# Standard for Feature Selection in Friction Ridge Examination 

Friction Ridge Subcommittee
Physics/Pattern Interpretation Scientific Area Committee
Organization of Scientific Area Committees (OSAC) for Forensic Science

## Draft OSAC Proposed Standard

# Standard for Feature Selection in Friction Ridge Examination 

Prepared by<br>Friction Ridge Subcommittee Organization for Scientific Area Committees (OSAC) for Forensic Science

Version: 1.0
September 2022

## Disclaimer:

This OSAC Proposed Standard was written by the Organization of Scientific Area Committees (OSAC) for Forensic Science following a process that includes an open comment period. This Proposed Standard will be submitted to a standards developing organization and is subject to change.
There may be references in an OSAC Proposed Standard to other publications under development by OSAC. The information in the Proposed Standard, and underlying concepts and methodologies, may be used by the forensic-science community before the completion of such companion publications.

Any identification of commercial equipment, instruments, or materials in the Proposed Standard is not a recommendation or endorsement by the U.S. Government and does not imply that the equipment, instruments, or materials are necessarily the best available for the purpose.

To be placed on the OSAC Registry, certain types of standards first must be reviewed by a Scientific and Technical Review Panel (STRP). The STRP process is vital to OSAC's mission of generating and recognizing scientifically sound standards for producing and interpreting forensic science results. The STRP shall provide critical and knowledgeable reviews of draft standards or of proposed revisions of standards previously published by standards developing organizations (SDOs) to ensure that the published methods that practitioners employ are scientifically valid, and the resulting claims are trustworthy.

The STRP panel will consist of an independent and diverse panel, including subject matter experts, human factors scientists, quality assurance personnel, and legal experts, which will be tasked with evaluating the proposed standard based on a comprehensive list of science-based criteria.

For more information about this important process, please visit our website
at: https://www.nist.gov/topics/organization-scientific-area-committees-forensic-science/scientific-technical-review-panels.

OSAC 2022-S-0038 Standard for Feature Selection
in Friction Ridge Examination

## 1 Table of Contents

2 1. Introduction ..... 2
3 2. Scope ..... 2
4 3. Terms and Definitions ..... 2
5 4. General Requirements ..... 3
6
5. General Recommendations ..... 13
7 6. Appendix A: Edge Shapes. ..... 21
8
7. Appendix B: Minutiae ..... 22
9
8. Appendix C: Incipient Ridges and Dissociated Ridges ..... 25
9. Appendix D: Pattern Elements ..... 27
10. Appendix E: Ridge Flows ..... 32
11. Appendix F: Regular and Irregular Creases of the Hands and Feet ..... 34
13 12. Appendix G: Wrinkles ..... 37
14 13. Appendix H: Scars ..... 38
15 14. Appendix I: Unstable Features ..... 39
16 15. Appendix J: Relationship of Features ..... 41
17 16. Appendix K: Quick Reference Summary Table ..... 44
18 17. Appendix L: References ..... 48
18. Appendix M: Change Log ..... 49

## 1. Introduction

1.1. This standard has been developed with the objective of improving the quality and consistency of friction ridge examination practices.
1.2. This standard provides a comprehensive list of features and their definitions which can be used during the friction ridge examination process.
1.3. In addition to the standardized list of features and their definitions, this standard also includes information about the diagnosticity of those features. The diagnostic value of each feature is expanded upon where applicable, by recognizing shared features within a population and rarity features in the population. This information is based on the consensus opinion of the OSAC Friction Ridge Subcommittee where supporting evidence in the scientific literature is limited.
1.4. In addition to the significance of each feature, this standard provides an awareness of the relationship between features that can be used during examination.
1.5. In this standard, the following verbal forms are used: "shall" indicates a requirement, "should" indicates a recommendation; "may" indicates permission; and "can" indicates a possibility or capability.

## 2. Scope

2.1. This standard specifies the features that can be utilized during friction ridge examinations.
2.2. This standard does not address the examination methodology or documentation.

## 3. Terms and Definitions

For the purposes of this document, the following terms and definitions apply.
3.1. Examination: The act or process of observing, searching, detecting, recording, prioritizing, collecting, analyzing, measuring, comparing, and/or interpreting.
3.2. Examiner (Friction Ridge)/Competent Friction Ridge Examiner: An individual who has successfully completed their FSP's training program and has demonstrated to the FSP that they possess the knowledge, skills and abilities to perform the tasks required of their current position. An individual authorized to conduct friction ridge examinations for the FSP by observing and interpreting data, making decisions, forming conclusions and opinions, issuing reports and/or providing testimony.
3.3. Pattern force area: A region of friction ridge skin in which minutiae of a particular type are forced to form due to the flow of the ridges.
3.4. Rarity (of a feature type): The frequency of which a type of feature is encountered in a group of people (its prevalence), either in isolation or in conjunction with other information about its local context.
3.5. Source: an individual from which an item (e.g., crime scene impression) originates.

## 4. General Requirements

4.1. The following feature list contains friction ridge features and their associated attributes that examiners may use during examination of friction ridge impressions.
4.2. Only those features included on this list shall be considered during friction ridge examinations to support suitability determinations and source conclusions.
4.3. The features that can be used during friction ridge examinations include the following:

### 4.3.1. Ridges:

The ridges are the core feature type in the friction ridge skin. The ridges are the fully formed papillary lines on the volar surfaces of normal human hands and feet. On the skin, fully formed ridges can be distinguished from incipient ridges by the existence of sweat pores spaced somewhat evenly along the path of the ridge. If the friction ridge skin is considered a topographical map, the ridges are typically the feature at the highest elevation and are the main contact regions when the friction ridge skin touches a surface. The combination of ridge morphology and pores often impart a distinctive texture within a region of skin or within an impression. See Appendix A for definitions and examples of morphology edge shapes.
4.3.1.1. Attributes:
4.3.1.1.1. Number - count of ridges.
4.3.1.1.2. Ridge Width - distance between the sides of a ridge at a given
location on the ridge.
4.3.1.1.3. Furrow Width - distance between the sides of adjacent ridges at a given location on the ridges.
4.3.1.1.4. Length - distance between two locations along the path of a ridge.
4.3.1.1.5. $\quad$ Spacing - distance between the midpoints of two adjacent ridges.

106
107
108
109
4.3.1.1.6. Direction - direction of the path of a ridge in relation to a fixed point in the skin or impression (e.g., a ridge that is perpendicular to an irregular crease).
4.3.1.1.7. Curvature - change in angles along the path of a ridge for a given segment of the ridge.
4.3.1.1.8. Edge Shape - contour of the edge of a ridge (straight, protrusion, and intrusion).
4.3.1.1.9. Pore Position - location of a pore with respect to the edge of the ridge or another pore.
4.3.1.1.10. Open Field - minimum of four ridges in sequence with a visible length of at least 3 mm each where no minutiae are present.

