

An overview of some industrial use cases for technical language processing (TLP)

Sarah Lukens, Ph.D. GE Digital

12 April 2021

Use case #1: Enables consistent reliability metrics

Before: Inability to calculate Mean Time Between Failure (MTBF)

Description	Before: Breakdown Indicator	After: Is a Failure event?
Seal is leaking badly	FALSE	True
Block valve is broken open and inoperable	FALSE	True
00120-Pump 1 work request	FALSE	False
Check impeller size	FALSE	False

After: Benchmarking comparison of MTBF is possible

(ge)

Lukens, S., Markham, M., Naik, M., & Laplante, M. (2019). Data-driven approach to estimate maintenance life cycle cost of assets. *Model-Based Enterprise Summit (MBE 2019)*

Accurate reliability metrics enables identifying opportunities

Example: Chemical company is missing \$1.5 million annual savings and does even not know it

- If performed as well as peers, would save \$850/pump for ~1800 pumps
- Avoiding about 600 failures
- Resulting in \$1.5 million annual opportunity

Comparison of MTBF of pumps before and after TLP utilized on data

Use case #2: Finding hidden bad actors

Root cause analysis revealed no proper procedures in place for motor maintenance. Once remedied, failures ceased with estimating annual savings of \$54,000 for the one pump alone

Bad Actors List – by total maintenance cost over 2 years

https://www.ge.com/digital/blog/technical-language-processing-how-put-industrial-data-work

Use case #3: Enables reliability distribution fitting

Failure mode characterization can be used for reliability-data based survival models such as Weibull analysis

Reliability distribution fitting can be used for decision making

Repair or replace? Simulation model:

Cumulative annual maintenance costs during product lifecycle with purchase price

Model 1 is more reliability but costs more than Model 2

https://www.ge.com/digital/blog/digital-twin-approach-designing-cost-effective-maintenance-strategies

Use case #4: Framework for prescriptive maintenance

Event Short Description	Work done
UV 6818 fuel gas vent valve stuck	valve overhauled
Worn pump bearings	Performed vibration analysis
WORN OUT TIE ROD PIN AND BEARING	Replaced bearing
WORN OUT TIE ROD PIN AND BEARING	bearing lubricated
Wet oil tank pump suction valve	Replaced filter

Objective: Identify recommended fix

Value: Reduce repeat maintenance trips, reduce downtime, and reduce maintenance costs

Interface: Tool usable by the **maintenance technician** or **engineer** in the field

Data: any historical data which captures asset failure, maintenance events, and repair actions

Enables APM workflow which can recommend fix based on historical data

Use case #4: Inspection analytics

Observed Failure Mode	Inspection Summary	
Fouling- Tray, Physical Damage- Cover	As found inspection, Manhole opened and trays 49 to 52 removed. M/hole 1– Trays and wall found with collected thick adherent greenish yellow deposit. M/hole 2 - with heavy collected rust scales. M/hole 7 – with black adherent deposit. M/hole 8 – generally manhole cover roughened	
Fouling- Unknown	During the T&I Column was opened and cleaned for inspection. The top section had heavy scale present on all surfaces.	
Corrosion- Piping, Fouling- Tray, Corrosion- Tray	During T&I crude column was opened and sectional cleaned for visual inspection. Existing top distributor pipe found severe corrosion. The distributor pipe was replaced by carbon steel pipe. Trays #45 to #48 were found to have moderate corrosion and sticky product like salt deposit.	
Localized corrosion- Nozzle	zed sion- e Buring the T&I eq105 was cleaned and inspected. The inspection was limited due the size of the internal manways. The inspection found light general pitting on the bottom head and on the bottom manway nozzle and cover.	
	No significant corrosion was found on vessel. All internal were found to be in serviceable corrosion and no issues noted. Available UT data was reviewed and all readings were found to be close to nominal thickness.	

TLP

Assets with localized corrosion and UT programs with corrosion rate lower than 5 mL/yr are candidates for RBI analysis

Nair, V. & Lukens, S. (March/April 2018), Inspectioneering Journal

Inspection analytics enables making intelligent decisions during a turnaround

Nair, V. & Lukens, S. (March/April 2018), Inspectioneering Journal

Putting industrial data to work with TLP

TLP enables industrial companies to make decisions using their historical data.

The value of TLP comes with integrating the data into business processes in ways that create value.

Thank you!

Contact me: sarah.lukens@ge.com

