless the resulting 
displays can be readily related to concepts comprehensible to a domain expert.  

10.2.5 Causality Analysis Methods 
We chose data analysis methods mainly based on an ability to reveal overall patterns in 
behavioral data derived from models of large systems. Once significant patterns were 
revealed, we typically needed to delve into more depth in order to determine root causes 
for the patterns. In this study, we adopted four main techniques   
 
10.2.5.1 Principal Components Analysis (PCA). We were sometimes able to apply PCA 
to identify causality underlying variations in response data. For example, when searching 
for causes in goodput variation among many flow groups under generally low congestion, 
PCA was able to identify the main drivers as network speed, propagation delay and file 
size. PCA could also discern cases where congestion control algorithms did contribute to 
variation in goodput. In general, after using PCA to find the two main principal 
components, an analyst creates a scatter plot of component one vs. component two, where 
each point represents a particular parameter combination. Visual inspection may then be 
used to discriminate clusters, or groupings, of points. Using supplementary analyses, an 
analyst can characterize common factor settings among points in each grouping. Using 
this technique, factors underlying variation in the data can become quite explicit. Further, 
this level of analysis requires little domain expertise and may be accomplished based 
solely on the factors and settings in a two-level OFF experiment design. 
   
10.2.5.2 Detailed Measurements. Causality exploration sometimes requires detailed 
spatiotemporal data related to a specific question under investigation (e.g., time series of 
changing queue sizes in individual routers in a topology). At other times, an analyst may 
need to peruse aggregated spatiotemporal data (e.g., time series of the distribution of flow 
states within the network) to determine if a system is behaving as expected. We chose to 
collect detailed spatiotemporal data as an integral part of our simulation model, MesoNet. 
In fact, for pattern analysis we generated summary data from the detailed measurements. 
We found several advantages to this approach. First, we could use the spatiotemporal 
behavior of our model to determine what range of data to summarize in order to avoid 
transient startup behavior. Second, we could subject our model to exploratory analyses 
(see Sec. 10.2.4.4 and Sec. 10.2.5.4). Third, should patterns from data analysis indicate 
need to further investigate detailed behavior, the data would already exist.4 Fourth, 
should other researchers wish to investigate particular questions not addressed in this 
study, the data would be available for later use. Some drawbacks also arise from 

                                                 
4 In practice, we made initial guesses about the detailed data we needed to collect. During our study, 
specific issues revealed the need to collect additional details, such as the temporal posture of the network 
with respect to the state (e.g., idle, connecting, active) and phase (e.g., initial slow-start, normal congestion 
avoidance, alternate congestion avoidance) of all flows. So, while one can arrange to collect substantial 
detailed data during model construction, the need might arise to add additional measurement data during a 
particular study. 
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collecting such detailed data. First, collecting extensive spatiotemporal data can require 
substantial memory within a running simulation. We mitigated this by permitting the 
simulation to periodically dump the measurement buffer to disk and then reuse the space 
for additional measurements. Of course, this increases the failure surface of the 
simulation. In practice, we found that making incremental measurements worked 
effectively, even when writing results to a file server located on a network.5 Second, 
collecting extensive spatiotemporal data requires availability of sufficient disk storage. 
The experiments in this study required approximately 250 GBytes of storage, so this was 
easily accommodated. For studies investigating behavior in large distributed systems, we 
recommend collecting detailed spatiotemporal data regarding every conceivable aspect 
that might be of interest. Summary data can be created from the details, as required for 
specific analyses. 
 