### 4.3.2. Minutiae:



A minutia defines the end of a ridge. A ridge can end in three different manners: 1) no connection to the adjacent ridge above the level of the furrow (i.e., ending ridge), 2) completely connected to the adjacent ridge from the bottom of the furrow to the top of the ridge (i.e., bifurcation) or 3) partially connected to the adjacent ridge (i.e., ambiguous minutiae).

### 4.3.2.1. Attributes:

4.3.2.1.1. Number - count of minutiae within a region of skin or within an impression of the skin.
4.3.2.1.2. $\quad \begin{aligned} & \text { Density - number of minutiae within a specified surface area (e.g., } \\ & \text { high or low or per } \mathrm{mm} 2 \text { ). }\end{aligned}$
4.3.2.1.3. Direction - angle of the path of the ridge emanating from the minutia in relation to a fixed point in the skin or impression.
4.3.2.1.4. Connectedness - extent to which the end point of one ridge is connected to a neighboring ridge.
4.3.2.1.5. Compound Minutiae - the atypical combination of multiple minutiae within a close proximity or that manifest as a single structure. Compound minutiae may include the following: short ridge, dot, break, enclosure, overlap, crossbar, bridge, spur, ending ridge and bifurcation combination, opposing bifurcations, dock, trifurcation, return, and merge point. See Appendix B for definitions and examples of simple and compound minutiae.

### 4.3.3. Incipient Ridges:

Incipient ridges are raised papillary ridges that are typically lower in elevation than the mature ridges (Section 4.3.1). Incipient ridges occupy space in the furrows, between the main ridges. Unlike the main ridges, incipient ridges do not have sweat pores. Incipient ridges are typically less than one half the average width of the surrounding ridges and often display numerous breaks. See Appendix C for examples of incipient ridges.

### 4.3.3.1. Attributes:

4.3.3.1.1. $\quad$ Number - count of incipient ridges within a region of skin or within an impression of the skin.
4.3.3.1.2. Density - number of incipient ridges within a specified surface area (e.g., high or low or per mm2).
4.3.3.1.3. Length - distance between two locations along the path of an incipient ridge.
4.3.3.1.4. Direction - direction of the path of an incipient ridge in relation to a fixed point in the skin or impression (e.g., an incipient ridge that is perpendicular to an irregular crease).
4.3.3.1.5. Inter-Incipient Break - distance between the ends of two incipient ridges (i.e., the gap between incipient ridges within a row of incipient ridges).
4.3.3.1.6. Edge Shapes - contours along the edges of an incipient ridge (straight, protrusion, and intrusion).
4.3.4. Dissociated Ridges:

Dissociated ridges are raised portions of the friction ridge skin that are broken into short, wavy or dotlike segments that may be completely disorganized or somewhat follow the ridge flow in a given region of skin. Dissociated ridges are typically at the same elevation as any surrounding normal ridges and may or may not contain sweat pores. Dissociated ridges are also known as dysplasia. See Appendix C for examples of dissociated ridges.

### 4.3.4.1. Attributes:

4.3.4.1.1. $\quad$ Number - count of ridge segments within a region of skin or within an impression of the skin.
4.3.4.1.2. Density - number of ridge segments within a specified surface area (e.g., high or low or per mm2).
4.3.4.1.3. $\quad$ Ridge Width - distance between the sides of a ridge segment at a given location on the segment.
4.3.4.1.4. Furrow Width - distance between the sides of adjacent ridges at a given location on the ridges.
4.3.4.1.5. Length - distance between two locations along the path of a ridge segment.
4.3.4.1.6. $\quad$ Spacing - distance between the midpoints of two adjacent ridges.
4.3.4.1.7. Direction - direction of the segment of a ridge in relation to a fixed point in the skin or impression (e.g., a segment that is perpendicular to the core of a loop).
4.3.4.1.8. Curvature - change in angles along the path of a ridge segment.
4.3.4.1.9. Edge Shape - contour of the edge of a ridge segment (straight, protrusion, indentation, and discontinuity).
4.3.4.1.10. Pore Position - location of a pore with respect to the edge of the ridge segment or another pore.
4.3.4.1.11. Connectedness - extent to which the end point of one ridge segment is joined or linked to a neighboring ridge (ridge ending, bifurcation, ambiguous).
4.3.5. Ridge flow:

Ridge flows are uninterrupted courses of ridges commonly found in specific regions of the hands and feet that reflect the stresses on the surface of the skin caused by the growth of the hands and feet and the presence of the regular flexion creases at the time the ridges are forming. These ridge flows are not defined "pattern elements," but useful during the examination process because they are predictive for each region of the hand and foot. See Appendix E for examples of ridge flows and attributes.

In this standard, ridge flows include the fingerprint pattern traditionally classified as a plain arch. The inclusion of the plain arch as a ridge flow rather than a pattern is because the plain arch is the result of the complete or near-complete regression of the volar pad during embryological development of the skin. The lack of a volar pad permits the general growth stresses to be the primary influence on the ridge flow, causing the ridges to simply flow from one side of the finger to the
other, similar to the lower portions of the fingers and other regions of the palms and soles. The distinction between "pattern elements" and "ridge flow" in this standard is not intended to preclude the use of the plain arch to describe the ridge flow in the fingers or toes.

### 4.3.5.1. Attributes:

4.3.5.1.1. $\quad$ Curvature - change in angle along a series of parallel ridges at a given location along a ridge flow.
4.3.5.1.2. Convergence - loss of ridges along a ridge flow, causing an overall decrease in the width of the ridge flow.
4.3.5.1.3. Divergence - gain of ridges along a ridge flow, causing an overall increase in the width of the ridge flow.

### 4.3.6. Pattern Elements - Recurves and Triradii:

The term "pattern" is most often associated with the rules for classifying the patterns in the distal segments of the fingers. Fingerprint classification rules are inadequate when seeking a comprehensive description of the patterns across the hands and feet. For instance, the pattern in the distal portion of the finger is classified as an arch when the ridges flow transversely and lack a core or triradius. The proximal and medial portions of the fingers are not described as having an "arch" pattern, despite the ridges flowing transversely and lacking a triradius and core.

