
Chapter 10 – Conclusions

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 431

10 Conclusions
Below, we provide conclusions in two general categories: conclusions and
recommendations (Sec. 10.1) about the congestion control algorithms we studied and
conclusions and recommendations (Sec. 10.2) about the methods we applied. Along with
each set of conclusions and recommendations, we also provide suggestions for related
future work.

10.1 Conclusions about Congestion Control Algorithms
The simulation and modeling studies reported here enabled us to draw a range of
conclusions about the general utility and safety of seven proposed alternate congestion
control algorithms for the Internet. We were also able to characterize each of the
congestion control algorithms we studied. In the end, we developed some
recommendations about whether it makes sense to deploy alternate congestion control
algorithms at large scale on the general Internet. Finally, though our study is quite
comprehensive, we recognize the need for future work to investigate some questions that
we did not study. We address these topics, in turn, below.

10.1.1 Utility and Safety of Alternate Congestion Control Algorithms
Our simulation and modeling experiments showed that deploying alternate congestion
control algorithms can provide improved user experience under specific circumstances.
As discussed below, the nature of such circumstances bound the utility that alternate
congestion control algorithms may provide. In addition, the experiments showed that
some proposed algorithms can be deployed without driving large changes in macroscopic
behavior throughout a network. On the other hand, other proposed algorithms altered
behavior in undesirable directions under specific spatiotemporal situations. We address
these topics in detail.

10.1.1.1 Increase Rate. One of the key questions for any data transport protocol is: How
fast can the maximum available transfer rate be achieved on a network path? Assuming
no congestion (i.e., no losses) protocols that can quickly attain the maximum rate will
spend the largest portion of a file transfer at that rate. Each TCP flow begins without any
knowledge of the maximum available transfer rate. For this reason, TCP specifies an
initial slow-start process where the source transmits slowly but then, as feedback arrives
from a receiver, quickly increases the transmission rate until reaching a specified (initial
slow-start) threshold or encountering a loss. This initial slow-start process is not altered
by any of the proposed alternate congestion control algorithms that we studied.

Assuming no (or low) congestion, the setting of the initial slow-start threshold can
be quite important when comparing goodputs experienced by users on TCP flows with
goodputs for users on flows operating under alternate congestion control algorithms.1

1 Note that in real TCP flows receivers may convey a receiver window (rwnd) that can restrict goodput
quite severely because sources pace transmission based on the minimum of the congestion window (cwnd)
and rwnd.Tthe following may hold: rwnd < cwnd. In our studies, we assume an infinite rwnd in order to
compare the effects of congestion control algorithms adjusting the cwnd. The goodput on many TCP flows
in a real network might well be constrained by rwnd. In such cases, alternate congestion control algorithms
would provide little advantage over TCP congestion control procedures.

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 432

When the initial slow-start threshold is set arbitrarily high, on average all flows achieve
maximum transfer rate with the same quickness. Under such situations, the goodput seen
on TCP flows and flows running alternate algorithms appears quite comparable. Flows
carrying short files (e.g., Web objects and document downloads) tend to complete while
in initial slow-start, which means that alternate congestion control procedures (restricted
to the congestion avoidance phase of a flow) do not operate. Even flows conveying long
files can operate for extended periods under initial slow-start because such flows do not
enter congestion avoidance until encountering a loss.

When the initial slow-start threshold is set low (e.g., 64 Kbytes) all of the
alternate congestion control algorithms that we studied increase transmission rate more
quickly than the linear increase provided by the standard TCP congestion avoidance
procedures. Thus, under low congestion, when the initial slow-start threshold is set low
compared to the size of files transferred (and assuming the receiver window – rwnd – is
not constraining transmission rate) users on TCP flows will see much lower goodput than
users of alternate congestion control algorithms. The larger the file sizes being transferred
the larger the goodput advantage of the alternate algorithms. The alternate congestion
control algorithms provide different degrees of goodput improvement over TCP
congestion avoidance procedures. As discussed below (Sec. 10.1.2), these goodput
differences can be tied directly to the speed with which the alternate algorithms reach the
maximum available transmission rate.

Under conditions of heavy congestion the setting of the initial slow-start threshold
matters less because initial slow-start terminates upon the first packet loss and then a flow
enters the congestion avoidance phase, which is where the alternate congestion control
algorithms differ from TCP procedures. In such situations, the main difference in goodput
experienced by users relates to the loss/recovery procedures defined by the alternate
algorithms. We turn to this topic next.

10.1.1.2 Loss/Recovery Processing. Two key questions arise when a data transport
protocol experiences a packet loss. (1) How much should the protocol reduce
transmission rate upon a loss? (2) How quickly should the protocol increase transmission
rate after the reduction? The standard TCP congestion avoidance procedures reduce
transmission rate by one-half on each packet loss. Subsequently, TCP congestion
avoidance procedures increase transmission rate linearly. The alternate congestion control
algorithms we studied specify various procedures for transmission rate reduction and
increase following a lost packet.

One group of algorithms (Scalable TCP, BIC2 and HSTCP) reduce transmission
rate less than TCP after a packet loss. As a result, these algorithms tend to retain a higher
transmission rate and associated buffers than is the case for TCP flows. Smaller rate
reduction can allow these algorithms to provide established flows with higher goodputs
following packet losses. We found this effect to increase with increasing loss rate and
also file size. In addition, these algorithms can be somewhat unfair (see Sec. 10.1.1.3) to
algorithms (such as TCP) that exhibit a more reduced transmission rate following a loss,

2 Note that on repeated losses occurring close in time, BIC can reduce cwnd substantially more than the
standard TCP congestion avoidance procedures; thus, on paths with very severe congestion BIC can
actually provide lower goodput than TCP and can also occupy fewer buffers.

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 433

as well as to flows that have not had sufficient time to attain a high transmission rate
prior to a loss.

A second group of algorithms (CTCP, FAST and FAST-AT) reduce transmission
rate in half following a loss. HTCP appears to be a hybrid, reducing transmission rate
variably, between 20% and 50%, depending on conditions. The higher reduction occurs
when transmission rate had been changing substantially in a round-trip time and the
lower reduction occurs when transmission rate is less variable. To obtain higher goodput,
these algorithms increase transmission rate more quickly than TCP flows following a rate
reduction. As discussed below (Sec. 10.1.2), the rate of increase varies with the specific
algorithm. Typically, HTCP and CTCP are less aggressive than FAST and FAST-AT
when increasing transmission rate after a reduction. Though, FAST-AT will be less
aggressive when sufficient congestion exists to force a reduction in the parameter. An
aggressive rate increase following a rate reduction can induce additional losses on a path.
When such losses affect TCP flows, then linear recovery procedures lead to lower
goodputs. Under severe congestion, CTCP and HTCP can provide better goodput than
FAST and FAST-AT, which can underperform TCP.

In areas and at times of extreme congestion, most of the alternate algorithms we
studied include procedures to adopt standard TCP congestion avoidance behavior. These
procedures appear motivated by the theory that when congestion is sufficiently severe
then existing TCP behavior provides the best approach to fairly share the limited
available transmission rate. The most typical technique employed is to set a low-window
threshold. When the congestion window (cwnd) is below the threshold then TCP
congestion avoidance procedures are used. When cwnd is above the threshold then
alternate congestion avoidance procedures are used. Specific values for the threshold vary
among the alternate congestion control algorithms. The combination of different
thresholds and different file sizes can lead to modest differences in user goodputs.

