

OSAC 2022-S-0014 Building an Analytical Scheme for the Assessment of Tetrahydrocannabinol (THC) in Suspected Marijuana Plant Material Samples

Seized Drugs Subcommittee Chemistry: Seized Drugs/Toxicology Scientific Area Committee Organization of Scientific Area Committees (OSAC) for Forensic Science

Draft OSAC Proposed Standard

OSAC 2022-S-0014 Building an Analytical Scheme for the Assessment of Tetrahydrocannabinol (THC) in Suspected Marijuana Plant Material Samples

Prepared by Seized Drugs Subcommittee Version: 1.0 August 2022

Disclaimer:

This OSAC Proposed Standard was written by the Organization of Scientific Area Committees (OSAC) for Forensic Science following a process that includes an <u>open comment period</u>. This Proposed Standard will be submitted to a standards developing organization and is subject to change.

There may be references in an OSAC Proposed Standard to other publications under development by OSAC. The information in the Proposed Standard, and underlying concepts and methodologies, may be used by the forensic-science community before the completion of such companion publications.

Any identification of commercial equipment, instruments, or materials in the Proposed Standard is not a recommendation or endorsement by the U.S. Government and does not imply that the equipment, instruments, or materials are necessarily the best available for the purpose.

To be placed on the OSAC Registry, certain types of standards first must be reviewed by a Scientific and Technical Review Panel (STRP). The STRP process is vital to OSAC's mission of generating and recognizing scientifically sound standards for producing and interpreting forensic science results. The STRP shall provide critical and knowledgeable reviews of draft standards or of proposed revisions of standards previously published by standards developing organizations (SDOs) to ensure that the published methods that practitioners employ are scientifically valid, and the resulting claims are trustworthy.

The STRP panel will consist of an independent and diverse panel, including subject matter experts, human factors scientists, quality assurance personnel, and legal experts, which will be tasked with evaluating the proposed standard based on a comprehensive list of science-based criteria.

For more information about this important process, please visit our website at: <u>https://www.nist.gov/topics/organization-scientific-area-committees-forensic-science/scientific-technical-review-panels</u>.

1 Rationale:

- The Farm Bill of 2018 removed hemp from the Controlled Substance Act Schedule I and defines 2
- it as "...the plant Cannabis Sativa L. and any part of the plant, including the seeds thereof, all 3
- derivatives, extracts, cannabinoids, isomers, acids, salts, and salts of isomers, whether growing 4
- or not, with a delta-9-THC concentration of not more than 0.3% on a dry weight basis." As such, 5
- the OSAC Seized Drugs Subcommittee has drafted this standard to assist forensic science service 6
- 7 providers to analyze seized drug evidence submitted to their laboratories as suspected Marijuana.

8 Standard Practice for

to use.

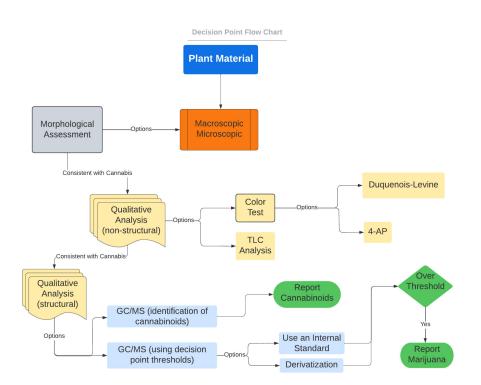
Building an Analytical Scheme for the Assessment of Tetrahydrocannabinol (THC) in 9 **Suspected Marijuana Plant Material Samples** 10

1. Scope 11

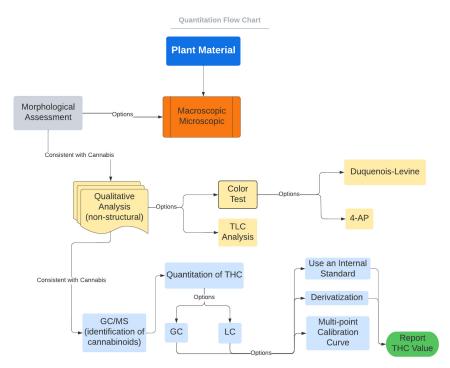
- This standard covers options for building an analytical scheme for the analysis and 12 1.1. 13 identification of suspected marijuana plant material in seized drugs. This standard is intended for use by competent forensic science practitioners (FSPs) with 1.2. 14 the requisite formal education, discipline-specific training (see Practice E2917 and 15 Practice E2326), and demonstrated proficiency to perform forensic casework. 16 1.3. This standard does not purport to address all of the safety concerns, if any, associated 17 with its use. It is the responsibility of the user of this standard to establish appropriate 18 safety and health practices and determine the applicability of regulatory limitations prior 19
- 20
- 21

