

OSAC 2023-N-0003 Standard for Diagramming Scenes

Crime Scene Investigation and Reconstruction Subcommittee Scene Examination Scientific Area Committee Organization of Scientific Area Committees (OSAC) for Forensic Science

Draft OSAC Proposed Standard

OSAC 2023-N-0003 Standard for Diagramming Scenes

Prepared by Crime Scene Investigation and Reconstruction Subcommittee Version: 1.0 January 2023

Disclaimer:

This OSAC Proposed Standard was written by the Organization of Scientific Area Committees (OSAC) for Forensic Science following a process that includes an <u>open comment period</u>. This Proposed Standard will be submitted to the standards developing organization and is subject to change.

There may be references in an OSAC Proposed Standard to other publications under development by OSAC. The information in the Proposed Standard, and underlying concepts and methodologies, may be used by the forensic-science community before the completion of such companion publications.

Any identification of commercial equipment, instruments, or materials in the Proposed Standard is not a recommendation or endorsement by the U.S. Government and does not imply that the equipment, instruments, or materials are necessarily the best available for the purpose.

1 Foreword

2 This document delineates standards and recommendations for the diagramming of a scene and 3 physical evidence during scene investigations. The approach outlined is recommended as good 4 professional practice even though the facts and issues of each situation require specific 5 considerations and may involve matters not expressly dealt with herein. Not every portion of this document may apply to every incident or investigation. It is up to the individual capturing the data 6 7 to apply the appropriate recommended procedures in this guide to a particular incident or 8 investigation. In addition, it is recognized that time, and resource limitations or existing policies 9 may limit the degree to which the recommendations in this document will be applied in a given 10 investigation. The responsibility of the individual preparing the diagram for evidence preservation and the scope of that responsibility varies based on such factors as the jurisdiction, the status of 11 12 the individual as a public official and private sector investigator, indication of criminal conduct, 13 and applicable laws and regulations. This document should be utilized in conjunction with local regulations and any requirements set forth by entities examining document evidence to inform or 14 15 augment policies relating to collecting and preserving physical evidence.

16 This document has been drafted by the Crime Scene Investigation and Reconstruction

Subcommittee of the Organization of Scientific Area Committees (OSAC) for Forensic Sciencethrough a consensus process.

19 This standard provides guidance on some safety issues but is not exhaustive. It is the responsibility 20 of the appropriate agency to develop a full health and safety plan.

All hyperlinks and web addresses shown in this document are current as of the publication date ofthis standard.

23	
24	
25	
26	
27	
28	
29	
30	
31	
32	Keywords: diagram; sketch; map; measurement; baseline; triangulation

Table of Contents

34	1.	Scope	5
35	2.	Referenced Documents	3
36	3.	Normative References	5
37	4.	Terms and Definitions	
38	5.	Significance and Use	6
39	6.	Quality Assurance	7
40	7.	Considerations	7
41	8.	Documentation and Custody	8
42	9.	Measurement Methods	8
43	10.	Output/Deliverables	3
44	Anr	nex A (Informative) References	5
45			

46 **1. Scope**

47		1.1 The scope of this document includes guidelines for the diagramming of a scene and
48		physical evidence.
49 50		1.2 This document covers scene measurement and diagramming methods, as well as the
50		translation of scene work to output.
51		1.3 If compliance with this standard is claimed, justification for any deviation from this
52		standard must be documented.
53	2.	Normative References
54		Standard for Scene Documentation Procedures (DRAFT)
55	3.	Terms and Definitions
56		
57		3.1
58		Azimuth
59		a reference direction is measured as a clockwise angle from the north. (Boots, 2010)
60		
61		3.2
62		baseline
63		the method used to measure items of evidence when there are numerous objects in the scene.
64		This is accomplished by laying a tape measure down so that it crosses the entire room or area
65		to be measured. This first tape measure becomes the baseline for all other measurements in
66		the scene. Measurements are then made perpendicular from this tape by laying another tape
67		measure at a 90-degree angle to the first tape and measuring out to the evidence. (NFSTC,
68		2013)
69 70		
70		3.3
71		polar coordinate
72		method appropriate for an outdoor scene in which only a single fixed or reference point is
73		present. This method measures the distance and direction (angle) of an object from a known
74 75		reference point. The angle can be measured with either a large protractor or an optical device
75 76		such as a transit or a compass. The protractor technique with a 360-degree protractor is useful for up degree protractor (NESTC, 2012)
76		for underwater scenes. (NFSTC, 2013)

- 77
- 78 **3.4**

79 triangulation

- 80 a measurement method that utilizes two fixed permanent objects within the scene.
- 81 Measurements are taken from each fixed point to each piece of evidence. (NFSTC, 2013)

