

Forensic Topography at NIST: Ballistics and Associated Toolmarks

Richard Silver

John Song¹, Johannes Soons¹, Alan Zheng¹ Daniel Ott¹, Thomas Renegar¹, Michael Stocker¹, Ted Vorburger¹, Zheng Chen¹, Wei Chu¹, James Yen², Nien-Fan Zhang², Robert Thompson³

> National Institute of Standards and Technology ¹Engineering Physics Division ²Statistical Engineering Division ³Special Programs Office

NIST Focus Area: Ballistics and Associated Tool Marks

Goals:

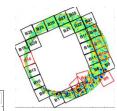
- Metrology infrastructure for objective forensic firearm and tool mark identification.
- Scientifically justified protocols that yield objective determinations of identification with well-characterized error rates.

Objectives:

- Metrics, procedures, quantitative error rates and uncertainties.
- Metrology, quality assurance, and standards.
- Scientific knowledge base for similarity of marks and tool mark variability.

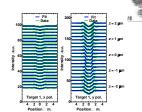
Motivation: 2009 NRC Report¹

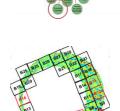
• *"..the decision of the tool mark examiner remains a subjective decision based on unarticulated standards and no statistical foundation for estimation of error rates."*¹

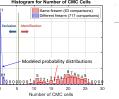

Major Collaborators:

- U.S. Law Enforcement: DoJ/NIJ, ATF, FBI, State and local crime labs
- Universities and forensic institutes: John Jay College, University of Central Oklahoma, Iowa State University, UC Davis, RTI International, Netherlands Forensics Institute, National Institute for Criminalistics and Criminology (BE), California Criminalistics Institute.
- Industry: Cadre Research (Gelsight), Alicona, X-wave Innovations, Leeds Forensic Systems, Leica, Intelligent Automation Inc., Sensofar.
- Forensic Organizations: AFTE, IAI, AAFS, CAC, ENFSI, OSAC

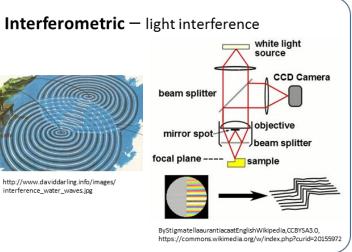
Ballistics and Toolmarks: Major Efforts

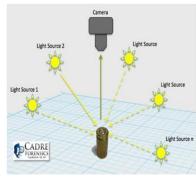

- **1.** Quality assurance, reference artifacts, documentary standards
- 2. Metrics and algorithms for objective identification
- 3. Quantitative uncertainty evaluation
- 4. Ballistics tool mark database for research and validation
- Tool mark identification for non-firearm tools 5.
- 6. Applications to forensic pattern matching
- 7. Optics research, Fourier methods, E&M modeling





SRM 2460 Serial #024




Hardware Platforms: 3-D Topography

3-D optical measurements: Repeatable, more information, variety of techniques.

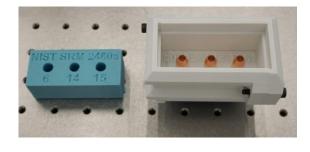
Photometric Stereo - illumination or viewing angles

FORENSIC SCIENCES

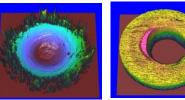
NIST

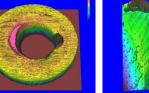
Standards for Quality Control

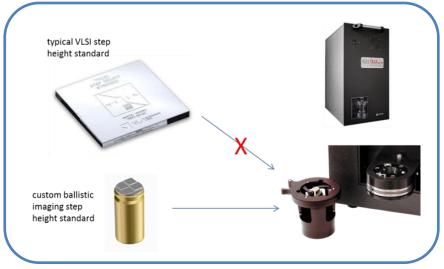
Physical standards for ballistic measurement traceability and quality control.

