Measurement Challenges and Metrology for Monitoring CO₂ Emissions from Smokestacks

April 20 -21, 2015 Gaithersburg, Maryland

James R. Whetstone

Special Assistant to the Director for Greenhouse Gas Measurements National Institute of Standards and Technology Gaithersburg, Maryland

NIST

The National Metrology Institute of the U.S.

Greenhouse Gas and Climate Science Measurements

NIST

- Is a non-regulatory agency of the U.S. Department of Commerce
- Is the U.S. National Metrology (measurement) Institute, and
- Develops unbiased, state-of-the-art measurement science that advances the nation's technology infrastructure

Mission:

To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

NIST and Greenhouse Gas Measurements and Standards

- Recent focus established by the NIST Director 2009
- Mid-Term Objective:
 - Improve performance capabilities of measurements and standards needed to enhance the accuracy of Greenhouse Gas Measurements in the U.S.
 - Promote recognition of these internationally
- Long-Term Objective:
 - Transfer measurement technologies developed to other government agencies and the private sector
 - Support standards responsibilities as needed

NIST's Greenhouse Gas and Climate Science Measurements Program Objectives:

- Develop advanced measurement tools and standards to improve accuracy capabilities for:
 - Greenhouse gas emissions inventory data
 - Improving emissions measurement data & thereby reporting accuracy

National Institute of Standards and Technology U.S. Department of Commerce

- Independent methodologies to diagnose and verify emissions data with internationally-recognized methodologies
- Applications focused on cities and metropolitan areas
- Remote observing capabilities satellite and surface-based
 - Extend measurement science and tools underpinning advances in understanding and description of Earth's climate and its change drivers

NIST Greenhouse Gas and Climate Science Measurements Program Components

Stationary/Point Source Metrology

- Increase accuracy of Continuous Emission Monitoring technology
 - Flow Test Beds smoke stack simulators
- Geospatially Distributed GHG Source Metrology
 - Measurement Tools and Test Beds
 Characterizing Emission in Urban GHG
 Concentration Domes
 - Compare methods to determine GHG Emission Inventory Accuracy – Bottom-up vs. Top-Down
 - Urban GHG dome test beds
 - Indianapolis Flux Experiment (INFLUX)
 - Los Angeles Megacity Carbon Project
 - Northwest Corridor Project
 - Propose an International GHG Metrology Framework Supporting Inventory Diagnosis and MRV Based on Megacities

- Measurement Tools, Standards, and Ref. Data
 - GHG Concentration Standards
 - Spectroscopic Reference Data
 - Surface Air Temperature Assessment
 - Atmospheric Flux Measurement Tools
- Climate Science Measurements -Advanced Satellite Calibration Standards
 - Microwave Observations
 - Advanced Optical Radiometric Methods
 - TOA and Surface Solar Irradiance
 - Surface Albedo Standards
- Measurement Science of
 - **Carbonaceous** Aerosols
 - Advanced Optical Property Measurements
 - Development of Reference Materials

STATIONARY EMISSION SOURCE METROLOGY

- Motivation and Rationale
- What NIST is Doing

Axial Stack Flow Velocities Fields

Early CFD Modeling Results in a Stack

Swirl Fields

Plume Behavior Appears not to be Laminar

- Flow exiting a stack on a clear, low-wind condition day
- Local Power plant with relatively new stack
- Two vortices appear to be exiting nonpartitioned stack

Point Source Metrology: Comparing Fuel Calculation and Direct CO2 Measurements Using Reported Emission Data

Electricity Generation ~40% of U.S. CO₂ Emissions Inventory

Question:

What is the Agreement Between the 2 Mainly-Used Methods of CO₂ Emissions Reporting Information?

- Fuel Calculation vs. Continuous Emissions Monitoring (CEMs) Methods
- Fuel Consumption and Measured CO₂ Emissions Data 2005 & 2009 U.S. Reporting
 - Pre-Combustion Fuel Calculation Method
 - Amount of carbon burned and converted to CO₂
 - Dept. of Energy Energy Information Administration
 - Annual Steam-Electric Power Plant Design Data Fuel Type & Quantity
 - Carbon factor or Fuel Carbon Content (kg CO₂/mmBTU)
 - Post-Combustion CO₂ Direct Measurement via CEMs Technology
 - Direct Measurement (CEMs Data) and Reporting of CO₂, SO₂, NO_x Required by U.S. EPA
- eGRID and EIA 767 databases contain >4800 entries
 - 1664 with primary fuel and annual CO₂ (CEMs) reported values
 - 1066 (2005) and 944 (2009) boilers have complete data for fuel type, mass, energy content, and CEMS CO₂ data

Comparative Analysis:

Fuel Calculated vs Measured CO₂

Accuracy Improvement Potential

CEM Measurements

- Improve stack gas mass flow measurement
- Reduce gas concentration uncertainty

Fuel Based Calculations

- Increase fuel carbon (energy content) accuracy
 - Calorimetry and sampling issues
- Improved mass determination
 - Where to make the measurement

• NIST's Investment in Pt. Source Metrology

- Smoke stack simulator improved flow measurements
- Large Fire Facility large
 CO₂ emission source & test bed

Smoke Stack Simulator - Cold Flow Simulator NFRL - Well Characterized CO₂ Emission Source

Address flow calibration issues in known, turbulent, swirling flows similar to those in stacks

- Horizontal orientation for cost and safety
- Smokestack Simulator is 1/10th the diameter of typical stack
- At the same velocity range 5 to 25 m/sec
- Flow traceable to NIST flow standards

Large Emission Source with Accurately Known CO_2 Flux

- Characterize exhaust duct flows (flow RATAs*)
- Establish a mass balance for CO₂ emissions for the facility O₂ depression calorimetry method
- Apply research results from the NIST Smokestack Simulator
- Provide test bed for new and existing stack mounted flow measurement technologies

* Relative Accuracy & Test Audit

National Fire Research Laboratory (NFRL)

Thanks for your Attention

Best Wishes for Successful Discussions