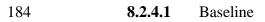
82		3.5			
83		photogrammetry			
84		the art, science, and technology of obtaining reliable information about physical objects and			
85		the environment through recording, measuring, and interpreting images and patterns of			
86		electromagnetic radiant energy and other phenomena. (ASPRS, 2014, 597)			
87					
88		3.6			
89		terrestrial LiDAR scanning			
90		a method for surveying tasks that acquires complex geometric data where each point is			
91		determined by the position (X, Y, Z) and the intensity (i) of the returning signal, also known			
92		as terrestrial laser scanning (RTI International, 2016). This method differs from a total station			
93		in its ability to automatically capture a large number of points in a predefined window.			
94		(FTCoE, 2022)			
95					
96		3.7			
97		total station			
98		a surveying instrument that uses a theodolite with an electronic distance meter to read slope			
99		distances from the instrument to a particular point. (RTI International, 2016)			
100					
101		Alternate Def: An electronic instrument that combines a theodolite and EDMI to collect			
102		angles and distances from the instrument to various points. (Boots, 2010)			
103					
104		3.8			
105		mobile mapping			
106		the collection of highly precise point cloud data provided by laser scanning systems on			
107		moving platforms with an integrated navigation solution (Puente et al., 2013)			
108					
109		3.9			
110		global navigation satellite system (GNSS)/global positioning system (GPS)			
111		a general term describing any satellite constellation that provides positioning, navigation, and			
112		timing services on a global or regional basis. (GPS.GOV)			
113	4.	Significance and Use			
114		4.1 This practice is intended to provide a graphic representation of the scene and evidence at			
115		hand and in such a fashion as to allow another individual to interpret the particulars of the			
116		incident.			
117		4.2 This practice is suggested for documenting conditions and data of a scene and evidence			
117		that may change or be lost with further scene investigation.			
118		4.3 The primary use of this practice is to preserve pertinent information for use by technical			
119		experts and other technical personnel who may be called upon to reconstruct the events			
140		experts and other technical personner who may be cance upon to reconstruct the events			