For this document, ridge flow will refer to the main course of a group of ridges as dictated by the general growth stresses on the friction ridge skin caused by the growth of the hand or foot and the presence of regular flexion creases during the embryological development of the skin. Pattern elements will be considered any deviation from the general ridge flow as a result of the influence of the volar pads during embryological development. For this reason, a triradius (commonly referred to as a "delta" in fingerprint classification), will be considered its own pattern element and plain arches will be described under Ridge Flow (Section 4.3.5). This distinction permits a unified approach to the entire friction ridge skin and the expansion of relationships between two pattern elements and between a pattern element and other features. See Appendix D for definitions and examples of the patterns as described in this standard. Depending on the pattern element, different attributes can be considered.
4.3.6.1. Attributes:
4.3.6.1.1. Number - count of recurves and triradii within a region of the friction ridge skin or in an impression. NOTE: For the purposes of this document, a whorl is considered a continuous recurve.
4.3.6.1.2. Triradius Angle - angle formed by two rays of a triradius.
4.3.6.1.3. $\quad$ Core Ridge Count - number of ridges enclosed by a recurving ridge in a tented arch, loop, or whorl; number of ridges enclosed by the two triradii of a column; number of perpendicular ridges that form a vestige.
4.3.6.1.4. Core Length - distance from the geometric center of a triradius to the innermost recurve surrounding the ray of the triradius in a tented arch. The distance between opposing innermost recurves of a whorl.
4.3.6.1.5. Pattern Element Relationships - ridge counts, distance, or angles between the cores, recurves, or triradius centers of two or more pattern elements.

### 4.3.7. Regular Creases:

The regular creases are those flexion creases which form prior to the friction ridges and prior to flexion of the hand or foot during embryological formation. Regular creases are tightly bound to the underlying palmar aponeurosis and ridges tend not to traverse through these creases. Regular creases are also referred to as primary creases or major creases. The five regular creases of the palm include: wrist crease, thenar crease, distal transverse crease, proximal transverse crease, and palmar digital creases. The only regular creases associated with the sole are the plantar digital flexion creases where the skin of the toe meets the sole.

Thumbs and great toes typically have a distal interphalangeal crease located at the joint between the distal and proximal phalanges (there is typically no medial phalange in the great toe or thumb). The four remaining digits of the hands and feet typically have a distal interphalangeal crease located at the joint of the distal and medial phalanges. The four fingers of the hand typically have a proximal interphalangeal crease located at the joint of the medial and proximal phalanges. In the remaining four toes, it is common for the proximal interphalangeal crease to be poorly formed or missing. See Appendix F for a schematic of the regular creases of the hands and feet.

### 4.3.7.1. Attributes:

4.3.7.1.1. $\quad$ Number - count of regular creases within a region of skin or within an impression of a skin.
4.3.7.1.2. Configuration - organization of the regular crease as a single structure or a double structure (e.g., the palmar digital crease of the

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
middle finger is typically a double crease while the palmar digital crease of the index finger is typically a single crease).
4.3.7.1.3. $\quad$ Spacing - distance between the midpoints of two adjacent creases.
4.3.7.1.4. Position - location of a regular crease within the structure of the hand or foot.
4.3.7.1.5. Width - distance between the sides of a regular crease at a given location on the regular crease.
4.3.7.1.6. Length - distance between two locations along the path of a regular crease.
4.3.7.1.7. Curvature - change in angle along the path of a regular crease for a given segment of the crease.
4.3.7.1.8. Direction - path of a regular crease in relation to a fixed point in the skin or impression (e.g., a crease that is parallel to the direction of the surrounding ridges).
4.3.7.1.9. Edge shapes - contours of the skin contained within a regular crease.
4.3.7.1.10. Branching - pattern of branching along the main line of a regular crease.

### 4.3.8. Irregular Creases:

The irregular creases are those flexion creases which form during or after ridge formation (ridges typically traverse through these creases). Although not as deep as the regular creases, the irregular creases also have attachments to the underlying structure of the hand or foot. The irregular creases show greater variability than the regular creases within the human population. See Appendix F for examples of irregular flexion creases.
4.3.8.1. Attributes:
4.3.8.1.1. Number - count of irregular creases within a region of skin or within an impression of a skin.
4.3.8.1.2. Density - number of irregular creases within a specified surface area (e.g., high or low or per mm2).
4.3.8.1.3. Width - distance between the sides of an irregular crease at a given location on the irregular crease.
4.3.8.1.4. Length - distance between two locations along the path of an irregular crease.
4.3.8.1.5. Curvature - change in angle along the path of an irregular crease for a given segment of the crease.
4.3.8.1.6. Direction - the path of an irregular crease in relation to a fixed point in the skin or impression (e.g., a crease that is parallel to the direction of the surrounding ridges).
4.3.8.1.7. Branching - branching pattern along the main line of an irregular crease.
4.3.8.1.8. Angle of intersection - angle(s) created by the intersection of two or more irregular creases.
4.3.8.1.9. $\quad$ Spacing - distance between the midpoints of two adjacent creases.
4.3.9. Wrinkles:

Wrinkles are a result of a breakdown in the skin over time. The disorganization of the various fibers and large proteins in the dermis causes the dermis to fold inward, causing a crimp in the epidermis. Unlike the regular and irregular creases, wrinkles do not have dedicated attachments to the underlying structure of the hand or foot. See Appendix G for examples of wrinkles.

### 4.3.9.1. Attributes:

4.3.9.1.1. $\quad$ Number - count of wrinkles within a region of skin or within an impression of a skin.
4.3.9.1.2. Density - number of wrinkles within a specified surface area (e.g., high or low or per mm2).
4.3.9.1.3. Width - distance between the sides of a wrinkle at a given location on the wrinkle.
4.3.9.1.4. Length - distance between two locations along the path of a wrinkle.
4.3.9.1.5. Curvature - the curvature of a wrinkle at a given location.
4.3.9.1.6. Direction - the path of a wrinkle in relation to a fixed point in the skin or impression (e.g., a wrinkle that is parallel to the direction of the surrounding ridges).

425
426
4.3.9.1.7. Branching - branching pattern along the main line of a wrinkle.
4.3.9.1.8. Angles of intersection - angle(s) created by the intersection of two or more wrinkles.
4.3.9.1.9. $\quad$ Spacing - distance between the midpoints of two adjacent wrinkles.
4.3.10. Scars:

A scar is a disfiguration of the skin as a result of wound healing. The disfiguration can occur in varying degrees dependent on the amount of skin contraction experienced at the site of the injury and medical intervention (e.g., stitches). Some scars are imperceptible, while others are dramatic. Additionally, scars initiated by temperature and chemical burns tend to disfigure the skin differently than cuts or punctures. Simple, linear scars tend to exist at a lower elevation than the tops of the ridges. Complex scars and scars that contain epithelial islands can exist at the same or higher elevation than the normal ridges. See Appendix H for examples of scars.
4.3.10.1. Attributes:
4.3.10.1.1. Number - count of scars within a region of skin or within an impression of a skin.
4.3.10.1.2. Width - distance between the sides of a scar at a given location on the scar.
4.3.10.1.3. Length - distance between two locations along the path of a scar.
4.3.10.1.4. Surface Area - measure of a total area of the surface the scar occupies.
4.3.10.1.5. Curvature - change in angle along the path of a scar for a given segment of a scar.
4.3.10.1.6. Direction - path of a scar in relation to a fixed point in the skin or impression (e.g., a scar that is perpendicular to the direction of the surrounding ridges).
4.3.10.1.7. Created Minutiae - new minutiae created at the border of a scar due to the misalignment of the original ridges during the healing process.
4.3.10.1.8. Edge Shapes - contours defined by the border of a scar and any epithelial islands created as a result of the injury.
4.3.11. Unstable features:

Unstable features are those features temporarily present in the skin as the result of wound healing or disease. Unstable features include, but are not limited to, warts, eczema/psoriasis, actively healing injuries, calluses, and blisters. Depending on the nature of the unstable feature, it may exist lower, equal, or higher elevations than the tops of the main ridges. See Appendix I for examples of more common unstable features found in the friction ridge skin.