HTCP handles adaptation to TCP procedures somewhat differently than the other
alternate algorithms we investigated. After a loss, HTCP adopts linear rate increase for a
time. The time period is an HTCP parameter, set in these experiments to one second. We
found that HTCP then adapts to TCP linear increase after every loss, regardless of file
size or cwnd value. For larger files, which tend to have higher cwnd and to experience
more losses during transmission, this approach tends to lower goodput significantly
relative to other alternate algorithms, which do not adopt linear increase after every loss.

 FAST and FAST-AT do not use standard TCP congestion avoidance procedures
under any circumstances. In times and areas of heavy congestion, failure to adopt less
aggressive rate increase can lead to oscillatory behavior and to an associated increase in
loss rate. Increased losses lead to lower user goodputs. FAST-AT does somewhat better
under heavy congestion because the parameter can be lowered, causing less aggressive
rate increases. Still, under many conditions, FAST-AT can exhibit a similar increased
loss rate to FAST.

10.1.1.3 TCP Fairness. TCP fairness denotes the situation where competing flows
transiting a shared path in the Internet will all receive an equal share of available
goodput. Comparing alternate congestion control algorithms with respect to TCP fairness
can be somewhat difficult because the alternate algorithms are designed to give better
goodput than TCP for large file transfers on high bandwidth-delay paths. Thus, for

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 434

example, all of the alternate algorithms can increase transmission rate more quickly than
TCP given a low initial slow-start threshold and large file sizes. Further, all alternate
algorithms take steps to provide loss/recovery improvements over the standard TCP
congestion avoidance procedures. On the other hand, most of the alternate algorithms
take steps to adopt TCP congestion avoidance procedures when congestion is sufficiently
high. Given these factors, one would expect all alternate congestion control algorithms to
provide better goodput than TCP under optimal conditions. In addition, some of the
alternate algorithms are assured of performing no worse than TCP under suboptimal
conditions. The usual measures of TCP fairness do not apply in such circumstances
because they would tend to measure how much of a goodput advantage a given alternate
algorithm provides over TCP procedures. Instead, we measured relative TCP fairness by
ranking the average goodput achieved by TCP flows when they competed with each
alternate congestion control algorithm under the same conditions. We considered the
average rank across four file sizes: Web objects, documents, software service packs and
movies. In this way, we could elicit the relative TCP fairness of the alternate algorithms.

We found that CTCP and HTCP were most fair to TCP flows. We found FAST-
AT third fairest to TCP flows under high initial slow-start threshold. Under low initial
slow-start threshold, FAST-AT proved more unfair to TCP flows because of its quick
increase in transmission rate after passing the initial slow-start threshold. Injecting more
FAST-AT packets into the network induced more losses in TCP flows, which could not
recover as quickly.

We found Scalable TCP, BIC and FAST to be most unfair to TCP flows.
Established Scalable and BIC flows (large files) tended to maintain higher transmission
rates after losses, while competing TCP flows cut transmission rates in half. By
maintaining higher transmission rates and, thus, more buffer space, Scalable and BIC
flows induced more losses in TCP flows. FAST could recover more quickly from losses
than TCP flows and so FAST flows could occupy more buffers and induce more losses in
TCP flows. In addition, like FAST-AT, FAST exhibited unfairness under low initial
slow-start threshold because of its quick increase in transmission rate upon entering
congestion avoidance.

HSTCP appeared moderately fair to TCP flows, especially under conditions of
lower congestion and under a low initial slow-start threshold. HSTCP showed TCP
unfairness, similar to Scalable TCP, under conditions of heavy congestion.

We believe that Scalable TCP, BIC and HSTCP could also be unfair to competing
flows that are newly arriving. Given that some large flows operating under Scalable TCP,
BIC and HSTCP have established relatively high transmission rates and associated large
buffer states and given that newly arriving flows induce losses, the established flows will
not reduce transmission rate very much and will maintain large buffer states. The newly
arriving flows will be forced into congestion avoidance on the loss. Further, Scalable
TCP and HSTCP do not increase transmission rate very fast early in a flow’s life, so
newly arriving flows of these types can face difficulty increasing transmission rate.

10.1.1.4 Utility Bounds. We showed that alternate congestion control protocols could
provide increased utility (goodput) for users, but we also found that this increased utility
would be maximized only under specific, bounded circumstances. First, the rwnd must
not be constraining flow transmission rate. Second, a flow must be using a relatively low

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 435

initial slow-start threshold. Third, a flow must be transmitting a large file. Fourth, a
flow’s packets must be transiting a relatively uncongested path (i.e., experiencing only
sporadic losses from congestion or corruption) or else users must be willing to accept
marked unfairness (e.g., as seen with Scalable TCP) in trade for increased goodput. These
bounds arise from some simple factors.

 If a flow is restrained by receipt of a relatively small rwnd, then the ability of
alternate congestion control regimes to increase to a high cwnd cannot be used to transmit
faster on a flow. Assuming rwnd does not constrain flow goodput, flows can increase
goodput in concert with cwnd by using slow start to discover the maximum transmission
rate. Given a high initial slow-start threshold, then all flows can discover the maximum
cwnd with the same quickness. In this case, TCP flows would reach maximum cwnd on
average with the same pace as flows running alternate algorithms. Only when the initial
slow-start threshold is low, forcing early entry into congestion avoidance, could flows
using alternate algorithms reach maximum cwnd more quickly than TCP. If flows are
transferring large files, then the ability to reach maximum transmission rate quickly
provides a substantial goodput advantage, and the advantage increases with file size.
Under small files a transfer could complete under initial slow-start and, thus, the
advantage inherent in congestion avoidance increase procedures for the alternate
algorithms would not be realized. When flows transit heavily congested paths in the
network, then most of the alternate congestion control algorithms adopt standard TCP
congestion avoidance procedures, which negate any goodput advantage over TCP flows.
Though FAST and FAST-AT do not adopt standard TCP congestion avoidance
procedures, we found that heavy congestion can cause the transmission rate to oscillate
on FAST and FAST-AT flows, which leads to higher loss rates, more retransmissions and
lower goodput.

We are unable to determine how likely a particular flow is to operate under the
bounded circumstances required for alternate congestion control algorithms to provide
improved goodput over standard TCP. Certainly it would be possible to engineer a
network, or segments of a network, to provide specific users with high utility from
alternate congestion control algorithms. On the other hand, we suspect a rather low
probability for such circumstances to arise generally in a network. Thus, we conclude that
alternate congestion control algorithms can provide improved user goodput, but most
users seem unlikely to benefit very often.

10.1.1.5 Safety. Given that on occasion some users could benefit from the increased
goodputs available from alternate congestion control algorithms, we need to consider
whether widespread deployment of such algorithms could induce undesirable
macroscopic characteristics into the network. In other words, are there significant costs
that might offset the modest benefits associated with deploying alternate congestion
control algorithms? We can answer this question only in part because we simulated
networks where sources used either a single congestion control regime or where some
sources used a selected alternate congestion control algorithm while other sources used
standard TCP congestion control procedures. There could be additional cautionary
findings that arise from a heterogeneous mixture of alternate congestion control
algorithms. We postpone such investigations to future work.