21				
22	2.	Refe	renced D	ocuments
23		2.1.	ASTM	1 Standards ²
24			2.1.1.	E1732 Terminology Relating to Forensic Science
25			2.1.2.	E2326 Practice for Education and Training of Seized-Drug Analysts
26			2.1.3.	E2548 Guide for Sampling Seized Drugs for Qualitative and Quantitative
27				Analysis
28			2.1.4.	E2549 Practice for Validation of Seized-Drugs Analytical Methods
29			2.1.5.	E2917 Practice for Forensic Science Practitioner Training, Continuing Education,
30				and Professional Development Programs
31				
32		2.2.	Other	Documents
33			2.2.1.	Establishment of a Domestic Hemp Production Program; Federal Register, vol.
34				86, No, 11 January 19, 2021
35			2.2.2.	SWGDRUG Recommendations Version 8.0, 2019
36				(https://www.swgdrug.org/Documents/SWGDRUG%20Recommendations%20V
37				ersion%208_FINAL_ForPosting_092919.pdf)
38			2.2.3.	United Nations Office on Drugs and Crime (UNODC) Recommended methods
39				for the identification and analysis of Cannabis and Cannabis products, 2022.

40 41				(https://www.unodc.org/documents/scientific/Recommended_methods_for_the_i dentification_and_analysis_of_cannabis_and_cannabis_products.pdf)
42				
43				
44	3.	Term	ninology	
45		3.1.	Definit	tions:
46			3.1.1.	For definitions of terms used in this practice, refer to Terminology E1732.
47		3.2.	Definit	tions of terms specific to this standard:
48			3.2.1.	<i>Cannabis, n</i> - a genus of flowering plants in the family Cannabaceae of which
49				Cannabis sativa is a species, and Cannabis indica and Cannabis ruderalis are
50				subspecies thereof. <i>Cannabis</i> refers to any form of the plant where the total
51				delta-9 tetrahydrocannabinol concentration on a dry weight basis has not yet been
52				determined. (DOA 7 CFR Part 990 Establishment of a Domestic Hemp
53				Production Program)
54			3.	2.1.1. <i>Discussion</i> - "The chemical and morphological distinctions by which
55				Cannabis has been split into these subspecies are often not readily
56				discernible, appear to be environmentally modifiable, and vary in a
57				continuous fashion. For most purposes, it will suffice to apply the name
58				Cannabis sativa to all Cannabis plants encountered." (United Nations
59				Office on Drugs and Crime (UNODC) Recommended methods for the
60			2 2 2	identification and analysis of <i>Cannabis</i> and <i>Cannabis</i> products, 2022.)
61 62			3.2.2.	<i>decarboxylation</i> , n - the removal or elimination of a carboxyl group from a malacula or organic commound. (DOA 7 CEP Part 000 Establishment of a
62 63				molecule or organic compound. (DOA 7 CFR Part 990 Establishment of a Domestic Hemp Production Program)
63 64			3.2.3.	<i>decision point, n</i> - an administratively defined cutoff or concentration that is at or
65			5.2.5.	above the method's limit of detection or limit of quantitation and is used to
66				discriminate between positive and negative results. (Scientific Working Group
67				for Forensic Toxicology (SWGTOX), "Scientific Working Group for Forensic
68				Toxicology (SWGTOX) Standard Practices for Method Validation in Forensic
69				Toxicology." Journal of Analytical Toxicology, 37:7, 452-474, 2013.)
70			3.2.4.	<i>dry weight basis, n</i> - a basis for expressing the percentage of a chemical in a
71				substance after removing the moisture from the substance. Percentage of THC
72				on a dry weight basis means the percentage of THC, by weight, in a Cannabis
73				item, after excluding moisture from the item. (DOA 7 CFR Part 990
74				Establishment of a Domestic Hemp Production Program)
75			3.2.5.	hemp, n - the plant species Cannabis sativa L., and any part of that plant,
76				including the seeds thereof and all derivatives, extracts, cannabinoids, isomers,
77				acids, salts, and salts of isomers, whether growing or not, with a total delta-9
78				tetrahydrocannabinol concentration of not more than 0.3 percent on a dry weight
79				basis. (DOA 7 CFR Part 990 Establishment of a Domestic Hemp Production
80			2.2.6	Program)
81			3.2.6.	<i>inconclusive results, n</i> - results that do not meet criteria for reporting, or were
82				unsuitable due to analytical interferences or condition of the sample.
83				(ANSI/ASB Standard 053)