### 4.3.11.1. Attributes:

4.3.11.1.1. $\quad$ Number - count of unstable features within a region in the skin or impression.
4.3.11.1.2. Width - distance between the sides of unstable feature at a given location on the unstable feature.
4.3.11.1.3. Length - distance between two locations along the path of an unstable feature.
4.3.11.1.4. Surface Area - measure of a total area of the surface the unstable feature occupies.
4.3.11.1.5. Curvature - change in angle along the path of an unstable feature for a given segment of the feature.
4.3.11.1.6. Direction - path of an unstable feature in relation to a fixed point (e.g., scrape that is parallel to the direction of the surrounding ridges).
4.3.11.1.7. Branching - branching pattern along the main line of an unstable feature.
4.3.11.1.8. Edge Shapes - contours of an unstable feature.
4.3.12. Shape of the Impression:

The surface area and border contours of a friction ridge impression.
4.3.12.1. Attributes:
4.3.12.1.1. $\quad$ Surface Area - measure of a total area of the surface the impression (e.g., size).
4.3.12.1.2. Outline - the contours along the border of the impression.

## 5. General Recommendations

5.1. Distortion factors affecting the appearance of features should be considered when conducting friction ridge examinations. Distortion factors of friction ridge features are considered from two perspectives: biological and recordability.
5.1.1. Biological distortion factors are those factors that affect the expected stability of the feature in the friction ridge skin.
5.1.2. Recordability distortion factors are those factors that can affect the appearance of the features when they are recorded in an impression.
5.2. The following distortion factors are not meant to be exhaustive of all possibilities, but reflective of common causes for features to appear different over time or due to circumstances of touch. The following definitions are meant to provide common language to describe distortion factors and provide a list of topics that would benefit from additional research.
5.2.1. Adolescent growth - growth of the hand or foot from the time the ridges form until adult size is attained (typically late teens).
5.2.2. Aging - changes in the friction ridge skin that take place because of the natural aging process; typically, these changes begin after the age of forty.
5.2.3. Injury - physical damage to the hand, foot, or friction ridge skin that elicits a wound healing response (e.g., cut or burn); certain injuries can result in the formation of a scar.
5.2.4. Disease - disorder in the structure or function of the skin that produces specific signs or symptoms and is not related to a physical injury (e.g., wart, psoriasis, or acquired ridge aplasia).
5.2.5. Hand flexion - the bending of the digits at the joints or the rotation of the thumb.
5.2.6. Abduction of digits - the degree to which the digits are spread apart from one another.
5.2.7. Angle of contact - the position of the hand or foot with respect to the surface during contact.
5.2.8. Compressive stress - the squeeze of the skin between the boney portions of the hand or foot and a surface (also referred to as "deposition pressure").
5.2.9. Shearing stress - tangential force applied to the skin (also referred to as "lateral pressure").
5.2.10. Torque - rotational force applied to the skin.
5.2.11. Residue factors - any factors related to the residue on the skin that can affect the recording of the skin (e.g., initial composition of the residue, distribution of residue on the skin, or redistribution of residue in an impression due to skin moving on a surface).
5.2.12. Surface conditions - any factors related to the surface that affect the recording of the skin (e.g., texture, curvature, pliability, or contaminants).
5.2.13. Environmental factors - any factors related to the environment (e.g., temperature, humidity, UV exposure, or time) that affect the appearance of the features after the impression is recorded on a surface.
5.2.14. Post-deposition factors - any non-environmental factors that affect an impression (e.g., overlays with other impressions or smearing caused by an object touching an impression).
5.2.15. Processing technique - method used to develop the features of a latent impression; each method has a signature appearance that can vary, typically because of residue issues or surface conditions.
5.2.16. Recovery method - manner in which an impression is preserved (e.g., lift or photograph) that causes distortion (e.g., crease in tape, lens distortion, poor lighting, poor focus, low resolution).
5.2.17. Electronic capture error - inaccurate recording of a feature by an automated device (e.g., livescan stitching error).
5.2.18. Atypical anatomy - any deviation from the typical range of shape, size, or proportions of the human hand or foot or any disruption in the formation of the skin driven by genetic or epigenetic factors (e.g., syndactyly or congenital ridge aplasia). Atypical anatomy does not cause issues related to biological stability or recordability of the features; however, if it is not recognized during analysis, it can cause an examiner to underestimate or overestimate the source diagnosticity or search diagnosticity of a given feature set.
5.3. The diagnosticity of features should be considered when conducting friction ridge examinations. Diagnosticity, generally, refers to the usefulness of information to assist in a choice or decision. Diagnosticity of friction ridge features refers to the usefulness of
the feature, or attribute of a feature, for establishing search parameters ${ }^{1}$ or the usefulness of the feature for determining source ${ }^{2}$.
5.4. Features that exhibit low levels of variation in the population should be used for establishing search parameters. Features with generally low variation include the following: shape of the impression, creases, pattern elements, and ridge flows. Appendix J contains examples of how these features can be used to establish search parameters. Conversely, those features that exhibit higher levels of variation in the human population are useful for distinguishing one finger, palm, toe, or foot from another.
5.5. Pattern elements, ridge flows, and creases can be useful for excluding a given donor, however these features do not typically provide strong support for same source opinions.
5.6. Features that exhibit higher levels of variation in the population should be used to support same source opinions. The most variable features in the population typically include the following: ridges, minutiae, incipient ridges, dissociated ridges, and certain attributes of creases. Acquired features (wrinkles, scars, unstable features) exhibit more complex diagnosticity, depending on the feature.
5.7. The totality (number and diversity) of a specific set of features and available feature attributes ultimately determines the overall search diagnosticity and source diagnosticity for a given impression. While most formal research has focused solely on the source diagnosticity of combinations of minutiae, the remaining features and their attributes add considerable weight to the various decisions examiners make during the examination process.
5.8. The diagnosticity for each of the features include the following:
5.8.1. Ridges:
5.8.1.1. Search Diagnosticity:
5.8.1.1.1. The search diagnosticity for the ridges is generally low because all regions of the friction ridge skin are expected to have ridges.
5.8.1.2. Source Diagnosticity:
5.8.1.2.1. In general, as the surface area of an impression increases (ergo an increase in the number of ridges and the visible lengths of the ridges), the source diagnosticity of the impression also increases.