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 436

 In our experiments, we simulated a wide range of conditions and we considered
numerous scenarios comparing network behavior under specific alternate congestion
control algorithms, sometimes mixed with TCP procedures. For most algorithms under
most conditions, we found little significant change in macroscopic network
characteristics. One exception relates to FAST and FAST-AT. In spatiotemporal realms
with high congestion, where there were insufficient buffers to support the flows transiting
specific routers, FAST and FAST-AT exhibited oscillatory behavior where the flow cwnd
increased and decreased rapidly with large amplitude. Under these conditions, the
network showed increased loss and retransmission rates, a higher number of flows
pending in the connecting state and a lower number of flows completed over time. Thus,
FAST and FAST-AT should be deployed on a wide scale only with great care. There
appears to be some possibility that FAST could cause significant degradation in network
performance in selected areas and for selected users. We recommend the need for
additional study of FAST and FAST-AT prior to widespread deployment and use on the
Internet.

10.1.2 Characteristics of Individual Congestion Control Algorithms
Below, we provide a brief summary of the characteristics found from our experiments for
each alternate congestion control algorithm. For each algorithm we consider four
characteristics. The first characteristic, implementation complexity, assesses how much
code might be required to implement an algorithm. The second characteristic, activation
trigger, identifies the condition (usually a specific congestion window size) that causes a
flow to switch between standard TCP congestion avoidance procedures and alternate
procedures defined by an algorithm. The third characteristic, goodput latency, measures
the time required for a flow to achieve maximum transmission rate on long-lived flows
when operating under an algorithm’s alternate congestion avoidance procedures. The
fourth characteristic, recovery latency, measures the time required for a long-lived flow
to recover maximum transmission rate after a period of congestion with sustained losses.
Table 10-1 compares the seven alternate congestion control algorithms with respect to
these four characteristics. We discuss the algorithms in alphabetical order, as shown in
the table.

Table 10-1. Comparing Four Characteristics of Individual Alternate Congestion Control Algorithms

Algorithm
Implementation
Complexity

Activation
Trigger

Goodput
Latency (avg)

Recovery
Latency (avg)

BIC high 14 packets 18.8 s 71.3 s

CTCP moderate 41 packets 7.9 s 2.9 s

FAST low none 3.7 s 6.6 s

FAST‐AT moderate none 3.7 s 26.0 s

HSTCP low 31 packets 22.4 s 10.0 s

H‐TCP moderate 1 s w/o loss 16.6 s 10.0 s

Scalable TCP low 16 packets 17.8 s 22.5 s

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 437

10.1.2.1 BIC. Clearly, among the seven algorithms we studied, BIC is the most complex
to code and implement, requiring a potentially substantial amount of processing to adjust
the cwnd. BIC uses standard TCP congestion avoidance procedures when cwnd is below
a low-window threshold (14 packets, here). Under congestion with losses spaced
sufficiently in time, BIC reduces cwnd less quickly than standard TCP, so BIC can
achieve higher goodputs under sporadic losses by maintaining a high transmission rate
and associated buffer state. This can be somewhat unfair to newly arriving flows. On the
other hand, when congestion becomes severe, with losses spaced closely in time, BIC
reduces cwnd much more quickly than TCP. Under such circumstances, BIC can take
substantial time (average 71.3 s in our experiments) to recover maximum goodput after
congestion eases. When considering the rate of increase in transmission speed under low
congestion after reaching initial slow-start threshold, BIC averaged about 18.8 s to reach
maximum transfer speed on long-lived flows. This rate of increase ranked fifth (of six)
overall, and was competitive with HTCP, Scalable TCP and HSTCP.

10.1.2.2 CTCP. The algorithm for CTCP requires periodic processing to adjust an
auxiliary delay window (dwnd), which increases the processing cost beyond that found in
standard TCP congestion control. Under congestion, CTCP reduces transmission rate by
one-half and then recovers relatively quickly. The advantage of CTCP recovery
procedures appears most obvious after a period of severe congestion on a path. Under
easing congestion, dwnd can increase quite quickly. Since CTCP augments the cwnd with
the dwnd, transmission rate can also increase quickly – returning to maximum rate in an
average 2.9 s in our experiments. In fact, in some situations, the rate of increase in dwnd
appears unbounded. CTCP implementations should probably include a bound on
maximum dwnd. Under periods of heavier congestion, increase in dwnd is constrained. In
addition, the CTCP algorithm appears quite fair to competing CTCP flows as well as
TCP flows. CTCP had the highest default low-window threshold (41 packets, here)
among the algorithms we studied. Further, CTCP averaged about 7.9 s to reach maximum
transfer speed on long-lived flows under low congestion and low initial slow-start
threshold. This rate of increase ranked second overall behind only FAST and FAST-AT,
which tied for first.

10.1.2.3 FAST. The algorithm for FAST requires periodic processing to adjust the target
cwnd. While each adjustment demands little computation, the default periodicity (20 ms,
here) can require multiple adjustments within a single round-trip time. FAST does not
have a low-window threshold; thus, after initial slow-start, FAST flows never use
standard TCP congestion avoidance procedures. Under congestion, FAST reduces
transmission rate by one-half and then recovers very quickly. The advantage of FAST
recovery speed appears under both sporadic losses and when congestion eases following
a period of severe congestion on a path. Under easing congestion, FAST recovered
maximum transmission rate in an average of 6.6 s in our experiments. On the other hand,
for flows transiting congested areas, with insufficient buffer space for all flows, FAST
exhibits oscillatory behavior that increases losses and, thus, retransmissions, which
reduces user goodput. Under severe congestion, FAST causes an increase in flows
pending in the connecting state because SYN packets are lost with increased probability.
In addition, FAST can significantly reduce the number of flows completed over time in a

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 438

network. Among the algorithms we studied, FAST achieves maximum available
transmission rate in the shortest time (3.7 s average) on long-lived flows under low
congestion and low initial slow-start threshold. The ability of FAST to accelerate
transmission rate led to superior goodputs (under low congestion and low initial slow-
start threshold) for file sizes larger than Web objects, and the advantage of FAST
increased with file size. The ability of FAST to quickly attain high transmission rates for
large files tended to induce losses in competing flows. Since TCP flows could not recover
quickly, FAST flows could attain much higher goodputs than competing TCP flows.

10.1.2.4 FAST-AT. The FAST-AT algorithm augments FAST with periodic procedures to
monitor throughput and tune the parameter used when adjusting the target cwnd.
Without tuning, FAST sets the parameter to a fixed value. FAST-AT monitors
throughput every round-trip time and tunes the parameter periodically (every 200 s,
here). As throughput improves past specified thresholds is increased and as throughput
declines past specified thresholds is decreased. FAST-AT exhibits many of the same
positive and negative properties as FAST. The main difference was that, under severe and
sustained congestion, FAST-AT reduced the parameter from a default setting of 200 to
as low as 8. In such, circumstances FAST-AT recovers much more slowly than FAST.
When throughput begins increasing, FAST-AT adjusts the parameter only every 200 s
and must make two adjustments (8 to 20 followed by 20 to 200) before reaching the
maximum recovery rate. In our experiments, when recovering from sustained periods of
heavy congestion, FAST-AT took longer (26 s average) to reach maximum transmission
rate than all alternate algorithms except BIC. On the other hand, by recovering
transmission rate more slowly under heavy congestion, FAST-AT proved more TCP
friendly than FAST. This occurred because under such circumstances FAST-AT did not
induce as many losses in competing TCP flows.