- 3.2.7. *internal standard, n* a compound of known concentration added to a sample to facilitate the qualitative identification and/or quantitative determination of the sample components (ISO 20752)
- 3.2.8. *marijuana, n* or "marihuana" as defined in the Federal Controlled Substances Act (CSA) means all parts of the plant *Cannabis sativa* L., whether growing or not; the seeds thereof; the resin extracted from any part of such plant; and every compound, manufacture, salt, derivative, mixture, or preparation of such plant, its seeds or resin. The term "marihuana" does not include hemp and does not include the mature stalks of such plant, fiber produced from such stalks, oil or cake made from the seeds of such plant, any other compound, manufacture, salt, derivative, mixture, or preparation of such mature stalks (except the resin extracted therefrom), fiber, oil, or cake, or the sterilized seed of such plant which is incapable of germination. "Marihuana" means all *Cannabis* that tests as having a THC concentration level of higher than 0.3 percent on a dry weight basis. (DOA 7 CFR Part 990 Establishment of a Domestic Hemp Production Program)
 - 3.2.9. *total THC, n* the value determined after the process of decarboxylation, or the application of a conversion factor if the testing methodology does not include decarboxylation, that expresses the potential total delta-9 tetrahydrocannabinol content derived from the sum of the THC and THCA content and reported on a dry weight basis. (DOA 7 CFR Part 990 Establishment of a Domestic Hemp Production Program)
 - 3.2.9.1. *Discussion* delta-9 THCA is a component of *Cannabis* that decarboxylates to delta-9 THC when heated. Also known as delta-9 Tetrahydrocannabinolic Acid or delta-9 THC Carboxylic Acid.
- 3.2.10. *THC, n* for the purpose of this standard, refers primarily to delta-9 THC, but can include other THC isomers (e.g., delta-8-THC) depending on jurisdictional requirements.
- 3.2.11. *trichome, n* hair-like projections from a plant epidermal cell. (United Nations Office on Drugs and Crime (UNODC) Recommended methods for the identification and analysis of *Cannabis* and *Cannabis* products, 2022.)
- 3.2.12. *isomers, n* Compounds that have the same elemental formula, but have different structural configurations, and different physical and/or chemical properties. (Retrieved January 26, 2022 from OSAC lexicon, https://lexicon.forensicosac.org/)
- **4.** Sigr
 - 4. Significance and Use
- 1214.1.An analytical scheme is created to generate results for the assessment of THC in the122analysis of suspected marijuana in seized-drug evidence. An analytical scheme is a123combination of selected techniques used to reach a result, and is comprised of validated124analytical methods that are appropriate for the analyte(s) or properties of interest. The125combination of techniques chosen should aim to minimize false positives and false126negatives.
- 127NOTE 1 This standard provides information that could assist in the differentiation128between marijuana and hemp.