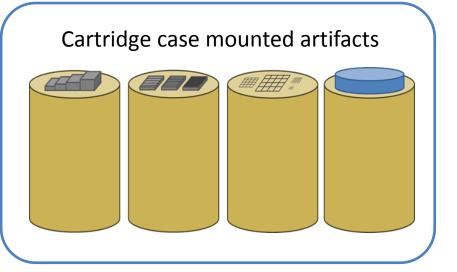

- SRM 2460 Standard Bullet
 - Machined from pure copper
 - 9 mm diameter
 - 6 land impressions

SRM 2460 Serial #024




- SRM 2461 Standard Casing
 - 9 mm cartridge case
 - 3 measurement regions
 - $\circ \ \ \text{firing pin}$
 - \circ breech face
 - \circ ejector mark
- SRM 2460a (in development)
 - Uses polymer replication process
 - Gold coated for durability
 - High quality, but economical

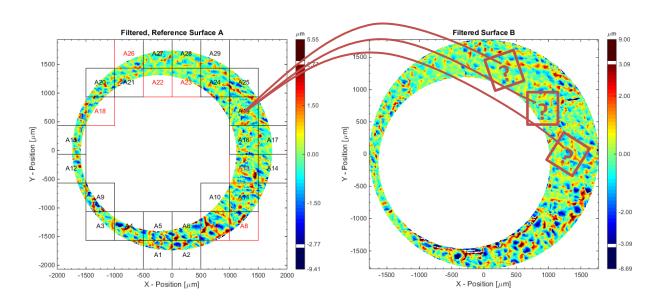


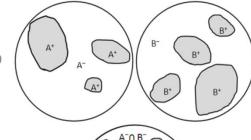

NIST

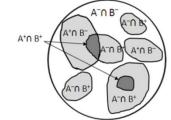
A Metrology Foundation for 3D Ballistic Imaging

(Recent NIJ funded project.)

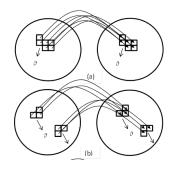
- 1. Performance Evaluation Standards
 - Specifications for instrument-to-instrument comparisons
- 2. Ballistics-oriented Reference Standards
 - Standards in cartridge case format (step height, resolution targets, etc.) with dimensions suitable for calibrating 3D instruments
- 3. Standardized quality assurance methods
 - Provide necessary detail for implementing 3D ballistic imaging measurement assurance system





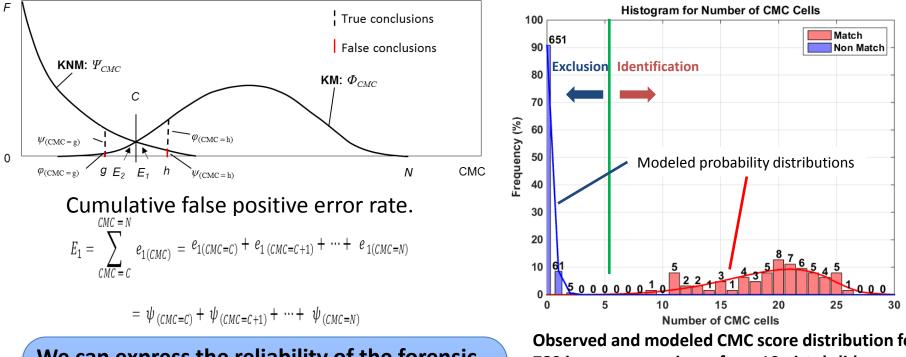

NIST

New Algorithms: Congruent Matching Cells (CMC) Method


- Congruent Matching Cross-sections (CMX) for firing pins
- Congruent Matching Profile Segments (CMPS) for Bullets
- Congruent Matching Features (CMF) for complex features

Less bias from areas of poor impression

If $CMC \ge 6 \rightarrow$ Match, If $CMC < 6 \rightarrow$ Non-match.


J. Song, "Proposed NIST Ballistics Identification System (NBIS) using 3D Topography Measurements on Correlation Cells", AFTE Journal, 45 (2), 184-194, 2013.

- Registration position x, y, threshold $T_{x'}$, T_{y}
- Registration angle θ , threshold T_{θ}
- Correlation value CCF_{max}, threshold T_{CCF}

Error rates, uncertainty procedures, and likelihood ratios **Key challenges:**

Reliable uncertainties require accurate models for tails of the probability distributions with limited data and an understanding of dependencies. We are now developing new test data sets and population models.

We can express the reliability of the forensic test using a likelihood ratio. True positive rate Likelihood Ratio = False positive rate

Observed and modeled CMC score distribution for 780 image comparisons from 10 pistol slides.