[^0]5.8.1.2.2. In general, as an open field increases in size (more ridges or longer visible lengths of the ridges), the source diagnosticity of the open field also increases.
5.8.2. Minutiae:

### 5.8.2.1. Search Diagnosticity:

5.8.2.1.1. In regions where growth stresses "force" minutiae to form, there tends to be a high density of minutiae that share direction (the transition zone from the hypothenar into the mid-palm region is one such zone). This concept is called "pattern force". For example, in the outflow of a loop, many ridges are converging, which necessarily forces many ridge endings as space runs out. Because the pattern forces these minutiae to form predictably and their configurations are more common and less random, they are properly assigned less weight than more randomly distributed minutiae toward an association between two impressions. The existence of a cluster of minutiae in a pattern force area tends to increase the search diagnosticity of these minutiae.
5.8.2.2. Source Diagnosticity:
5.8.2.2.1. While the existence of a cluster of minutiae in a pattern force area tends to increase the search diagnosticity of the cluster of minutiae, it tends to decrease the source diagnosticity of those minutiae.
5.8.2.2.2. Typically, as the surface area of skin represented in an impression increases, so too does the number of minutiae present within the impression. While the source diagnosticity of a cluster of minutiae typically increases as the number of minutiae increases, the source diagnosticity ranges at a given number of minutiae until a theoretical maximum threshold is achieved (e.g., a rolled fingerprint). Beneath this theoretical maximum threshold, source diagnosticity for a given cluster depends on anatomical region, the density of the minutiae, the direction of the minutiae, the distance between the minutiae, and the population of donors under consideration.
5.8.3. Incipient Ridges:
5.8.3.1. Search Diagnosticity:
5.8.3.1.1. The search diagnosticity for incipient ridges is generally low because incipient ridges can appear throughout the friction ridge
skin and, unlike the ridges and minutiae, are not generally subject to pattern force.

### 5.8.3.2. Source Diagnosticity:

5.8.3.2.1. In general, as the number of incipient ridges within an impression increases, the source diagnosticity of the impression also increases.
5.8.4. Dissociated Ridges:
5.8.4.1. Search Diagnosticity:
5.8.4.1.1. The search diagnosticity for dissociated ridges is generally low because dissociated ridges can appear anywhere in the friction ridge skin.
5.8.4.2. Source Diagnosticity:
5.8.4.2.1. In general, as the number of dissociated ridges within an impression increases, the source diagnosticity of the impression also increases.
5.8.5. Ridge flow:
5.8.5.1. Search Diagnosticity:
5.8.5.1.1. The search diagnosticity of ridge flows is generally high because the ridge flows follow a predictable distribution in the human population for each region of the friction ridge skin. The search diagnosticity of a ridge flow is elevated when additional features are present (e.g., shape or regular creases).

### 5.8.5.2. Source Diagnosticity:

5.8.5.2.1. Generally, the source diagnosticity of ridge flows is low. Ridge flows tend to show significant left/right symmetry within a person. This symmetry is more pronounced within the corresponding hands of monozygotic twins.
5.8.6. Pattern Elements - Recurves and Triradii:
5.8.6.1. Search Diagnosticity:
5.8.6.1.1. The search diagnosticity of pattern elements is generally high because patterns follow a predictable distribution in the human population for each region of the friction ridge skin. The search
diagnosticity of pattern elements is elevated when additional features are present (e.g., shape or regular creases).
5.8.6.2. Source Diagnosticity:
5.8.6.2.1. The source diagnosticity of pattern elements is generally low. Patterns tend to show significant left/right symmetry within a person. This symmetry is more pronounced within the corresponding hands of monozygotic twins.
5.8.6.2.2. The source diagnosticity of a pattern element or group of pattern elements depends on the region of skin within which it resides. For instance, whorls are less common in the interdigital regions of palms than the interdigital regions of feet.
5.8.7. Regular Creases:
5.8.7.1. Search Diagnosticity:
5.8.7.1.1. The search diagnosticity of the regular creases is generally high because the regular creases follow a predictable distribution in the human population for each region of the friction ridge skin. The search diagnosticity of a regular crease is elevated when additional features are present (e.g., shape or ridge flows).
5.8.7.2. Source Diagnosticity:
5.8.7.2.1. The source diagnosticity of the number, configuration, and position of the regular creases is generally low. These attributes tend to show signifieant left/right symmetry within a person. This symmetry is more pronounced within the corresponding hands of monozygotic twins.
5.8.7.2.2. The source diagnosticity of the width, length, curvature, and direction of the regular creases is low to moderate. These attributes often show significant left/right symmetry within a person and similarity within the corresponding hands of monozygotic twins.
5.8.7.2.3. The source diagnosticity of the edge shapes and branching of a crease is expected to range from moderate to high. These attributes can show significant left/right symmetry within a person and similarity within the corresponding hands of monozygotic twins.
5.8.8. Irregular Creases:
5.8.8.1. Search Diagnosticity:
5.8.8.1.1. The search diagnosticity of the number, density, width, length, curvature, and direction of irregular creases depends on the region of skin under consideration. The search diagnosticity of these attributes is higher for thenars of palms, proximal and medial phalanges of the fingers, and the arches of the feet because a high density of creases is expected in these regions. Elsewhere in the friction ridge skin the irregular creases are more variable, and consequently less useful for search diagnosticity.
5.8.8.2. Source Diagnosticity:
5.8.8.2.1. The source diagnosticity of the number, density, width, length, curvature, and direction of irregular creases depends on the region of skin considered. The source diagnosticity is lower for palm thenars, proximal and medial phalânges of the fingers, and the arches of the feet because a high density of creases is expected in these regions. Elsewhere in the friction ridge skin the irregular creases are more variable, and consequently displaying higher source diagnosticity.
5.8.8.2.2. The source diagnosticity of the branching and angles of intersection of irregular creases is expected to range from moderate to high. These attributes can show significant left/right symmetry within a person and similarity within the corresponding hands of monozygotic twins.

### 5.8.9. Wrinkles:

5.8.9.1. Search Diagnosticity:
5.8.9.1.1. The search diagnosticity for wrinkles is generally low because wrinkles can appear anywhere in the friction ridge skin.
5.8.9.2. Source Diagnosticity:
5.8.9.2.1. In general, as the number of wrinkles within an impression increases, the source diagnosticity of the impression also increases.