10.1.2.5 HSTCP. The HSTCP algorithm is relatively straightforward, updating the cwnd
no more frequently than standard TCP. The HSTCP cwnd updates involve somewhat
costly logarithmic and exponentiation operations. HSTCP uses standard TCP congestion
avoidance procedures when the cwnd is below a low-window threshold (31 packets,
here). HSTCP reduces cwnd less on a loss than standard TCP and provides more than
linear increase in cwnd during congestion avoidance. Under both sporadic and heavy
congestion, HSTCP retains a higher transmission rate (and associated buffers) than TCP.
By maintaining more buffered packets, HSTCP can induce losses in competing flows. In
such situations, newly arriving HSTCP flows can have difficulty increasing transmission
rate, especially on paths with longer propagation delays. In addition, losses induced on
competing TCP flows hurt goodput for TCP users because TCP recovers only linearly.
When recovering from periods of sustained heavy congestion, HSTCP tied for third best
(10 s average) in our experiments, but the short recovery time can be attributed mainly to
the fact that, in comparable situations, HSTCP flows did not reduce transmission rate as
much as most other congestion control algorithms. Under low congestion and low initial
slow-start threshold, HSTCP achieved maximum transmission rate more slowly (22.4 s
average) on long-lived flows than all other alternate congestion control algorithms we
studied.

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 439

10.1.2.6 HTCP. The HTCP algorithm requires a periodic (250 ms, here) process to
monitor flow throughput. HTCP uses standard TCP congestion avoidance procedures for
a specified period (1 s, here) after a packet loss. Under congestion, HTCP behaves like
standard TCP congestion avoidance. The heavier the congestion, the more time HTCP
spends using TCP procedures. When recovering from periods of sustained heavy
congestion, HTCP tied for third best (10 s average) in our experiments. Under sporadic
losses, HTCP can spend too much time using TCP’s linear increase. In our experiments,
this trait led HTCP to provide lower goodput than other alternate congestion control
algorithms on large files. On the other hand, by adopting standard TCP congestion
avoidance procedures following packet loss, HTCP is quite TCP friendly. Under low
congestion and low initial slow-start threshold, HTCP achieved maximum transmission
rate somewhat slowly (16.6 s average), comparable to BIC, HSTCP and Scalable TCP,
but significantly slower than CTCP, FAST and FAST-AT.

10.1.2.7 Scalable TCP. The Scalable TCP algorithm is a small modification of standard
TCP congestion avoidance procedures. Scalable TCP increases cwnd by a constant on
each acknowledgment and decreases cwnd by 12.5 % on each loss. In addition, Scalable
adopts standard TCP congestion avoidance procedures when cwnd is below a low-
window threshold (16 packets, here). Under congestion, established Scalable TCP flows
do not reduce transmission rate very quickly. By maintaining more buffered packets,
Scalable TCP can induce losses in competing flows. In such situations, newly arriving
Scalable TCP flows can have difficulty increasing transmission rate, especially on paths
with longer propagation delays. In addition, losses induced on competing TCP flows hurt
goodput for TCP users because TCP recovers only linearly. When recovering from
periods of sustained heavy congestion, Scalable performed fifth best (22.5 s average) in
our experiments, but the recovery time can be attributed mainly to the fact that, in
comparable situations, Scalable TCP flows did not reduce transmission rate as much as
most other congestion control algorithms. Under low congestion and low initial slow-start
threshold, Scalable TCP achieved maximum transmission rate somewhat slowly (17.8 s
average). In fact, Scalable increased transmission rate very slowly for the first few
seconds of long-lived file transfers, which means that Scalable provides a steep increase
in transmission rate only for large files.

10.1.3 Recommendations
Under some circumstances, users can benefit from adopting alternate congestion control
algorithms to transfer files on the Internet. For that reason, it makes sense to deploy such
algorithms into computers attached to the Internet. Of course, the probability appears
quite low that a specific user will see benefits on any particular file transfer. Among the
alternate congestion control algorithms we studied, CTCP appears to provide the best
balance of properties. Under low congestion, CTCP can increase transfer rate relatively
quickly when operating in the congestion avoidance phase. Further, CTCP reduces
transmission rate relatively quickly in the face of sustained congestion and recovers to the
maximum transmission rate quite quickly when congestion eases. CTCP appears
relatively friendly to flows using standard TCP congestion avoidance procedures. CTCP,
along with most of the other alternate congestion control algorithms we studied, is
unlikely to induce large shifts in the macroscopic behavior of the Internet. FAST and

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 440

FAST-AT have some appealing properties, especially with respect to achieving
maximum transmission rate quickly on high-bandwidth, long-delay paths and recovering
quickly from sporadic losses. Unfortunately, when transiting highly congested paths with
insufficient buffers to support the flow volume, FAST and FAST-AT can enter an
oscillatory regime that could significantly increase loss and retransmission rates. Flows
transiting affected areas would take longer to connect and complete and would receive
lower goodputs.

10.1.4 Future Work
We studied seven proposed replacement congestion control mechanisms for the Internet.
Despite the comprehensive nature of our study, more work remains to be done in at least
four directions. First, we limited our study to a bounded set of alternate congestion
control algorithms for which we could find empirical data against which to validate our
simulations. Researchers have proposed many congestion control algorithms that were
not included in our study, so one direction for future work is to consider the behavior of
additional algorithms. Of particular interest is CUBIC, which has replaced BIC as the
congestion control algorithm enabled by default in Linux.

Second, we have not considered scenarios where multiple alternate congestion
control algorithms are mixed together in the same network. Increasing the heterogeneity
of algorithms might reveal additional insights about the advantages and disadvantage of
the various algorithms, as well as uncover undesirable macroscopic behaviors resulting
from such mixtures. Where undesirable behaviors do not appear, then such a study would
increase confidence in the safety of deploying alternate congestion control regimes. Of
course, conducting such a study would likely require substantial increase in demand for
computation resources in order to simulate long enough network operation to accumulate
sufficient samples to reveal statistically significant behavioral patterns.

Third, we have not validated our findings against live, controlled experiments
configured in GENI or a similar test bed environment. Conducting such a validation
would substantially increase confidence in the findings of our study. We intend to
undertake such a validation as soon as we can gain access to sufficient resources to
support our experiments. In the meantime, we also plan to consider how we might
attempt to validate our findings using test environments of smaller scale. One way to
approach this may be to make predictions about behaviors we should see replicated even
at smaller scale than the network sizes and speeds we simulated.