Identification only analytical schemes that do not include a decision point 129 4.1.1. analysis or quantitative analysis cannot differentiate hemp from marijuana. They 130 131 only provide information for the identification of Cannabis. 4.2. This Practice applies to plant material only, and does not cover derivatives, mixtures, or 132 133 preparations such as concentrates, oils, or edibles. 4.3. These techniques cannot determine subspecies. 134 135 Sampling and Storage 136 5. If sampling in the field, follow DOA 7 CFR Part 990 Establishment of a Domestic Hemp 137 5.1. 138 Production Program. 139 5.2. Random sampling should be conducted (see Guide E2548) to address variations of THC content. 140 5.2.1. 141 If one unit is received, sample portions from different areas within the unit. 142 5.2.2. If multiple units are received, do not combine. Use a sampling plan (e.g., hypergeometric approach, sample selection, sampling to penalty) to determine 143 the number of units to sample individually. 144 Stems, stalks, and seeds should be excluded from sampling for qualitative and 5.2.3. 145 quantitative analysis. 146 147 5.3. Packaging/Storage - Fresh plant material should be packaged to allow the samples to dry 148 (e.g., paper bags or perforated cardboard boxes), minimizing the amount of moisture and deterioration of the plant material. 149 5.3.1. THC is sensitive to air and UV light, therefore storage in a dark and cool place is 150 recommended. (UNODC Recommended methods for the identification and 151 analysis of Cannabis and Cannabis products, 2022). 152 The laboratory can establish additional procedures to refrigerate plant material 5.3.2. 153 samples. 154 155 5.3.3. If samples are received in a deteriorating state, the samples can still be analyzed. Document the state of the evidence in the case file. 156 157 6. **Building an Analytical Scheme** 158 159 6.1. The combination of analyses can be selected based on the information required (*i.e.* quantitation vs. decision point). Figure 1 illustrates the combination of testing that can be 160 performed to identify marijuana. The individual tests are described in detail in the 161 subsequent sections. 162 6.2. Minimum test requirements 163 6.2.1. Morphological Assessment 164 6.2.1.1. If a negative result is observed, this standard is no longer applicable. 165 166 6.2.2. An analysis that provides structural data to confirm the presence of THC This can be combined with the decision point analysis or full quantitation 167 6.2.2.1. if those tests provide structural data. 168 6.2.3. An analysis to assess the amount of THC present in the item (decision point or 169 170 full quantitation, or both). The analytical scheme provides a scientifically supported conclusion when each 6.3. 171 technique achieves the level of selectivity required and the positive test results 172 173 corroborate each other. (SWGDRUG Recommendations Version 8.0, SWGDRUG, 2019)



- 174 6.4. Additional testing can be completed as described in Section 8.
- 175
- 176
- 177

178

179		
180		Figure 1: Suspected marijuana analysis scheme flowcharts
181		
182 183 184 185 186 187 188 189 190 191	7. M 7. 7.	exhibits. Additional macroscopic observations can include documentation of color, stems/fruiting stalks, form (e.g., loose, compressed, ground), presence of seeds, palmate leaves with 3-11 leaflets, individual leaves with ellipsoid blade and serrated edges.
192 193 194 195 196 197 198		 7.2.1.1. Unicellular cystolithic trichomes contain a crystal of calcium carbonate at the base. Addition of dilute acid to the plant material surface, and observation of the resulting effervescence of the carbon dioxide formed as a result of the chemical reaction, can aid in distinguishing these hairs from other unicellular covering trichomes but is not required. 7.2.2. Multicellular glandular trichomes are found on the upper and lower surfaces of the leaves and have a shiny appearance. See Figure 2 for an illustration.

of	gure 2: Figure 2 depicts cystolithic hairs and multicellular glandular trichomes the <i>Cannabis</i> plant material at a magnification of 50X (source: DuPage county eriff's Office).
sin alo lea <i>and</i> 7.2.4. It s lea exa	servation of cystolithic hairs alone is not sufficient to report marijuana. The nultaneous presence of cystolithic trichomes on the upper surface of the leaves, ng with the presence of non-cystolithic trichomes on the lower surface of the ves must be observed (UNODC <i>Recommended methods for the identification</i> <i>d analysis of Cannabis and Cannabis products</i> , 2022). hould be noted, however, that very immature seedlings and stems with no ves attached cannot be definitively identified as <i>Cannabis</i> by botanical amination. (UNODC <i>Recommended methods for the identification and</i> <i>alysis of Cannabis and Cannabis products</i> , 2022).
8.1. Color Tests 8.1.1. Du tes to o rem of blu of to j 8.1.1.1	quenois-Levine - Place a small amount of plant material (30 mg - 100 mg) in a t tube or other container. Cover with petroleum ether (or other organic solvent) extract the cannabinoids into the solvent, filter or decant the solution to nove the residual plant material, evaporate to dryness, and add a small amount Duquenois reagent and an equal amount of concentrated hydrochloric acid. A te to purple color should develop within a few minutes. Add a small amount chloroform or methylene chloride, shake, and let the layers separate. A violet purple color in the organic layer indicates a positive test for cannabinoids. . Alternatively, the Duquenois reagent and concentrated hydrochloric acid can be added directly to a small amount of plant material.
	of t She 7.2.3. Ob sin alo lea <i>ana</i> 7.2.4. It s lea exa <i>ana</i> 8.1. Color Tests 8.1.1. Du tes to o rem of t blu of a