### 5.8.10. Scars:

5.8.10.1. Search Diagnosticity:
5.8.10.1.1. The search diagnosticity for scars is generally low because scars can appear anywhere in the friction ridge skin.

### 5.8.10.2. Source Diagnosticity:

5.8.10.2.1. In general, as the number or complexity of a scar within an impression increases, the source diagnosticity of the impression also increases.
5.8.11. Unstable features:
5.8.11.1. Search Diagnosticity:
5.8.11.1.1. The search diagnosticity for unstable features is generally low because unstable features can appear anywhere in the friction ridge skin.
5.8.11.2. Source Diagnosticity:
5.8.11.2.1. In general, as the number or complexity of an unstable feature within an impression increases, the source diagnosticity of the impression also increases.
5.8.12. Shape of the Impression:
5.8.12.1. Search Diagnosticity:
5.8.12.1.1. The search diagnosticity of size and outline of an impression is generally high because the size and contours of human hands and feet are generally shared in the population. The search diagnosticity of an impression's shape is elevated when additional features are present (e.g., ridge flows or regular creases).

### 5.8.12.2. Source Diagnosticity:

5.8.12.2.1. The source diagnosticity of the shape of an impression is low. Hands and feet tend to show significant left/right symmetry within a person and similarity within the corresponding hands of monozygotic twins.

## 6. Appendix A: Edge Shapes

The images below highlight the edge shapes on normal ridges; however, these shapes can also occur on segmented ridges (dysplasia) or incipient ridges.

| Edge Shape | Description | Example |
| :--- | :--- | :--- |
| Straight | Where the edge of the ridge is defined by a <br> smooth line. |  |
| Protrusion | Where the edge of the ridge protrudes into <br> the furrow (causes a widening of the ridge at <br> that location). |  |
| Intrusion | Where the edge of a ridge intrudes into the <br> main body of the ridge (causes a narrowing <br> of the ridge at that location). |  |

Table 1 - Examples of edge shapes (images not to scale)

## 7. Appendix B: Minutiae

Simple Minutia Types

| Minutia Type | Definition | Example |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Ending Ridge | The end of a ridge with no <br> connection to the adjacent <br> ridge above the level of the <br> furrow. |  |  |
| Bifurcation | The complete connection of an <br> end of a ridge to the adjacent <br> ridge from the bottom of the <br> furrow to the top of the ridge | The partial connection of the <br> end of a ridge to the adjacent <br> ridge (connected above the <br> level of the furrow, but below <br> the level of the tops of the <br> ridges) |  |

Table 2 - Examples of simple minutiae (images not to scale)

Compound Minutia Types

| Minutia Type | Definition | Example |
| :--- | :--- | :---: |
| Short Ridge | An independent ridge (defined by two ending <br> ridges) with a length that is less than ten times the <br> average width of the ridge. | An independent ridge with a length that is less than <br> two times the average width of the ridge. |
| Dot |  |  |


| Minutia Type | Definition |  |
| :--- | :--- | :--- |
| Break | A site along the ridge where the course of the ridge <br> is interrupted, like a sink hole in the ridge. This <br> length of the discontinuity is at least the width of the <br> ridge, but no longer than twice the width of the <br> ridge. |  |
| Enclosure | A minutia defined by the merger of both ends of a <br> short ridge with a neighboring ridge (defined by two <br> bifurcations directed toward each other). The <br> distance between the bifurcations is less than ten <br> times the average width of the ridges. |  |
| Overlap | Where two ridges meet and overlap. The length of <br> overlap is less than ten times the average width of <br> the ridges. |  |
| Spur | A minutia defined by the merger of one end of a <br> short ridge with a neighboring ridge (defined by one <br> bifurcation and one ending ridge). The distance <br> betwen the ending ridge and bifurcation is less than <br> ten times the average width of the ridges. |  |
| Bridge | A ridge that alters its course to zig-zag around other <br> minutiae, similar to a train switching tracks. The <br> transfer zone is less than ten times the average <br> width of the ridges. | A minutia defined by the merger of a short ridge <br> with two neighboring ridges. The path of the bridge <br> tends not to be parallel to the neighboring ridges <br> and the length of the bridge is no longer than five <br> times the average width of the ridges. |
| Aifurcations |  |  |
| away from each other. The distance between the |  |  |
| two bifurcations is less than five times the average |  |  |
| width of the ridges. |  |  |


| Minutia Type | Definition |
| :--- | :--- |
| Dock | A minutia defined by an overlapping cluster of three <br> ridge endings where the center ridge ending is in the <br> opposite direction of the other two ridge endings <br> and the length of overlap on each side of the center <br> ridge is less than ten times the average width of the <br> ridges. |
| Ending Ridge + <br> Bifurcation <br> Combination | A minutia defined by the end of a ridge leading to a <br> bifurcation. The distance between the end of the <br> ridge and the bifurcation is less than five times the <br> average width of the ridges. |
| Trifurcation/Double | A minutia defined by the merger of three ridges into <br> one. This minutia type can appear as a trifurcation <br> when the three ridges emanate from a common <br> vertex or a double bifurcation when one ridge is not <br> centere on a vertex with the other two ridges. The <br> merger of the three ridges is contained within a <br> distance less than three times the average width of <br> the ridges. |
| Meturn |  |

Table 3 - Examples of compound minutiae (images not to scale)
8. Appendix C: Incipient Ridges and Dissociated Ridges

| Feature | Example |
| :---: | :---: |
| Incipient ridges in the friction ridge skin of a finger |  |
| Incipient ridges in an impression of a finger |  |
| Incipient ridges in an impression of a palm |  |
| Incipient ridges in an impression of a foot |  |
| Dissociated ridges (severe case) in an impression of a palm |  |


| Feature | Example |
| :---: | :---: |
| Dissociated ridges (severe case) in an impression of the distal and medial segments of the fingers |  |
| Dissociate ridges (mild case) in an impression of a thumb |  |

Table 4 - Examples of incipient ridges and dissociated ridges (images not to scale)

## 9. Appendix D: Pattern Elements

The patterns below are defined at a very rudimentary level to permit the use of pattern definitions across regions of the friction ridge skin. It is recognized that there are various classification schemes, with different rules, related to each region of the friction ridge skin.

In partial impressions of the friction ridge skin; however, it is not always possible to determine if a given pattern (e.g., a loop) is from a specific anatomical region. If the anatomical region cannot be determined, it is impossible to know which classification scheme to apply or the specific rarity of the pattern (i.e., a triradius is rarer in the hypothenar than the interdigital of a palm). It is recognized that some patterns on the skin do not easily conform to the below categories and this standard will not attempt to catalog each permutation of the patterns that are possible in the friction ridge skin.