Fourth, our study revealed various strengths and weaknesses in the congestion
control algorithms we investigated. Future researchers could exploit our findings to
propose algorithm improvements that compensate for identified weaknesses, while
retaining strengths. Further, our general findings may also help other researchers to
improve future designs for additional congestion control algorithms.

10.2 Conclusions about Methods
The simulation and modeling studies reported here also enabled us to evaluate each of the
modeling and analysis methods we used. Below, we first discuss the use of discrete-event
simulation as a technique to model systems at large scale. Subsequently, we evaluate the
specific methods we applied to solve each of the five hard problems that we identified in

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 441

Sec. 2.4. We than provide some overall recommendations for those seeking to model and
analyze large distributed systems. We close with suggestions for future work.

10.2.1 Discrete Event Simulation
Recall that our discrete-event simulation model, MesoNet, was constructed because an
existing cellular automaton model proved unable to scale to simulate networks of the size
and speed required for this study. The cellular automaton model simply demanded far too
many computation resources. What about discrete-event simulation? We demonstrated
that MesoNet could feasibly simulate a network operating for one hour at contemporary
router speeds while transporting hundreds of thousands of simultaneous flows with a mix
of 100 Mbps and 1 Gbps sources and receivers sending flows with sizes ranging from
tens of kilobytes to gigabytes. Of course, running such a simulation for an average
parameter combination required about 17 ½ days of processing time. In the best case,
such a scenario required just over 8 days and in the worst case just over 30 days. The
speed of individual processors seems unlikely to improve much in the future. Instead,
computer systems will be outfitted with an increasing number of processors that can be
used in parallel. Increasing parallelization is a nice match for orthogonal fractional
factorial experiment designs (see Sec. 10.2.2.3 below), but each individual experiment
run must still be completed within a time budget. We conclude that discrete-event
simulation is unlikely to support network simulations much beyond the scale we used in
our study. Even if one is willing to wait 60 or 90 days for a single simulation run to
complete, the odds seem low that the underlying hardware, operating system, simulation
environment and model could run so long without incurring some sort of failure.
Researchers are investigating parallel simulation as a means to increase the scale of runs
that can be executed, but temporal relationships among elements in network simulations
will probably restrict the degree of speedup that can be achieved. We conclude that
increasing the scale of a simulated network will likely require a different paradigm, such
as fluid-flow or hybrid simulations. We discuss such models further in Appendices A and
B.

10.2.2 Scale Reduction Techniques
We adopted five specific techniques to reduce the scale of parameter and response spaces
in our experiments. Below, we evaluate each technique in turn.

10.2.2.1 Model Restriction and Parameter Clustering. Restricting model parameters to
those germane to this specific study led to substantial reduction in intellectual effort
associated with identifying and assigning values to both fixed and variable parameters.
Further, reduction in the parameter space lowered the overall computational demand
associated with individual experiment runs and with experiment campaigns. Clustering
individual parameters into groups, each representing a key factor driving a simulated
network, further reduced the intellectual effort needed to parameterize experiments and
also to analyze responses and assess the influence of particular input factors. Of course,
the reductions associated with restricting and clustering input parameters were
insufficient alone to achieve computational tractability for the experiments in this study.
Other reductions were required (see Sec. 10.2.2.2 and Sec. 10.2.2.3 below). Further,
significant domain expertise was needed to identify reasonable parameter restrictions and

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 442

groupings. This may impede studies where such expertise is unavailable. In some cases,
substantial simulation executions and data analyses were required to identify parameter
reduction decisions that were inappropriate. For example, we required about one week of
simulation to identify a gradual trend toward an increasing number of active flows.
Discovering this trend led us to introduce connection establishment procedures into the
simulation. This finding illuminated the important role that connection establishment
procedures play in controlling network-wide congestion.

10.2.2.2 Two-Level Experiment Designs. The largest reduction in computation demand
for simulations in this study arose from the simple act of limiting parameter settings to
only two levels. Of course, taking this step incurred several drawbacks. First, the
experiment designer must select specific values for each level. This requires significant
domain expertise. Second, the results obtained for each experiment are robust only over
the range defined by the selected level settings. Third, drawing conclusions from a two-
level experiment design entails an assumption that a model behaves monotonically within
the range defined by the selected settings. To mitigate these restrictions, the study
adopted several experiments and varied level settings between experiments. While some
may cringe at limiting parameter settings to two levels, we demonstrated in this study that
significant insight can be gained even under such a severe restriction.

10.2.2.3 Orthogonal Fractional Factorial Experiment (OFF) Designs. OFF experiment
designs enabled us to further reduce computational demand in cases where simulating all
combinations of parameter settings proved too costly, even after limiting parameters to
only two levels. In general, OFF designs allow an experiment designer to simultaneously
vary parameter combinations in a balanced and orthogonal fashion to provide the
maximum amount of information given a limit on the affordable number of experiment
runs. Since each selected combination of parameters represents an independent
simulation run, OFF experiment designs create a suite of simulations that can be executed
in parallel, across all available processors, one simulation per processor. Recall, however,
that each individual simulation run must still be computationally feasible (as discussed in
Sec. 10.2.2.1 above). Another advantage to two-level OFF designs arises from an
effective match with a ten-step graphical analysis technique developed at NIST (see Sec.
10.2.4.1 below). Pairing two-level OFF designs with the graphical and analytical
techniques used in our study reveals substantial information about system behavior –
within the restrictions of two-level designs (as discussed above in Sec. 10.2.2.2). Of
course, OFF designs further reduce the potential parameter combinations examined in a
particular study. In general, no study can cover all potential parameter combinations. The
most typical approach adopted by network researchers entails fixing all parameter
settings except one, which is varied across a range of levels. The results of this one-
factor-at-a-time approach can produce nice x-y plots, but any resulting conclusions are
valid only under a specific combination of fixed parameters. OFF designs provide a
principled technique to vary multiple parameter settings simultaneously, which yields
more information about overall behavior of a system. Further, OFF designs can identify
model errors more readily than one-factor-at-a-time experiments because OFF designs
probe a model under a larger variety of parameter combinations.

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 443

10.2.2.4 Correlation Analysis and Clustering. Correlation analysis proved an effective
technique to reduce the response space that we needed to examine. In one of our
sensitivity analyses (see Chapter 4), for example, we showed how 22 potential responses
could be reduced to only seven. Assuming availability of a domain expert, correlation
results may also aid in model validation. For example, a domain expert should be able to
verify whether or not the correlations make sense. A domain expert should also be able to
attribute surprising correlations to modeling error or to new insights. We found that a
given set of correlation results apply only to the specific range of parameter combinations
used to generate the related responses. For example, the correlations identified in
Appendix C differ in some ways from the correlations identified in Chapter 4.
Examination by a domain expert revealed that both sets of correlations are valid;
differences arose from variations in the range of parameters simulated. We conclude that
correlation analysis should be applied separately to each suite of experiments where level
settings differ.

