Measuring the Quality of Passport Photos

Fraunhofer

Institut Graphische Datenverarbeitung

Measuring the Quality of Passport Photos

Research and Development

NIST Biometric Quality Workshop

8 - 9 March 2006 Gaithersburg, Maryland

Autor

yuridia.gonzalez@igd.fraunhofer.de

www.igd.fraunhofer.de/igd-a8/

Content

- Introduction
 - Current Problematic
 - Our Solution Objective
 - Conceptual Model
- Measuring the Quality following the Achto Cualli Model
 - Identifying conformance requirements
 - Identifying constraints of requirements
 - Scoring requirements
 - Integrating and validating conformance requirements
- Using Achto Pohua Methodology to obtain the Passport Photos Quality metrics
 - Actual results
 - Future work
- Summary
- Recommendations

Current Problematic

- There is no method to calculate automatically the
 Quality of digital passport photos
- There is no defined a Quality metric to measure the Quality of passport photos
- There are subjective qualifications to specify if a passport photo is acceptable or not

Our Solution Objective

To evaluate a digital passport
 photograph and to obtain its
 quality metric according to the
 international standards related

Conceptual Model

Measuring Quality using the "Achto Cualli Model" *

- Identifying conformance requirements
- Identifying constraints of requirements
- Scoring requirements
- Integrating and validating conformance requirements

* © Fraunhofer IGD

Measuring Quality using the "Achto Cualli Model" *

Identifying conformance requirements

Notation	Grouping Char-	Attributes Description	
	acteristic		
A1. Antiquity	Photograph	must be no more than 6 months old	
A2. Size	Photograph	must be 35-40mm in width	
A3. Focus	Photograph	must be in sharp focus and clear	
A4. Dermis	Photograph	must show the natural individual's skin tone	
A12. Mouth	Individual's face	must show individual's face with mouth closed	
A13. Procentage	Individual's face	the face must takes up to 70 - 80 $\%$	
A14. Looking	Individual's face	the individual's looking must look directly at	
1000		the camera	
A15. Eyes	Individual's face	the individual's eyes must be open and clearly	
		visible -no hair across the eyes	
B1. Format	File format	the JPEG sequential baseline mode of opera-	
		tion and encoded in the JFIF file format, the	
		JPEG-2000 Part-1 Code Stream Format and	
		encoded in the JP2 file format	
B2. Compression	File Compression	the maximum allowed amounts of compression	
		for full images to be such that 1mm x 1mm	
v:		features can be discerned	

* © Fraunhofer IGD

Measuring Quality using the "Achto Cualli Model"*

Identifying constraints of requirements

Notation	Requirement type	Constraints related
G1	Photograph	ISO 10526:1999/CIE S005/E-1998, CIE Standard Iluminants for Colorimetry, PIMA 7667:2001, Photography - electronic Still Picture Imaging - Extended sRGB Color Encoding - e - sRGB, ICC 1:2001-12, File Format for Color Profiles
G2.	Individual's face	New Orleans Resolution March 2003
G3.	Data file format	ISO/IEC 19785 Biometric data interchange formats, ISO/IEC 19794-1 Biometric data in- terchange, ISO/IEC 10918, Digital Compres- sion and Coding of Continuos-tone Still Im- ages, ISO/IEC15444 JPEG2000 Image Cod- ing System

* © Fraunhofer IGD

Seite 9

Measuring Quality using the "Achto Cualli Model" *

$$O = \frac{\frac{f}{\pi}}{r}$$

Scoring requirements

ID	Subtype	Constraint	Relevance	Objective Qualifica- tion
Ι	Brightness	must have the appropriate brightness	2,high	0.03233
Ι	Contrast	must have the appropriate contrast	1,high	0.064661
Ι	Color	must be color neutral	5,low	0.012932
I	Red eye	must not show red eye	4,medium	0.16165
Ι	File	the file type should be in a compressed format such as JPEG2000	3,high	0.021554
В	Looking	the individual's looking must look directly at the camera	3,low	0.035368

where

O is the Objective score of the attribute

f is a fractional value for each relevance type according to the number of elements of each set

r is the relevance precedence number for the attribute to qualify.