In this table, all impressions are oriented distally. Isolating each pattern and providing examples from each region of the skin highlights the importance of relationships between the patterns (e.g., position of the triradius in relation to the recurve of a loop) and other features to assess the anatomical region and orientation.


| Pattern | Examples |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| Tented Arch <br> A triradius with a recurve over one of the rays (the ray can be one or more ridges). The |  |  |  |  |
| core of the tented arch is the geometric center point of the triradius. |  |  |  |  |
|  |  |  |  |  |
| Loop <br> A pattern defined by a single recurve in the ridges that does not arch over a radius. The core |  | Distal | gments of Fingers |  |
| is generally positioned on the sharpest curve along the innermost recurve. | $\qquad$ |  |  |  |




| Pattern | Examples |  |
| :---: | :---: | :---: |
| A complex pattern associated with the distal portion of the thenars of the palms. |  |  |

Table 5 - Examples of patterns in the hands and feet.

## 919

 920922
10. Appendix E: Ridge Flows


Figure 1 - Hand Ridge Flows. Hands not to scale.

Figure 2 - Foot Ridge Flows. Feet not to scale.

## 11. Appendix F: Regular and Irregular Creases of the Hands and Feet



Figure 3 - Regular and irregular creases of the palm (image not to scale).
Regular Creases: DIC - Distal Interphalangeal Crease; PIC - Proximal Interphalangeal Crease; PDC - Palmar Digital Crease; DTC - Distal Transverse Crease; PTC - Proximal Transverse

933 Crease; TC - Thenar Crease; WC - Wrist Crease. The remaining "white lines" in the hand


Figure 4 - Regular and Irregular creases of the foot (image not to scale).

938 Regular creases: DIC - Distal Interphalangeal Crease; PIC - Proximal Interphalangeal Crease; PDC - Plantar Digital Crease. The remaining "white lines" in the foot impression are irregular flexion creases.

12. Appendix G: Wrinkles

| Feature |  | Example |  |
| :---: | :---: | :---: | :---: |
| Wrinkles in the friction ridge skin |  |  |  |

Table 6 - Examples of wrinkles (images not to scale)


Figure 5 - The right thumb and fingers of a subject taken 39 years apart (images not to scale). The additional "white lines' in 2008 impressions are wrinkles acquired over the 39-year period.

## 13. Appendix H: Scars

| Feature | Example |
| :--- | :--- | :--- |
| Simple scar in the friction ridge <br> skin |  |

Table 7 - Examples of scars (images not to scale).

## 14. Appendix I: Unstable Features

The examples below are not an exhaustive list of unstable features, but those unstable features seen most commonly in the friction ridge skin.

| Feature |  | Example |
| :--- | :--- | :--- | :--- |
| Actively healing cuts on the friction <br> ridge skin (this feature is considered <br> unstable until the healing process is <br> complete and it may, or may not, <br> result in a detectible scar) |  |  |


| Feature | Example |
| :--- | :---: |
| Wart in the friction ridge skin |  |
| Wart in an impression of a finger |  |
| Eczema/psoriasis in an impression of |  |
| a finger |  |

Table 8 - Eczema/psoriasis in an impression of a finger

## 15. Appendix J: Relationship of Features

Throughout the descriptions of the various features in this standard, reference is made to the impact of feature attributes, and relationships between features, on the search diagnosticity and source diagnosticity. This section provides examples of relationships and their potential impact on the examination process.

Example 1: In the series of images below the colors signify the following features: green is the relevant outline of the impression, blue indicates patterns (including triradii), purple indicates ridge flow, yellow indicates regular crease. In each image, more of the impression is revealed to demonstrate the importance of the relationships of these features and how these relationships guide decisions. The feature discussion illustrates the thought process, it is not an example of expected documentation for the impression.

| Feature Discussion |
| :--- |
| The relationship of the size and outline of this <br> impression and the position of the triradius within the <br> surrounding ridge flow rule out fingers and toes but <br> include the palms and feet as a possible donor region. <br> The shape of the impression and the triradius angles <br> further indicate the impression is in the most likely <br> distal orientation and most likely from an interdigital <br> region of a palm or foot. <br> The shape (size and outline) indicates the interdigital <br> region of a palm or foot. The pattern relationships <br> between the two triradii (ridge count and angle), the <br> curvature of the ridge flows, the divergence and <br> convergence (going from top to bottom) of the ridge <br> flow between the triradii, and the presence of the <br> palmar/plantar digital crease also indicate interdigital <br> region of a palm or foot. The triradius angles of the two <br> triradii and their respective relationships to the <br> perimeter of the impression and palmar/plantar digital <br> crease indicate possible left interdigital palm under the <br> index and middle fingers or a left foot under the great |
| toe and index toe. A right interdigital palm under the |
| little and ring fingers and a right interdigital foot under |
| the little and ring toes cannot be ruled out. |



Table 9 - Examples of the diagnosticity of feature relationships (images to scale).
Example 2: This example describes two impressions of the friction ridge skin, each with a different subset of features present. The colors signify the following features: green is the relevant outline of the impression, blue indicates patterns (including triradii), purple indicates ridge flow, yellow indicates regular crease, and orange indicates a possible irregular crease. The discussion below each image illustrates the thought process and the importance of the friction ridge examiner's understanding of the distribution of the features and feature relationships in the human population. The feature discussion illustrates the thought process, it is not an example of expected documentation for the impression.

| Impression A |  |
| :--- | :--- |

Table 10 - Examples of the diagnosticity of feature relationships.

## 981 16. Appendix K: Quick Reference Summary Table

|  | Attributes | Search Diagnosticity | Source Diagnosticity |
| :---: | :---: | :---: | :---: |
| Ridges | - Number <br> - Ridge Width <br> - Furrow Width <br> - Length <br> - Spacing <br> - Direction <br> - Curvature <br> - Edge Shapes <br> - Pore Position <br> - Open Field | Low | - In general: surface area increases, source diagnosticity increases <br> In general: open field increases in size, source diagnosticity of the open field increases |
| Minutiae | - Number <br> - Density <br> - Direction <br> - Connectedness <br> - Compound Minutiae | Cluster of minutiae in a pattern force area generally increases search diagnosticity <br> Cluster of minutiae in a non-pattern force area generally decreases search diagnosticity | - In general: number increases, source diagnosticity increases <br> - Minutiae in a pattern force area can decrease source diagnosticity <br> - For a given cluster: depends on anatomical region, density of the minutiae, direction of the minutiae, distance between the minutiae, population of donors under consideration |
| Incipient Ridges | - Number <br> - Density <br> - Width <br> - Length <br> - Direction <br> - Inter-Incipient Break | Low | - In general: number increases, source diagnosticity increases |