10.2.2.5 Principal Components Analysis (PCA). We used PCA to complement correlation
analysis3. PCA aims to identify orthogonal variations, so-called principal components, in
response data and to assign weights to indicate the degree to which responses influence
each identified principal component. For the models simulated in this study, we found
that most variation in response data could be accounted for by the first four principal
components in a given analysis. This implies, for example, that we might be able to
analyze four responses instead of the 22 used in our sensitivity analysis. Further, a
domain expert could compare the findings from a PCA against the findings from a
correlation analysis to determine if the two analyses were consistent. This consistency
check helps to further validate a model. On the other hand, working with PCA results can
be somewhat difficult for a few reasons. First, principal components are abstract linear
weighted combinations of responses, so there is no specific domain interpretation behind
a given component. An analyst or expert must invest considerable effort to develop a
domain interpretation of even the top two or three principal components. In some cases
(e.g., Chapter 4), a clear and reasonable interpretation can be achieved. In other cases
(e.g., Appendix C), interpretation becomes more difficult. Second, principal components
can take on both positive and negative values, which present an analyst with difficulty
assigning meaning. In fact, conducting a main-effects analysis of principal components
required us to refer to main-effects analyses of raw responses in order to develop an
interpretation. Third, PCA sometimes identified components that proved coarser than
similar response groupings developed with correlation analysis. When aiming to reduce
the response state space, we conclude that PCA provides a reasonable complement to
correlation analysis, but domain experts will often find correlation analysis more readily
comprehensible than PCA.

10.2.3 Model Validation Techniques
As we discussed in Chapter 2, network researchers typically do not know whether their
models are valid. For this reason, we took two steps to increase confidence in the validity
of MesoNet. We evaluate each step in turn.

3 We also used PCA to identify sources of variation in data related to several experiments throughout our
study. We evaluate PCA in these applications below in Sec. 10.2.4.3.

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 444

10.2.3.1 Sensitivity Analysis. Sensitivity analysis provided a tractable means to
investigate the response of MesoNet to various changes in model input parameters. Using
sensitivity analyses we were able to find and fix errors in early model formulations and,
ultimately, to develop confidence that the model was fit for its intended role in our study.
Of course, to conduct such analyses we combined many of the individual methods
evaluated here, including two-level OFF experiment design, correlation and principal-
components analyses and ten-step graphical analysis. For this reason, our approach to
sensitivity analysis inherited the strengths and weaknesses associated with the individual
methods. In particular, the two-level design limited the range of our conclusions about
model validity. To mitigate that, we conducted a supplementary sensitivity analysis (see
Appendix C) that adopted different level settings for each input factor evaluated. We also
used preliminary sensitivity analyses to identify factors that did not much influence
model responses. We could then reduce the search space in subsequent analyses. We
conclude that rigorous sensitivity analysis becomes feasible when using a reduced-scale
simulation model and two-level OFF design, combined with judicious choice of factors to
vary. Results from sensitivity analyses guided us in designing specific experiments
associated with our study. We recommend that campaigns of simulation (or numerical)
experiments use only models that have been examined for sensitivity to changes in input
parameters.

10.2.3.2 Key Empirical Comparisons. To increase confidence that we had correctly
modeled specific congestion control algorithms, we relied on key comparisons between
simulation results and empirical results. Such comparisons were facilitated by the
existence of published empirical results measured under controlled circumstances in a
small (“dumbbell”) topology. We were easily able to model the small topology in
MesoNet and to simulate the same scenarios and parameter settings used in the empirical
studies. Comparing our simulation results with empirical results enabled us to identify
errors in modeling several congestion control algorithms. We were also able to correct
our models and ensure that we obtained results consistent with empirical results. In this
way, we gained confidence in our models of the various congestion control algorithms
prior to increasing the scale of topology we simulated. As an added benefit, the empirical
study identified default parameter settings adopted by congestion control algorithms. We
were able to adopt those settings for our large simulations. For a given study, empirical
results may be unavailable, either because the problem under study is not yet
implemented or because no one has published empirical results. Where feasible, we
recommend that a small experimental configuration be used to generate empirical
measurements in order to ground a mathematical model in reality. Preferably, the
empirical measurements should be made from implementations developed independently
from the models. The empirical measurements should capture key aspects of system
behavior on a small scale. When empirical measurements cannot be made available,
important aspects of a model may go unconfirmed. From our experiences, the resulting
model can contain significant errors that lead to invalid behaviors. We recommend that
significant studies endeavor to compare key model aspects with empirical measurements
taken at small scale. Any reasonable expense required to obtain empirical measurements
will be repaid by enhancing confidence in models used to study large-scale systems.

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 445

10.2.4 Data Analysis Methods
Data analysis comprises the third axis of our method; modeling and experiment design
comprise the other two axes. We applied and explored four data analysis methods during
our study. We evaluate each method below.

10.2.4.1 Ten-Step Graphical Analysis. In support of exploratory analysis, NIST designed
a ten-step graphical method (explained in Appendix D), where each step generates an
individual plot designed to answer one specific question regarding a data set. We
employed this ten-step method as a main part of our sensitivity analysis, where we
applied all ten steps to each response. The analysis method is designed to match well with
a two-level OFF experiment design. Clearly, for our application, the main-effects plot
(D.3) proved most insightful – revealing changes in system responses resulting from
changes in input factors. The interaction effects matrix (D.4) also helped to identify that
MesoNet was driven primarily by main effects, rather than by two-factor interactions.
Other plots proved useful for specific, limited purposes. For example, the ordered data
plot (D.1) identified specific combinations of factor settings that produced significant
effects on the responses. The multi-factor scatter plot (D.2) summarized how the
distribution in responses changed with respect to changes in input factors. Several other
plots provided redundant information, which served to confirm related results or to
identify analysis errors. For example, the Youden plot (D.6) identified the most
significant factors driving particular responses, which could also be ascertained from
main effects plots, as well as a number of other plots. The |Effects| plot (D.7) and the
cumulative residual standard deviation plot (D.9) helped to visualize whether a linear
model could approximate a system’s response to input factors. A derived contour plot
(D.10) suggested how specific changes in the two main factors influencing a response
might drive the response in particular directions. For our purposes, the box plot (D.5) did
not provide significant new information. Overall, the ten-step graphical analysis proved
quite useful in analyzing a model’s sensitivity to changes in input parameter settings. We
applied all ten steps to our initial sensitivity analysis. Subsequently, we used only main
effects plots and interaction effects matrices, which provided the most important
information for our supplementary sensitivity analysis. We recommend applying all ten
steps of the graphical analysis during early stages of model development and
investigation. The various plots reveal a range of confirming and complementary
information that could prove quite insightful. In later stages of analysis, we recommend
limiting selected plots to only those necessary to address specific questions of interest.

10.2.4.2 Cluster Analysis. We employed cluster analyses to reveal overall patterns of
similarities and differences in multidimensional responses. We sought patterns in
behavior among selected congestion control algorithms under conditions, composed of
combinations of input parameters. Because parameter combinations varied greatly, we
clustered algorithms only with respect to individual conditions. To identify clustering
patterns, we needed to characterize differences among conditions. Such characterization
required external analyses. Given dendrograms for each condition, along with
characterizations of each condition, we were able to identify patterns where selected
algorithms clustered together. These clustering patterns provided general relationships
among algorithms and congestion. On the other hand, the patterns did not identify

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 446

specific relationships among responses that led to the patterns; for this we required more
detailed analyses (see 10.2.4.3 below). Cluster analysis appears well suited to identify
general patterns where such patterns exist. Further, using cluster analysis, we were able to
identify close correspondence in the behaviors of two congestion control algorithms,
which enabled us to make informed decisions about more detailed analyses. On the
whole, cluster analysis can provide a concise overview of patterns in data sets, but one
should not expect cluster analysis alone to provide complete insight about causality. At
best, we found that cluster analysis could help to identify aspects of the data that should
be given closer scrutiny.

