

Simulations of Scatterometry down to 22 nm Structure Sizes and beyond

W. Osten, V. Ferreras Paz, K. Frenner, T. Schuster, H. Bloess*

- Introduction: NE Research at ITO
- Motivation & Scatterometry SM
- Influence of LER on SM
- Parameter Sensitivity of SM

NE Research at ITO at Stuttgart University

∠itì_

ICFCNM 2009 University Suttgart

3D-Surface Metrology

Active Optical Systems & Computational Imaging

High Resolution Metrology & Simulation

Interferometry & Diffractive Optics

Coherent Metrology

3D-Surface Metrology

Active Optical Systems & Computational Imaging

High Resolution Metrology & Simulation

Interferometry & Diffractive Optics

Coherent Metrology

CD-Metrology: Evaluation of the Structure Quality

Typical Tasks:

- Dimensional Quantities: Depth, Width, ...
- Structure Shape: Profiles, Curvature, Angle, Roughness,...
- Defects
- Phase

Ernst Abbe (1840-1905): Theory of Image Formation (1873)

Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung.

I. Die Construction von Mikroskopen auf Grund der Theorie. II. Die dioptrischen Bedingungen der Leistung des Mikroskops. III. Die physikalischen Bedingungen für die Abbildung feiner Structuren. IV. Das optische Vermögen des Mikroskops.

Von

Dr. E. Abbe, ao. Professor in Jena.

1. Die Construction von Mikroskopen auf Grund der Theorie.

1. In den Handbüchern der Mikrographie findet man gelegentlich die Thatsache berührt, dass die Construction der Miksroskope und ihre fortschreitende Verbesserung bisher fast ausschliesslich Sache der Empirie, geschickten und ausdauernden Probirens von

Resolution Limt

$$\Delta x = 0,61 \cdot \frac{\lambda}{n \cdot \sin \alpha}$$

Point Image (Airy Spot)

2 Adjacent Point Images

Albany-09:9

Unresolved Structures: Measurement ର୍ଦ୍ଧ Reconstruction

Measurement Strategy

Simulation: Mueller Matrix of Si-Structures

Albany-09:13

ICFCNM 2009

Rigorous Computing of the Light-Object-Interaction

- RCWA, VKA, FDTD, FEM
- Rigorous Scattering Theory
- Diffractometry, Scatterometry, Digital Holography

 $\underline{\text{Visualization}}$ of Near- and Farfield in 2D and 3D

- Amplitude, Phase
- Vector Components
- Energy Dissipation, Pointing-Vectors
- Simulation of Microscopic Imaging Process
- Brightfield-Microscopy, Darkfield-Microscopy
- Interference Microscopy, Polarization Microscopy
- Quantitative Phase Contrast, DIC

ICFCNM 2009 How does MicroSim work?

ICFCNM 2009 Microscopy: Simulation and Inspection

Setup for PSPI for Microstructure Inspection

ICFCNM 2009

PSPI for sub- λ microstructure inspection

ICFCNM 2009 Defectoscopy: SEM Images

Cavity

Etching under Top Layer

Imaging with Microscope

Imperfect Etching

Simul. with MicroSim

J McS: showdfr	
Structure dista:	System data:
Graftype: Cawly Period n cover: 10+000 n substr: # films: 1 subperiods: 13	Field: Far # modes: computation: Rig Pupil occ.: explicit (ExEt): (1,0) wavelength:
Refractive index distribution	Layer#1
Image: Show Sites n = 1 00-0.00	
op: grattype: 'Cavity' gratsymmetrs: 'wo'	Piot
periode: [] d:	Edit Ofn
n2: n1: 1 n: [1]	Help
bfn_func: 'bfn_para:	Close
File: E:	•

11909:18

SEM-Image of Defect

Simulation Result

Interesting Points:

- Influence of Mode Number
- Pupil Discretization

Bringing Microscopy back: Superresolution??