10.2.5.3 Scientific Method. Given a pattern of interest revealed by data analyses, we used 
the scientific method to search for causality. In general, we would posit a hypothesis to 
explain an observed pattern. We would then suggest detailed behavioral data that should 
exist to confirm our hypothesis. We would investigate the detailed data and either 
confirm or refute the hypothesis. If the hypothesis were refuted, then we would develop 
an alternate hypothesis and repeat. Eventually, we would construct a confirmed 
hypothesis for a given pattern and that would establish a causal link. This approach often 
proved time consuming, especially when a domain expert had insufficient insight to 
formulate a good, initial hypothesis. On the other hand, the rigorous nature of the entire 
modeling and analysis method we used built increasing insight into system behavior as 
the study progressed. For this reason, it became easier over time to generate good 
hypotheses. We were able to establish causality for every pattern of interest to us. Of 
course, our data is available for use by other researchers who might reach different 
conclusions than we have about particular causal links. While we would prefer to suggest 
a more direct process to establish causality, we had little recourse but to adopt the 
scientific method in cases where PCA could not provide sufficient insights.  
 
10.2.5.4 Exploratory Analysis. While the scientific method provides an orderly approach 
to establish causality, we also sometimes adopted a more exploratory approach. In 
general, we would select some related aspects of system behavior and then analyze or 
interact with time varying data to discover trends. We used this technique, for example, 
to characterize temporal changes in the distribution of flow states and phases arising from 
various levels of congestion. We also sometimes used exploratory analysis to develop 
hypotheses about causes underlying patterns arising from analysis of summary data. For 
example, we used exploration of temporal variations in congestion window size on 
specific flows to create the hypothesis that frequent, high amplitude oscillations in the 
                                                 
5 We did find it necessary to modify the simulation to detect network outages that prevented writing 
measurements and then to detect resumption of a network path so that the measurements could be written. 
During times of prolonged network outage the simulation halts while waiting to purge the measurement 
buffer. In some instances, when the file server crashed, the simulation could not write measurement results 
because the file handle was stale. Failure to recover from a stale file handle required a simulation to be 
restarted. Such instances were relatively rare. We were unable to use the SLX checkpoint and restart 
functions because the SLX product requires that a simulation be reloaded into the same memory addresses. 
We could not guarantee that this would be the case. 
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congestion window were responsible for increased loss rates exhibited by FAST and 
FAST-AT under high spatiotemporal congestion. Of course, to engage in exploratory 
analysis, one needs to have sufficient data collected under various well-understood 
conditions. 

10.2.6 Experiment Selection Methods 
Despite the powerful modeling and analysis techniques available to study behavior in 
large systems, significant spatiotemporal patterns can be missed completely if the 
selected experiments do not create the necessary conditions. We relied on three methods 
to help ensure good coverage of key behaviors. Domain expertise played a crucial role. 
 
10.2.6.1 Factor Analysis. We exploited the sensitivity analysis of MesoNet to identify 
input factors exerting the largest influence on model response (as described in Sec. 
4.6.3.2). This enabled us to concentrate our experiment campaign initially on varying 
those factors most likely to drive model behavior. We were able to keep other factors 
fixed. This shows how findings from sensitivity analyses can help to craft effective 
experiment designs.    
 
10.2.6.2 Domain Expertise. In designing our initial experiment (described in Chapter 6), 
we relied mainly on domain expertise. A domain expert conceived a temporal scenario 
that started with typical Web browsing traffic, added heavy congestion in a 
spatiotemporally localized form and then removed the heavy congestion to allow for 
resumption of normal Web browsing. A domain expert also introduced three long-lived 
flows that could provide a detailed view of congestion control behavior. This basic 
scenario proved well-suited to investigate many operational aspects of congestion control 
algorithms. Insufficient domain expertise could create a significant impediment to 
designing insightful experiment scenarios.    
 