10.2.4.3 Custom Multidimensional Visualizations. Using Dataplot, a statistical scripting
language and supporting run-time environment developed at NIST, we could construct
custom visualizations designed to explore specific relationships among multidimensional
data sets. We developed several custom, multidimensional, visualizations for our study.
The resultant representations provided substantial insight into overall system behavior. In
fact, custom visualizations provided launching points for many causality analyses (see
Sec. 10.2.5). Custom visualization can provide a domain expert with concise and precise
information regarding the questions under study. Further, detailed custom visualizations
can be subjected to custom summarizations that identify key patterns in experiment data.
On the other hand, successful custom visualizations entail collaboration between an
expert in statistical visualization and a domain expert, who must iterate over the design
and construction of each visualization until a useful result emerges. We found, however,
that a few (four or five) well-crafted multidimensional visualizations could be reused to
analyze data from most experiments in our study. We recommend custom
multidimensional visualizations as a key tool for analysis of data sets for complex
systems. Of course, we were fortunate that one study participant was expert in the design
and programming of statistical visualizations. Custom visualizations would be difficult to
create and apply without access to the necessary expertise.

10.2.4.4 Exploratory Multidimensional Interactive Visualization. Early in our study, we
collaborated with visualization experts, who constructed DiVisa, a general purpose
system for interactive exploration of multidimensional data. DiVisa enables an analyst to
view multiple, related, data simultaneously, while assigning custom visual attributes to
represent various dimensions in the data. For example, visual attributes may include
color, size and shape. Altogether, DiVisa allowed an analyst to assign up to eight
different attributes to data. In using DiVisa, an analyst needs to remember how attributes
are assigned. The resulting visualizations proved quite abstract and difficult to interpret.
Late in development, and at the request of a domain expert, DiVisa was extended to
support display of topological information associated with a given simulation. Since a
topology is quite natural for a networking expert, DiVisa acquired increased utility for
our study. In fact, given voluminous spatiotemporal information, such as queue sizes
changing over time in every router in a network topology, DiVisa could replay the
dynamic behavior of a MesoNet simulation, which enabled us to detect unwanted
behaviors in various simulations and to adjust model parameter settings as necessary to
achieve desired effects. Unlike custom multidimensional visualizations, interactive
visualization systems require a domain expert to explore system data and to develop

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 447

revealing representations by assigning attributes to data dimensions. We found this quite
difficult to do. Perhaps our experience would have been different had we collaborated
with an expert in interactive multidimensional visualization. We do not recommend using
abstract interactive systems for visualizing multidimensional data unless the resulting
displays can be readily related to concepts comprehensible to a domain expert.

10.2.5 Causality Analysis Methods
We chose data analysis methods mainly based on an ability to reveal overall patterns in
behavioral data derived from models of large systems. Once significant patterns were
revealed, we typically needed to delve into more depth in order to determine root causes
for the patterns. In this study, we adopted four main techniques

10.2.5.1 Principal Components Analysis (PCA). We were sometimes able to apply PCA
to identify causality underlying variations in response data. For example, when searching
for causes in goodput variation among many flow groups under generally low congestion,
PCA was able to identify the main drivers as network speed, propagation delay and file
size. PCA could also discern cases where congestion control algorithms did contribute to
variation in goodput. In general, after using PCA to find the two main principal
components, an analyst creates a scatter plot of component one vs. component two, where
each point represents a particular parameter combination. Visual inspection may then be
used to discriminate clusters, or groupings, of points. Using supplementary analyses, an
analyst can characterize common factor settings among points in each grouping. Using
this technique, factors underlying variation in the data can become quite explicit. Further,
this level of analysis requires little domain expertise and may be accomplished based
solely on the factors and settings in a two-level OFF experiment design.

10.2.5.2 Detailed Measurements. Causality exploration sometimes requires detailed
spatiotemporal data related to a specific question under investigation (e.g., time series of
changing queue sizes in individual routers in a topology). At other times, an analyst may
need to peruse aggregated spatiotemporal data (e.g., time series of the distribution of flow
states within the network) to determine if a system is behaving as expected. We chose to
collect detailed spatiotemporal data as an integral part of our simulation model, MesoNet.
In fact, for pattern analysis we generated summary data from the detailed measurements.
We found several advantages to this approach. First, we could use the spatiotemporal
behavior of our model to determine what range of data to summarize in order to avoid
transient startup behavior. Second, we could subject our model to exploratory analyses
(see Sec. 10.2.4.4 and Sec. 10.2.5.4). Third, should patterns from data analysis indicate
need to further investigate detailed behavior, the data would already exist.4 Fourth,
should other researchers wish to investigate particular questions not addressed in this
study, the data would be available for later use. Some drawbacks also arise from

4 In practice, we made initial guesses about the detailed data we needed to collect. During our study,
specific issues revealed the need to collect additional details, such as the temporal posture of the network
with respect to the state (e.g., idle, connecting, active) and phase (e.g., initial slow-start, normal congestion
avoidance, alternate congestion avoidance) of all flows. So, while one can arrange to collect substantial
detailed data during model construction, the need might arise to add additional measurement data during a
particular study.

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 448

collecting such detailed data. First, collecting extensive spatiotemporal data can require
substantial memory within a running simulation. We mitigated this by permitting the
simulation to periodically dump the measurement buffer to disk and then reuse the space
for additional measurements. Of course, this increases the failure surface of the
simulation. In practice, we found that making incremental measurements worked
effectively, even when writing results to a file server located on a network.5 Second,
collecting extensive spatiotemporal data requires availability of sufficient disk storage.
The experiments in this study required approximately 250 GBytes of storage, so this was
easily accommodated. For studies investigating behavior in large distributed systems, we
recommend collecting detailed spatiotemporal data regarding every conceivable aspect
that might be of interest. Summary data can be created from the details, as required for
specific analyses.

10.2.5.3 Scientific Method. Given a pattern of interest revealed by data analyses, we used
the scientific method to search for causality. In general, we would posit a hypothesis to
explain an observed pattern. We would then suggest detailed behavioral data that should
exist to confirm our hypothesis. We would investigate the detailed data and either
confirm or refute the hypothesis. If the hypothesis were refuted, then we would develop
an alternate hypothesis and repeat. Eventually, we would construct a confirmed
hypothesis for a given pattern and that would establish a causal link. This approach often
proved time consuming, especially when a domain expert had insufficient insight to
formulate a good, initial hypothesis. On the other hand, the rigorous nature of the entire
modeling and analysis method we used built increasing insight into system behavior as
the study progressed. For this reason, it became easier over time to generate good
hypotheses. We were able to establish causality for every pattern of interest to us. Of
course, our data is available for use by other researchers who might reach different
conclusions than we have about particular causal links. While we would prefer to suggest
a more direct process to establish causality, we had little recourse but to adopt the
scientific method in cases where PCA could not provide sufficient insights.