|  | Attributes | Search Diagnosticity | Source Diagnosticity |
| :---: | :---: | :---: | :---: |
|  | - Edge Shapes |  |  |
| Dissociated Ridges | - Number <br> - Density <br> - Ridge Width <br> - Furrow Width <br> - Length <br> - Spacing <br> - Direction <br> - Curvature <br> - Edge Shapes <br> - Pore Position <br> - Connectedness | Low | - In general: number increases, source diagnosticity increases |
| Ridge Flows | - Curvature <br> - Convergence <br> - Divergence | High, elevated in combination with additional features (e.g., shape or regular creases) | Low |
| Pattern Elements: <br> Recurves and Triradii | - Number <br> - Triradius Angle <br> - Core Ridge Count <br> - Core Length <br> - Pattern Element Relationships | High | - Low <br> - Value depends on the region of skin |
| Regular Creases | - Number <br> - Configuration <br> - Spacing <br> - Position <br> - Width <br> - Length <br> - Curvature <br> - Direction <br> - Edge shapes | High | - Low (number, configuration, position) <br> - Low to moderate (width, length, curvature, direction) <br> - Moderate to high (edge shapes, branching) |


|  | Attributes | Search Diagnosticity | Source Diagnosticity |
| :---: | :---: | :---: | :---: |
|  | - Branching |  |  |
| Irregular Creases | - Number <br> - Density <br> - Width <br> - Length <br> - Curvature <br> - Direction <br> - Branching <br> - Angle of intersection <br> - Spacing | Depends on the region of skin (higher in the thenars of palms, proximal and medial phalanges of the fingers and arches of feet) | - Lower in palm thenars, proximal and medial phalanges of the fingers, arches of the feet <br> - Higher in other regions of skin |
| Wrinkles | - Number <br> - Density <br> - Width <br> - Length <br> - Curvature <br> - Direction <br> - Branching <br> - Angles of intersection <br> - Spacing |  | - More wrinkles, higher source diagnosticity |
| Scars | - Number <br> - Width <br> - Length <br> - Surface Area <br> - Curvature <br> - Direction <br> - Created Minutiae <br> - Edge shapes | Low | - The more complex and frequent, the higher the source diagnosticity |
| Unstable Features | - Number <br> - Width <br> - Length | Low | - The more complex and frequent, the higher the source diagnosticity |


|  | Attributes | Search Diagnosticity | Source Diagnosticity |
| :--- | :--- | :--- | :--- |
|  | - Surface Area |  |  |
|  | - Curvature |  |  |
|  | - Direction |  |  |
|  | - Branching |  |  |
|  | - Edge shapes |  |  |
| Shape of the <br> Impression | - Surface area | High | Low | | Table $11-$ Quick Reference Summary Table |  |
| :--- | :--- |

Organization of Scientifc Area
commitoes

## 984

## 17. Appendix L: References

$$
\begin{array}{ll}
\text { 1.1. } & \text { Babler, W. Embryological Development of Epidermal Ridges and Their } \\
\text { Configurations. Birth Defects Original Article Series } 199127 \text { (2), 95-112. } \\
\text { 1.2. } & \text { Champod, C.; Lennard, C.; Margot, P.; Stoilovic, M. Fingerprints and Other Ridge } \\
\text { Skin Impressions, Second Edition. CRC Press: New York, } 2016 .
\end{array}
$$

1.10. Kong, A.; Zhang, D.; Lu, G. A Study of Identical Twins' Palmprints for Personal Identification. Pattern Recognition 201639 (11) 2149-2156. DOI: 10.1016/j.patcog.2006.04.035.
1.11. Lin, C.H.; Liu, J.; Osterburg, J.; Nicol, J. Fingerprint Comparison I: Similarity of Fingerprints. Journal of Forensic Science 198227 (2), 290-304.
1.12. Mavalwala, J.; Mavalwala, P.; Kamali, S.M. Dermatoglyphics and Population Distance. In Trends in Dermatoglyphic Research; Durhan, D., Plato, C., Eds.; 1990, Kluwer Academic Publishers: Boston, 1990; 190-199.
1.13. Meier, R. Anthropological Dermatoglyphics: A Review. Yearbook of Physical Anthropology 198023 (S1), 147-178.
1.14. Neumann, C.; Champod, C.; Yoo, M.; Genessay, T. Quantifying the Weight of Fingerprint Evidence through the Spatial Relationship, Directions, and Types of Minutiae Observed on Fingermarks. Forensic Science International 2015 248, 154171. DOI: 10.1016/j.forsciint.2015.01.007
1.15. Okajima, M. Dermal and Epidermal Structures of the Volar Skin. Birth Defects: Original Article Series 1979 XV (6), 179-198.
1.16. Pandey, A.; Sharma, A. Formulation of Longitudinal Flexion Creases: Validation of Inheritance, Twin Diagnosis and Ethnic Variation. International Journal of Science and Research 20165 (4) 2296-2300.
1.17. Pandey, A.; Sharma, A. Formulation of Transverse Flexion Creases: Validation of Inheritance, Twin Diagnosis and Ethnic Variation. Journal of Humanities and Social Science 201621 (5), 41-49.
1.18. Shaumann, B.; Alter, M. Dermatoglyphics in Medical Disorders. Springer-Verlag: New York 1976.
1.19. Stücker, M.; Geil, M.; Kyeck, S.; Hoffman, K.; Röchling, A.; Memmel, U.; Altmeyer, P. Interpapillary Lines - The Variable Part of the Fingerprint. Journal of Forensic Science 200146 (4), 857-861.
1.20. Tao, X.; Chen, X.; Yang, X; Tian, J. Fingerprint Recognition with Identical Twin Fingerprints. PLoS ONE 20217 (4), e35704. DOI: 10.1371/journal.pone0035704.
1.21. White, A. Features of the Friction Ridge Skin: Attributes, Diagnosticity, and Limitations. Journal of Forensic Identification 2022 72(1) 33-127.

## 18. Appendix M: Change Log

| Version | Date | Change |
| :---: | :---: | :---: |
| 1.0 | $09 / 06 / 2022$ | Original Issue |
|  |  |  |




[^0]:    ${ }^{1}$ Diagnosticity for search parameters refers to the usefulness of the feature to limit the comparisons to specific anatomical regions within the hands or feet, left or right hands or feet, or specific orientations. Diagnosticity for search parameters is referred to as "search diagnosticity" in this document.
    ${ }^{2}$ Diagnosticity for source determinations refers to the usefulness of the feature to include or exclude a potential donor. Diagnosticity for source determinations is referred to as "source diagnosticity" in this document.