* © Fraunhofer IGD

Measuring Quality using the "Achto Cualli Model" *

- Integrating and validating conformance requirements
- ICAO "Biometrics Deployment of Machine Readable Travel Documents"
 - Annex A. Photograph Guidelines
 - Annex B. Facial Image Size Study #1
 - Annex C. Facial Image Size Study #2
 - Annex D. Face Image Data
 Interchange (ISO/IEC CD 19794-5)

* © Fraunhofer IGD

Seite 11

Using "Achto Pohua Methodology" * to obtain the passport **Photos Quality Metrics**

- 1. Samples enrollment according to conformance requirements
- 2. Sample database collecting
- 3. Sample database analysis as image
- 4. Image Attributes Quality Index specification
- 5. Image Attributes Quality Index testing
- 6. Sample database analysis for biometric content
- 7. Biometric Content Quality Index specification
- 8. Biometric Content Quality Index testing
- 9. Two Dimensions Facial Image Quality Index specification and testing
- 10. Final Results description and conclusions

Sample Database Analysis as Image

Sample Database Analysis as Image

Sample Database Analysis as Image

Colorspace Normalized RGB

Actual Results

Image Attribute Quality Index *

$$IAQI = Q_CO_C + Q_BO_B + N - S$$

where

 $\mathbf{Q}_{\mathbf{C}}$ is the optimal calculated contrast value

O_C is the objective score for contrast value

 $\mathbf{Q}_{\mathbf{B}}$ is the optimal calculated brightness value

 $\mathbf{O}_{\mathbf{B}}$ is the objective score for brightness value

N is the noise value (blur and impulsive)

S is the default compression factor (which value is 0.020)

 $N = w_1 N_b + w_2 N_i$

Sample Database Analysis for Biometric Content

Sample Database Analysis for Biometric Content

normalized RGB

Weber Contrast

Stat 1. Ord. Brightness

Weber Contrast

Stat 1. Ord. Brightness

Actual Results

Biometric Attribute Quality Index *

$$BAQI = Q_{le}W_1 + Q_{re}W_2 + Q_{no}W_3 + \ldots + Q_nW_n$$

where

Q_{le} is the optimal calculated value for left eye

 $\mathbf{W_1}$ is the objective score for left eye

Q_{re} is the optimal calculated value for right eye

 $\mathbf{W_2}$ is the objective score for right eye

 Q_{no} is the optimal calculated value for nose

W₃ is the objective score for nose

 $\mathbf{Q_n}$ is the optimal calculated value for feature n

W_n is the objective score for feature n

* © Fraunhofer IGD

A8

Seite 19

Actual Results 2DFIQ Two Dimensional Facial Image Quality *

$$2DFIQ = (\overline{IAQI}, \overline{BAQI})$$

* © Fraunhofer IGD

Future Work

- To test the BAQI index with more features
- To validate what conformance requirements are measured with BAQI index
- To normalize the 2DFIQ

Summary

- Through the Achto Cualli model any kind of Quality can be analyzed
- A new methodology called Achto Pohua was designed to obtain the quality metric for the quality of passport photos
- In the analysis of conformance requirements was discovered that some requirements cannot be calculated automatically
- The color space and skin color are determinant attributes to calculate the quality of a passport photo
- The Quality metric for a passport photo is obtained through 2DFIQ which is defined for two linear indexes (IAQI and BAQI) with different dimensions obtained from two types of attributes and biometric content; 2DFIQ can be considered as a multidimensional matrix.

Recommendations

- Invest in formal research
 - Skin color
 - Anthropometry
 - Performance
- A re-evaluation and may be a re-design of the face record format and requirements specified in ISO/IEC CD 19794-5 should be take into consideration

Fraunhofer

Institut Graphische Datenverarbeitung

Oriana Yuridia González Castillo

MCE

Researcher Security Technology Fraunhoferstraße 5 64283 Darmstadt

Phone +49 (0) 6151/155-521

Fax +49 (0) 6151/155-499

yuridia.gonzalez@igd.fraunhofer.de

www.igd.fraunhofer.de/igd-a8