Meta-Material + Special Superlattice

Negative Index (Meta-)Materials

Albany-09: 20

Motivation

Motivations:

- Scatterometry: powerful tool for CD metrology
- structure sizes: V
- CD fluctuations & LER: (\clubsuit)
- realistc modeling/consideration of LER for reconstr.

colored or white noise

LER

superlattices

Albany-09: 22

Example: Investigation of Fluctuations

Is it possible to ...

- measure mean values despite the presence of fluctuations?
- measure mean values and fluctuations independently of each other?

Albany-09: 23

Scatterometry

Scatterometry: Principle

1976	Kasdan und George	Masks, Fourier-Optics, Fraunhofer Theory
1978 / 80	Kleinknecht und Meier	Etched Structures& Masks, 1 DiffOrder, 1 Angle, Fraunhofer Theory
1984	Moharam et al.	Resist, different Diffractiion Orders, angle & wavelength dependent, RCWA,
1992	McNeil et al.	"Scatterometry", orthog. incidence & Goniometer, 2θ-Scatterometer
1995	Bischoff et al.	3D Structures, resist, 20-Scatterometer
1997	Ziger et al.	Normal-Incidence-Reflektometry
1997	Takeuchi et al.	Ellipsometry
1999	Niu et al.	Spectral-Ellipsometry
2002	Hettwer et al.	Phi-Scatterometry
2004	Boher et al. / Silver et al.	Fourier-Scatterometry / Scatterfield Albany-09: 26

ICFCNM 2009

Mikroskop-Bild x pol, 10000 nm

Mikroskop-Bild y pol, 10000 nm

ICFCNM 2009 Scatterometry Configurations

ICFCNM 2009

Instrumentation at ITO

diffraction orders of a 2 μ m line grating, measured with the spectroscopic ellipsometer

ψ

polarization resolved diffractometry at line gratings for structure reconstruction

Approach in CD-Metrology:

- Measurement of Spectra
- Simulation of Spectra with Maxwell-Solver (e.g. MicroSim)
- Comparison of measured and simulated data
- **Reconstruction** of structure data (CD, SWA, ...)

Question: - Influence of LER/LWR? - Influence of System Parameters?

1. Influence of LER on Scatterometry

Simulation Parameters

Fourier Scatterometry

- λ fix, vary angles
- RCWA
- NA=0.95
- Pupil sampling 37*37
- λ=400 nm (default)
 other λ's investigated
- reconstruction with realtime computation and iterative Gauss-Newton optimization available

Spectroscopic Ellipsometry

- angle fix, vary λ
- RCWA
- θ =71,6° (BA of Silicon)
- α=25° (analyzer angle)
- λ= 350..750 nm (increment 5nm)
- reconstruction using library search and parabolic subpixel interpolation

ICFCNM 2009 Simulated Structure and Approach

- Resist lines: dense: 50/100 nm iso: 50/350 nm
- height: 100nm
- BARC layer
- SWA 87° dense 84° iso
- 4 layers and ± 5 Fourier modes in x and y direction each yield deviations < 1%

Approach:

considering LER as a small perturbation of a perfect periodic structure

Restrictions:

- computing time!
- periodic modeling of the LER instead of a truly random model

∠itì∖

"EMA": Effective Medium Approximation (layer with averaged refractive index)

"braid": sinusoidal linewidth variation

"wave": sinusoidal line position variation

The periodic modeling keeps the computation time strongly tolerable!

Default value: $a_{LER} = 3nm$

 $\widehat{=}1.06nm$ rms

More realistic LER models cannot be computed with a few Fourier modes only. More advanced simulation techniques have to be applied for such studies.