10.2.6.3 Incremental Design. We used incremental design to help construct effective and 
efficient experiment campaigns. In incremental design, results of preceding experiments 
are used to select parameters and scenarios for subsequent experiments. For example, our 
first experiment showed that using a large initial slow-start threshold reduced differences 
among most congestion control algorithms. The initial experiment also identified some 
distinctive behaviors arising from FAST. Given these factors, we were able to craft our 
second experiment (see Chapter 7) to examine any changes that resulted from using a low 
initial slow-start threshold and from including a version of FAST with  tuning. At the 
same time we were able to determine whether reducing the size and speed of a simulated 
network would reveal new information. We made these changes while retaining the 
fundamental scenario from the initial experiment. We used the findings from the second 
experiment to design a subsequent pair of experiments (discussed in Chapter 8) that 
examined the influence of initial slow-start threshold in a network supporting standard 
TCP flows mixed together with flows using an alternate congestion control algorithm. At 
the same time, domain expertise injected much lower overall congestion and a richer 
variety of traffic sources into the experiments. Based on findings from these experiments, 
we decided to design an experiment (reported in Chapter 9) that focused on loss/recovery 
procedures within the congestion control algorithms, while at the same time increasing 
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the size and speed of the simulated network. We recommend interweaving domain 
expertise with sensitivity analysis and incremental design to construct the most effective 
experiment campaign to fit within the allotted time.  

10.2.7 Recommendations 
Investigating the behavior of large distributed systems benefits from rigorous application 
of a coherent set of experiment design and analysis methods. We recommend that such 
investigations adopt two-level OFF experiment designs, which can facilitate a wide range 
of compatible analysis methods. Two-level designs allow a system to be investigated 
under a diverse set of conditions for a reasonable cost. Once overall behavior of a model 
is understood, later experiments can focus on fewer factors with more levels, as needed to 
investigate specific aspects of behavior. The quality of these more focused experiments 
will be improved when placed within the context of a well-understood model. We also 
recommend that system models (whether numerical or simulation) be subjected to 
sensitivity analyses in order to understand response to changing input parameters. We 
advocate the use of incremental design when constructing an experiment campaign. We 
suggest that discrete-event simulations can capture more detailed aspects of system 
behavior than would typically be feasible with more abstract models. We found that 
various scale-reduction methods can lead to tractable simulations for systems of 
significant size, but there appears to be a limit. We recommend validating key model 
behaviors against empirical measurements, where feasible. We also identified several 
useful data analysis methods that can reveal overall behavior in large systems. Some 
methods, such as cluster analysis, reveal the presence of behavioral patterns without 
providing much insight into underlying causes. Other methods, such as the NIST-
developed ten-step graphical analysis, give better insights. We found that custom 
multidimensional visualizations can be quite informative, but creating such visualizations 
requires significant iteration between a domain expert and an expert in statistical 
visualization. Causality analysis remains largely beyond the grasp of automated analysis 
methods. Investigating causality required iterative application of the scientific method: a 
domain expert developed a hypothesis regarding a macroscopic pattern of behavior and 
then used evidence from detailed spatiotemporal data to confirm or refute the hypothesis. 
For this reason, we recommend capturing data in as much spatiotemporal detail as a 
model will permit. Finally, we found that effective use of software for interactively 
exploring multidimensional data requires visualizations that relate to concrete concepts 
within the domain under investigation.  

10.2.8 Future Work 
We suggest three areas for future work on modeling and analysis methods for large 
distributed systems. First, we recommend investigating methods that enable abstract 
models to yield improved accuracy. For example, some researchers have developed a 
hybrid model combining continuous-time logic with discrete events to achieve efficient 
simulation of system behaviors (see Appendix B). Similarly, we are working to improve 
the accuracy of fluid-flow models of congestion control algorithms (see Appendix A). 
Such hybrid or fluid-flow models could be augmented with features necessary to support 
the experiments adopted in the current study and then the experiments could be repeated. 
Perhaps one of these abstract models could reveal the same findings at reduced cost. 
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Second, we suggest investigating approaches to automate design of custom visualizations 
for multidimensional data. Currently, successful application of custom visualization (such 
as the detailed response analyses used throughout Chapters 6 through 9) requires 
substantial collaboration between a domain expert and an expert in statistical 
visualization. Perhaps the knowledge of a statistical visualization expert can be packaged 
in an automated form that enables a domain expert to create effective visualizations? 
Third, we encourage research into automated support for causality analysis. In this study, 
establishing causality required iteration of the scientific method by a domain expert. This 
approach was error prone, time consuming and difficult.    
 


