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Outline
• Series Resistance Challenges
• SiGe Source/Drain Technology
• Local Strain for Enhanced Mobility
• Ultra-thin SOI & FINFET
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Extension Structure

Junction &

Silicide Scaling

Silicide scaling cannot 
continue forever:

1) Leaky Junctions

2) Agglomeration
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Elevated Contact Structure
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Silicide is formed after selective deposition 
of a sacrificial Si layer (Si or SiGe)
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Parasitic Source/Drain Resistance
The Primary Source/Drain Challenge
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• Channel Resistance
– Ron = VDD/IDSAT

• Series Resistance
– 26% of the channel resistance 

at 45 nm
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Series Resistance Components
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• Overlap Resistance:
– Abrupt Junctions

• Extension Resistance
– Ultra-Shallow Junctions
– High Dopant activation

• Contact Resistance
– Small Barrier Height
– High Dopant Activation
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Maximum Allowable
Contact Resistivity

1E-09

1E-08

1E-07

1E-06

0 50 100

DRAM 1/2 Pitch (nm)

M
ax

. C
on

ta
ct

 R
es

is
tiv

ity
 ( Ω

-c
m

2 ) ITRS 2003

Single
Gate

Dual
Gate

Silicon 
Limit

PMOS

NMOS

• Calculated assuming
– series resistance is entirely 

due to contact resistance

• For dual gate devices
– Wc = W/2
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Contact Resistivity
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• Exponential Function of
– Doping Density, ND
– Barrier Height, φB

• Fermi level pinning
– Barrier Height ~ Independent of Metal Work Function
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Contact Resistivity
• Barrier Height on Si

– φB ~ ½ Eg ~ 0.6 eV

• Maximum Doping
– Boron ~ 2 x 1020 cm-3

Best Contact Resistivity ~ 10-7 Ω-cm2

We need 10-8 or better!



2005 International Conference on Characterization and Metrology for ULSI Technology

Solutions to Contact Resistance Challenge

• Dual Metal Contacts
– Two self-aligned metal contacts with Fermi levels near 

conduction and valence bands
– Requires passivation of metal induced surface states to suppress

Fermi level pinning

• Single Metal - Different Semiconductor
– Smaller Bandgap – Smaller Barrier Height
– Enhanced dopant activation 

Silicon-Germanium Alloys
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SiGe Source/Drain Technology 

• Form extension junction
• Form sidewall spacer
• Recess Source/Drain by RIE
• Deposit In-Situ doped SiGe

NCSU-Motorola, 2002NCSU - IEDM 2000
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In-Situ Doped SiGe
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• T = 500oC Process
– Dopant activation during growth
– No activation anneal

• No diffusion
• Abrupt Junctions

• Very High Boron Activation
– SiGeB alloy!
– Small boron atoms play a similar role  

to carbon in SiGeC
– Strain Compensation

• Higher dopant activation
• Larger bandgap
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Boron Activation in SiGe
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Nickel Germanosilicide Contacts to SiGe
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• Above 400oC, Ge atoms
– Leave the germanosilicide grains and segregate at the grain boundaries

• Reason:
– A large difference in the silicide and germanosilicide heat of formation
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NiSiGe/SiGe Interface Roughness
(Atomic Force Microscopy)

AFM surface scans obtained after selective etching of NiSiGe in HF
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Junction Leakage
(Same Active – Different Contact Area)
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• Junction leakage is 
independent of contact 
area at 375 and 400oC

– No Silicide induced 
leakage!

• Junction leakage 
increases with contact 
area at 500 & 600oC
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Si-SiGe Interface After Selective Etching of 
Germanosilicide and SiGe

With the loss of Ge from the germanosilicide grains, Ni diffusion into the 
underlying SiGe results in NiSi spikes that extend deep into the substrate
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Ni/Pt Germanosilicide
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Sheet resistance thermal stability greatly improved
On p+ SiGe - sheet resistance of Ni(7.5nm)/Pt(2.5nm) is stable up to 700ºC
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Ni/Pt Germanosilicide Interface
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Contact Resistivity – NiSiGe
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• Contact Resistivity 
decreases with

– Doping Density
– Ge concentration

• An order of magnitude 
improvement is possible 
by using SiGe
� ρc = 10-8 ohm-cm2 is possible
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Barrier Height
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• Fabrication:
– Self aligned NiSiGe Contacts 

formed on Lightly doped SiGe

• Measurements:
– Ge content by XRD
– Barrier height from reverse bias 

I-V measurements

• Barrier Height (~ 0.5 eV)
– Fermi level fixed relative to Ec?
� φB ~ ½ Eg ?

• Bandgap
– No bandgap narrowing
– No boron strain compensation
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Si – SiGe Valence Band Offset
SiGe Bandgap = Si Bandgap - ∆Ev

• Heavy boron doping has a 
significant impact on SiGe 
bandgap

• Bandgaps equivalent to that of 
undoped strained SiGe can be 
obtained in thicker, p+ SiGe 
layers

• Both barrier height and high 
boron activation contribute to 
low contact resistivity
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Enhanced PMOS Mobility by
Local Strain - Source/Drain Engineering
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Local Strain – Enhanced Mobility
INTEL’s 90 nm CMOS

T. Ghani et al., IEDM 2003
S. Thompson, EDL 2004
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Desired Types of Uniaxial Stress
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Desired Stress:

T: Tensile stress
C: Compressive stress
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PMOS Mobility

INTEL - August 2004

65 nm transistors exhibit 10-15% increase 
in drive current with enhanced strain
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Fully-Depleted MOSFET Structures
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Ultra-thin SOI MOSFET
• Advantages

– Extension of existing architecture
– Si thickness can be used to control 

the short-channel effects
– Low Junction Capacitance
– Steeper subthreshold slope

• New Source/Drain Challenges:
– Silicide fully consumes the ultra-thin 

Si layer
– Large contact resistance
– High leakage

• Elavated source/drain is required
– Epitaxy on ultra-thin silicon
– Thermal Instability is a concern
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Strained Silicon Directly on Insulator
• Similar to Ultra-thin SOI
• Enhanced Mobility
• Strained Silicon w/o SiGe

– Ge diffusion into Si is not an issue
– Integration is simpler
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SSDOI Mobility– IBM

(a)(a) (b)(b) (c)(c)(a)(a) (b)(b) (c)(c)

2003
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FINFET

• Promising future!
• 3-D Silicon on Insulator Technology
• Fully-Depleted, Double Gate MOSFET
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FINFET Source/Drain Engineering

• Extension Resistance:
– Narrow fin - large resistance under 

the spacer
– Similar to ultra-thin SOI

• Contact Resistance
– Silicide should not be allowed to 

consume the fin
– The fin should be expanded in all 

three directions
– Novel contacting solutions will still 

be necessary for low contact 
resistance

• SiGe epi instead of Si
• Dual metal contacts
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FINFETs with Raised Source/Drain
Leff = 30 nm  TSi = 20 nm

Without Raised Source/Drain the series resistance is too large!

Kedzierski et al., IBM, IEEE-TED, 2003
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Summary

• Parasitic series resistance is a grand challenge for 
future CMOS generations
– Contact and Overlap Resistances are the key contributors

• Silicon-Germanium Source/Drain Technology can 
provide:
– Local Strain for Enhanced Mobility
– High boron activation and small barrier height for low-contact 

resistivity
– Low-temperature processing for compatibility with high-k 

dielectrics and metal gate electrodes
– Abrupt Junctions for small overlap resistance
– Elevated source/drain for fully depleted MOSFETs with ultra-thin 

Si channels
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