Procedure:

- **Simulation** of Spectra with various LER- parameters & considering them as pseudo measured data
- **Simulation** of Spectra without and with presence of LER (latter with EMA-approximation)
- Reconstruction of different parameters: CD & SWA
- **Reconstruction** with floating thickness of a_{EMA} (3nm)
- **Reconstruction errors** of the parameters as measures for the influence of LER

ICFCNM 2009 Exa

Examplary Scatterograms

Reconstr. with & without floating EMA layer

ICFCNM 2009

Conclusion 1

- The influence of LER decreases with increasing Λ_{LER}
- Reconstruction errors can be considerably reduced introducing a floating EMA layer, even in the regime $\Lambda_{\text{LER}} > \lambda$, where the EMA is known to be invalid.
- The reconstructed EMA layer thickness is similar to the rms value 1.06 for $\Lambda_{LER} \rightarrow 0$ and is getting small for large Λ_{LER} .
- The curves are "disturbed" when "roughness diffraction" sets in.
- The quasi-monochromatic noise with and without superlattice yields similar results as the purely sinusoidal model.
- More advanced models such as colored and white noise will be investigated with this approach.

2.

Parameter Sensitivity of Scatterometry

Motivation:

 Applicability of scatterometry towards smaller technology nodes

Questions/Directions:

- How does Scatterometry perform for future (smaller) nodes?
- Possibilities of predicting parameter sensitivity (simulation based!)
- Investigate available degrees of freedom to optimize sensitivity
- Optimization of measurement configurations

Structures and Measurements

Dense Lines, 3 Types:

ICFCNM 2009

• E-beam written resist structures Nodes: CD 75 nm to 22 nm

Analyzed Structures

- Etched silicon structures Nodes: CD 75 nm to 22 nm
- STI structures

SWA

SWA

Height

Heiał

Silicon

Measured Scatterometry Spectra

- Measured at Qimonda (industrial Scatterometry Tool)
- This means: fixed incident angle (near Brewster angle of Si)
- Spectrum 200 nm to 900 nm

Example: Alpha and Beta for dense resist lines (CD 48nm, Pitch 96 nm)

Simulations

Simulations with Microsim

Albany-09:45

• **Resist Structure - Parameters**: CD, pitch, height, SWA, top- & bottom-rounding, SiO2-layer

• Etched Structure - Parameters: CD, pitch, height, SWA, top- & bottom-rounding, bow, SiO₂

• **STI Structure - Parameters**: CD, pitch, height (Si₃N₄, SiO₂, Si), SWA, top & bottom-rounding

SEM (top-down)

SEM (cross)

Albany-09:46

Verification of simulations / Comparison to measurements

- Creation of pre-computed libraries for each structure
- Best match search (Measurement vs. Library)

Example: Resist structures CD 48nm, Pitch 96 nm

Sensitivity of Scatterometry

Sensitivity Definition

Albany-09:49

Performed Sensitivity Analysis

- wavelength: 190 nm 840 nm in 1 nm steps
- incident-angle: 0° 90° in 0.5° steps
- for all 3 structure types (dense lines: resist, etched, STI)
- parameters (CD, pitch, height, SWA,...)
- nodes: CD 75 nm ... CD 18 nm, in max. 6 nm steps

ICFCNM 2009 Sensitivity Analysis: Results

Albany-09: 52

ICFCNM 2009 Comparison of different structures (i.e. 48 nm node)

Albany-09: 53

Sensitivity Trend Analysis

Sensitivity-Trends vs. Node (STI structures)

ICFCNM 2009

Conclusion 2

- Optimising the incident-angle can improve sensitivity compared to fixed incident angle configurations
- Optimal incident angle depends on parameter of interest and structure size
- Simulation based Sensitivity analysis can help to find optimized measurement configurations for future technology nodes and help to setup measurement recipes
- Sensitivity towards most parameters decreases as expected with smaller nodes

the staff

Albany-09: 57

6. International Workshop on Advanced Optical Metrology

Stuttgart, September 14. - 16., 2009

tsFringerine organized by ITO Institute of Applied Optics

www.fringe09.de

Thanks!

When What?

Strukturen >> Wellenlänge ① reine Diffraktometrie mit Intensitätsmessung

Strukturen T Wellenlänge 1 polarisationsaufgelöste Diffraktometrie

Strukturen << Wellenlänge ① Scatterometrie