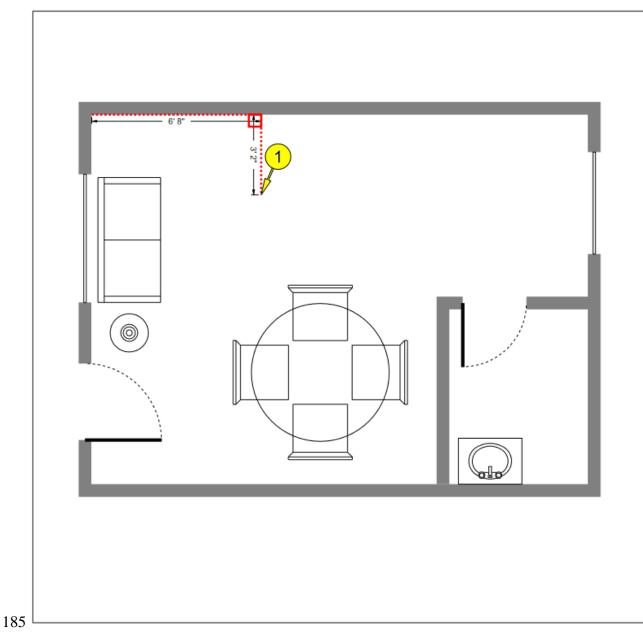
- 121 surrounding the incident.
- 122

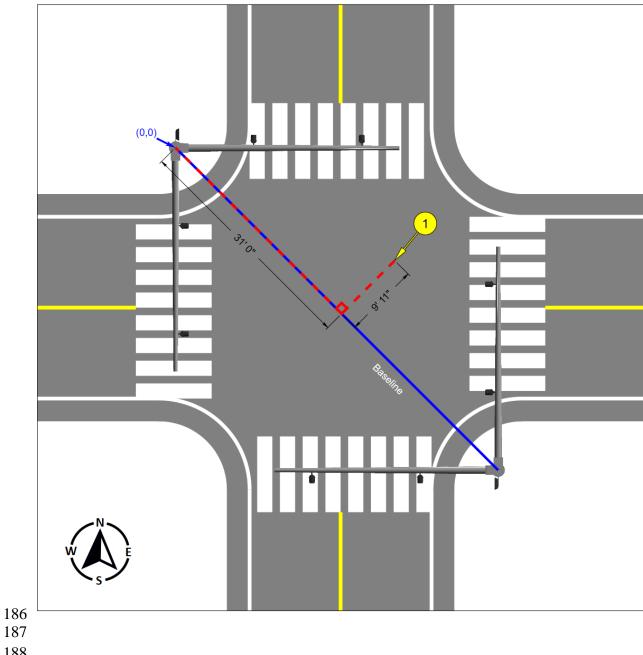
138

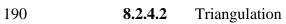
144

146

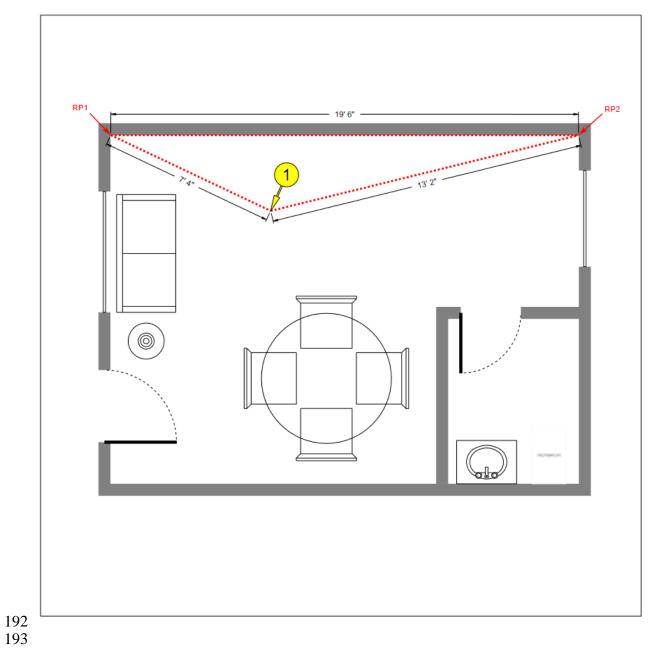

123 **5. Quality Assurance**

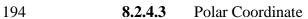

- 5.1 Verification of Measuring Equipment
 5.1.1 Prior to being put into service, new measuring equipment shall be verified against
 a traceable standard to requirements defined by the agency according to the purpose of
 the measurement. For example, newly purchased measuring devices can be compared
 directly (either in their entirety or in representative sections) against a known calibrated
 measurement standard (e.g., a traceable ruler or tape).
- 131 **5.2** Calibration of Measurement Tools
- 5.2.1 Whenever measurements are reported or directly impact reported results, the
 associated measuring device(s) shall be calibrated. A vendor accredited to ISO/IEC
 134 17025 shall be used when available.
- 5.2.2 The agency will specify calibration specifications according to the purpose of the
 measurement. Sources for calibration specifications may come from standards or
 equipment manufacturer recommendations.
- 139 **5.3** Q.C. Checks of Measuring Equipment
- 140 5.3.1 All equipment that collects measurements should be verified on a defined
 141 schedule against a traceable standard and meet acceptability requirements. The agency
 142 defines the verification schedule and requirements according to the purpose of the
 143 measurement.
- 145 **5.4** Uncertainty of Measurement
- 147
 5.4.1 Uncertainty of measurement considerations may vary depending on the agency's needs and should be considered and estimated when appropriate. Methods of estimating uncertainty are outside the scope of this standard.
- 150 **6.** Considerations
- 6.1 The diagramming and mapping described in this practice may be prepared by any
 person(s) in a formal capacity. Persons investigating in a formal capacity include but may
 not be limited to international, federal, state, and local officials, employers, owners,
 insurance personnel, and other technical experts.
 6.2 When multiple methods are available, the method that maximizes the accuracy and
- 156 reduces error should be chosen. Considerations for method selection should be