10.2.5.4 Exploratory Analysis. While the scientific method provides an orderly approach
to establish causality, we also sometimes adopted a more exploratory approach. In
general, we would select some related aspects of system behavior and then analyze or
interact with time varying data to discover trends. We used this technique, for example,
to characterize temporal changes in the distribution of flow states and phases arising from
various levels of congestion. We also sometimes used exploratory analysis to develop
hypotheses about causes underlying patterns arising from analysis of summary data. For
example, we used exploration of temporal variations in congestion window size on
specific flows to create the hypothesis that frequent, high amplitude oscillations in the

5 We did find it necessary to modify the simulation to detect network outages that prevented writing
measurements and then to detect resumption of a network path so that the measurements could be written.
During times of prolonged network outage the simulation halts while waiting to purge the measurement
buffer. In some instances, when the file server crashed, the simulation could not write measurement results
because the file handle was stale. Failure to recover from a stale file handle required a simulation to be
restarted. Such instances were relatively rare. We were unable to use the SLX checkpoint and restart
functions because the SLX product requires that a simulation be reloaded into the same memory addresses.
We could not guarantee that this would be the case.

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 449

congestion window were responsible for increased loss rates exhibited by FAST and
FAST-AT under high spatiotemporal congestion. Of course, to engage in exploratory
analysis, one needs to have sufficient data collected under various well-understood
conditions.

10.2.6 Experiment Selection Methods
Despite the powerful modeling and analysis techniques available to study behavior in
large systems, significant spatiotemporal patterns can be missed completely if the
selected experiments do not create the necessary conditions. We relied on three methods
to help ensure good coverage of key behaviors. Domain expertise played a crucial role.

10.2.6.1 Factor Analysis. We exploited the sensitivity analysis of MesoNet to identify
input factors exerting the largest influence on model response (as described in Sec.
4.6.3.2). This enabled us to concentrate our experiment campaign initially on varying
those factors most likely to drive model behavior. We were able to keep other factors
fixed. This shows how findings from sensitivity analyses can help to craft effective
experiment designs.

10.2.6.2 Domain Expertise. In designing our initial experiment (described in Chapter 6),
we relied mainly on domain expertise. A domain expert conceived a temporal scenario
that started with typical Web browsing traffic, added heavy congestion in a
spatiotemporally localized form and then removed the heavy congestion to allow for
resumption of normal Web browsing. A domain expert also introduced three long-lived
flows that could provide a detailed view of congestion control behavior. This basic
scenario proved well-suited to investigate many operational aspects of congestion control
algorithms. Insufficient domain expertise could create a significant impediment to
designing insightful experiment scenarios.

10.2.6.3 Incremental Design. We used incremental design to help construct effective and
efficient experiment campaigns. In incremental design, results of preceding experiments
are used to select parameters and scenarios for subsequent experiments. For example, our
first experiment showed that using a large initial slow-start threshold reduced differences
among most congestion control algorithms. The initial experiment also identified some
distinctive behaviors arising from FAST. Given these factors, we were able to craft our
second experiment (see Chapter 7) to examine any changes that resulted from using a low
initial slow-start threshold and from including a version of FAST with tuning. At the
same time we were able to determine whether reducing the size and speed of a simulated
network would reveal new information. We made these changes while retaining the
fundamental scenario from the initial experiment. We used the findings from the second
experiment to design a subsequent pair of experiments (discussed in Chapter 8) that
examined the influence of initial slow-start threshold in a network supporting standard
TCP flows mixed together with flows using an alternate congestion control algorithm. At
the same time, domain expertise injected much lower overall congestion and a richer
variety of traffic sources into the experiments. Based on findings from these experiments,
we decided to design an experiment (reported in Chapter 9) that focused on loss/recovery
procedures within the congestion control algorithms, while at the same time increasing

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 450

the size and speed of the simulated network. We recommend interweaving domain
expertise with sensitivity analysis and incremental design to construct the most effective
experiment campaign to fit within the allotted time.

10.2.7 Recommendations
Investigating the behavior of large distributed systems benefits from rigorous application
of a coherent set of experiment design and analysis methods. We recommend that such
investigations adopt two-level OFF experiment designs, which can facilitate a wide range
of compatible analysis methods. Two-level designs allow a system to be investigated
under a diverse set of conditions for a reasonable cost. Once overall behavior of a model
is understood, later experiments can focus on fewer factors with more levels, as needed to
investigate specific aspects of behavior. The quality of these more focused experiments
will be improved when placed within the context of a well-understood model. We also
recommend that system models (whether numerical or simulation) be subjected to
sensitivity analyses in order to understand response to changing input parameters. We
advocate the use of incremental design when constructing an experiment campaign. We
suggest that discrete-event simulations can capture more detailed aspects of system
behavior than would typically be feasible with more abstract models. We found that
various scale-reduction methods can lead to tractable simulations for systems of
significant size, but there appears to be a limit. We recommend validating key model
behaviors against empirical measurements, where feasible. We also identified several
useful data analysis methods that can reveal overall behavior in large systems. Some
methods, such as cluster analysis, reveal the presence of behavioral patterns without
providing much insight into underlying causes. Other methods, such as the NIST-
developed ten-step graphical analysis, give better insights. We found that custom
multidimensional visualizations can be quite informative, but creating such visualizations
requires significant iteration between a domain expert and an expert in statistical
visualization. Causality analysis remains largely beyond the grasp of automated analysis
methods. Investigating causality required iterative application of the scientific method: a
domain expert developed a hypothesis regarding a macroscopic pattern of behavior and
then used evidence from detailed spatiotemporal data to confirm or refute the hypothesis.
For this reason, we recommend capturing data in as much spatiotemporal detail as a
model will permit. Finally, we found that effective use of software for interactively
exploring multidimensional data requires visualizations that relate to concrete concepts
within the domain under investigation.

10.2.8 Future Work
We suggest three areas for future work on modeling and analysis methods for large
distributed systems. First, we recommend investigating methods that enable abstract
models to yield improved accuracy. For example, some researchers have developed a
hybrid model combining continuous-time logic with discrete events to achieve efficient
simulation of system behaviors (see Appendix B). Similarly, we are working to improve
the accuracy of fluid-flow models of congestion control algorithms (see Appendix A).
Such hybrid or fluid-flow models could be augmented with features necessary to support
the experiments adopted in the current study and then the experiments could be repeated.
Perhaps one of these abstract models could reveal the same findings at reduced cost.

Study of Proposed Internet Congestion Control Mechanisms NIST

Mills, et al. Special Publication 500-282 451

Second, we suggest investigating approaches to automate design of custom visualizations
for multidimensional data. Currently, successful application of custom visualization (such
as the detailed response analyses used throughout Chapters 6 through 9) requires
substantial collaboration between a domain expert and an expert in statistical
visualization. Perhaps the knowledge of a statistical visualization expert can be packaged
in an automated form that enables a domain expert to create effective visualizations?
Third, we encourage research into automated support for causality analysis. In this study,
establishing causality required iteration of the scientific method by a domain expert. This
approach was error prone, time consuming and difficult.