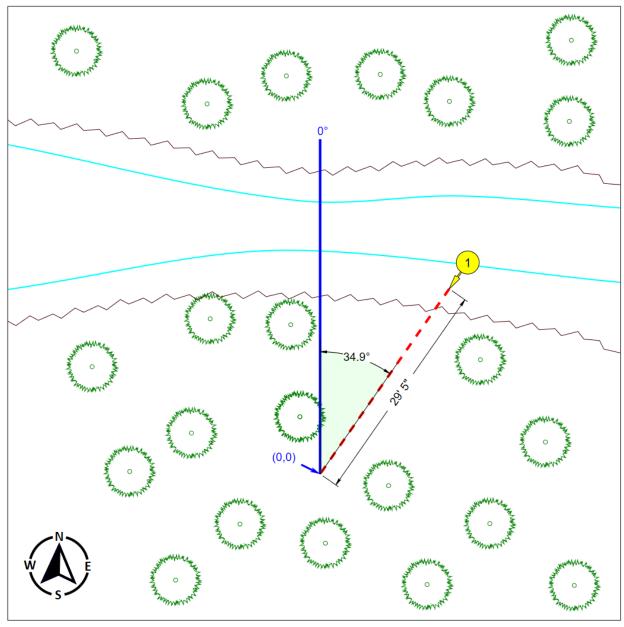

157		documented (i.e., Environmental factors, equipment availability, personnel availability,
158		investigative circumstances).
150	_	
159	7.	Documentation and Custody
160		7.1 The minimum requirements for documentation can be found in Standard for Scene
161		Documentation Procedures.
162		7.2 All output/deliverables and supporting data shall be preserved according to agency
163		evidence handling requirements.
164		
165	8.	Measurement Methods
166		8.1 General Considerations
167		8.1.1 Agency policy shall define the level to which measurements must be recorded
168		(e.g., to the nearest $\frac{1}{4}$ ") to include the process of rounding.
169		8.1.2 The handling procedures for measuring devices can significantly affect the
170		resulting value (e.g., sag in measuring tape, not perpendicular, etc.). Measurement
171		methods shall specify the manner in which measuring devices are used to ensure
172		measurements meet agency requirements.
173		
174		8.2 Manual Methods
175		
176		8.2.1 Manual distance measurements are measurements recorded by hand using tape
177		measures, roll-a-wheels, laser handheld distance measuring devices, etc.
178		8.2.2 Manual angle measurements indicate the degree of angles and can be recorded
179		using transit, compass, azimuth wheel, clinometer, etc.
180		8.2.3 Measurement units can consist of metric or imperial units, but only one should be
181		used for any single diagram.
182		8.2.4 Manual measurements can be recorded using any number of available
183		measurement methods, including, but not limited to:











- **8.3** Electronic Methods The following list includes but is not limited to available electronic diagramming methods. Specific information and requirements on the use of these methods are outside the scope of this document.
- **8.3.1** Terrestrial LiDAR Scanning
- **8.3.2** Mobile Mapping
- **8.3.3** Photogrammetry
- 204205 8.3.3.1 Aerial

206	8.3.3.2 Terrestrial			
207	8.3.3.3 Close-Range			
208				
209		8.3.4	Global Navigation Satellite System (GNSS)/Global Positioning System (GPS)	
210				
211		8.3.5	Total Station	
212				
213		8.3.6	Blended Methods	
214				
215	9	Output/D	eliverables	
216				
217	9.1	Typically	any of the above methods can be converted into any of these below types of	
218		• • •	es. What output is created is likely to be driven by local protocols or policy.	
219				
220	9.2	Data may	be processed through intermediate or proprietary software to reach the below output	
221		•	data handling should adhere to local protocols for evidence handling and protection	
222		• 1	loss. The integrity of data procedures should be established.	
223				
224	9.3	For any o	output, it is the responsibility of the investigator to convey the following, at a	
225		minimum:		
226				
227		9.3.1	Measurement type (Metric or standard)	
228		9.3.2	Legend	
229		9.3.3	Key	
230		9.3.4	Orientation of the scene to compass directions (ex. include a direction arrow,	
231			ss rose, or written description of direction)	
232		· · ·	r i i i i i i i i i i i i i i i i i i i	
233	9.4	Diagrams	can be presented in various perspective formats based on the investigator's needs.	
234		-	e diagram options include bird eye/floor plan, elevated, exploded, and 3-D.	
235				
236	9.5	Scale 2-D	Diagrams	
237		9.5.1	Computer Generated	
238		9.5.2	Hand-Drawn	
239				
240	9.6	Computer	-based output	
241		9.6.1	2-D imagery or depictions of scenes	
242		9.6.2	3-D imagery or depictions of scenes	
243		9.6.3	Software-specific renderings of 2-D and 3-D environments	
244				

- **9.7** 3-D Printed Materials
- **9.7.1** Physical printed items from 3-D printers

Annex A (Informative) References

- ASTM E1020-13 Standard Practice for Reporting Incidents that May Involve Criminal or CivilLitigation
- 251 Boots, Kent E., and Joel Salinas. *Fundamentals of forensic mapping*. Kinetic Energy Press, 2010.
- 252 "Guidelines for use of terrestrial LiDAR scanners in criminal justice applications." *Forensic*
- 253 Technology Center of Excellence (FTCoE). Accessed October 4, 2022.
- 254 <u>https://forensiccoe.org/guidelines_terrestrial_lidar_scanner/</u>
- Puente, I., H. González-Jorge, J. Martínez-Sánchez, and P. Arias. "Review of mobile mapping and surveying technologies." *Measurement* 46, 7, 2013, 2127-2145.
- 257
- 258 National Forensic Science Technology Center (U.S.). "Crime Scene Investigation." Bureau of
- 259 Justice Assistance, U.S. Department of Justice, National Institute of Justice, NIST, NFSTC,
- 260 2013.
- 261
- 262 American Society for Photogrammetry and Remote Sensing. "ASPRS Guidelines for
- 263 Procurement of Geospatial Mapping Products and Services." *Photogrammetric Engineering* &
- 264 *Remote Sensing*, July, 2014, 597.

²⁴⁸