232	Elerk (2D) THC Merijuana Elerk (2D) THC Merijuana
233	Figure 3A Figure 3B Figure 3C
234 235 236 237 238	Figures 3A-3C: Figure 3A depicts resulting observations when the Duquenois reagent is added to samples of cannabidiol (CBD), THC, and suspected marijuana plant material. Figure 3B depicts the resulting observations when an equal volume of concentrated hydrochloric acid is added. Figure 3C depicts the resulting observations when chloroform or methylene chloride is added. (source DEA)
239 240 241 242 243 244 245 246 247 248 249	 8.1.2. 4-Aminophenol (4-AP) - A small amount of material (5 mg) can be placed in a test tube or spot plate and covered with the 4-AP Reagent A Solution. Add 2-4 drops of the Reagent B solution and wait 1-2 minutes. A blue color is indicative of the THC concentration being greater than the cannabidiol (CBD) concentration in the sample. A pink color is indicative of the THC concentration being less than the CBD concentration in the sample. If the concentration of THC is equivalent to the concentration of CBD, the test will be inconclusive. 8.1.2.1. Note: 4-AP Reagent A consists of 300 mg of 4-aminophenol, 5 mL of 2N HCl, and 995 mL of ethanol (e.g., 95%, 200 proof). Reagent B consists of 30 g sodium hydroxide, 300 mL of water, and 700 mL of ethanol. The reagent preparation can be scaled up or down as needed.
250	

252 Figure 4A

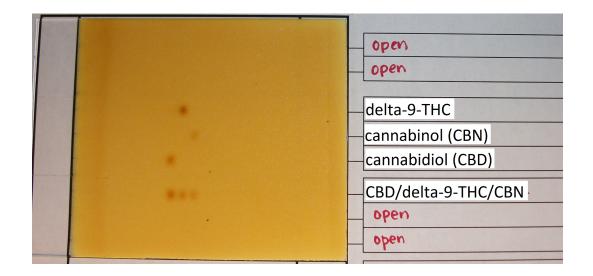
251

253

254

255 256

257


Figure 4B

Figures 4A and 4B: Figure 4A depicts resulting observations when the 4-AP test Reagent A added to samples of CBD, THC, and suspected marijuana plant material. Figure 4B depicts resulting observations when the 4-AP test Reagent B is added to the same samples of CBD, THC, and suspected marijuana plant material. The color blue will appear for a sample where THC was in greater concentration than CBD. (source: DEA)

8.2. Thin Layer Chromatography (TLC) - TLC can be used to compare the retention factor of
the cannabinoid to that of a reference material. Possible TLC plates include silica gel G
250 micron. Possible solvent systems include 4:1 Petroleum Ether:Diethyl ether or 4:1

Hexane:Diethyl Ether. Visualization reagents that can be utilized are Fast Blue B, Fast 261 Blue 2B spray and iodine (vapor). 262 263 8.2.1. Use method validation data to determine the acceptance criteria for retention factor comparisons. For example, the retention factor of the analyte can be 264 within 5% of the retention factor of the reference material). 265 266 8.2.2. Alternatively, visually compare the sample spots to the reference spots at the greatest density in position and color. Some visualization reagents also allow for 267 color differences between the substances present. 268 A picture of the TLC plate can be captured to document the observations. 269 8.2.3. 270 271 272 273 274 275 276 277

278

279

280

281

Figure 5: TLC plate developed using 4:1 petroleum ether:diethyl ether solvent system, silica gel G 250 micron plate, and visualized using iodine (vapor). Source: GBI DOFS

282

					Contract of and an and and
					40 ng/μL CBD
					40 ng/μL delta-9 THC
					9(R) delta-6a, 10a-THC
					(6aR, 9S) delta-10-THC
					delta-8-THC
283				0	
284 285				6: TLC plate developed using 4:1 hexane:diethyl zed using Fast Blue B spray. Source: NMS Labs	ether solvent system and
286 287 288 289 290 291 292 293 294 295		8.3.	identif or both methyl routine The ov temper	hromatography/Mass Spectrometry (GC/MS) - GC ication of individual cannabinoids by comparing t h, to reference materials. 100% dimethylpolysilox polysiloxane, or 35% phenyl 65% dimethylpolysi ely utilized, with a 1μL injection volume and inlet ren temperature program can vary. Individual meth rature, temperature program, flow rates, and colum d development and tested during method validatio Example oven temperature program: initial temp 1°C/minute, to a final temperature of 250°C, hol	he retention time, mass spectrum, cane, 5% (phenyl)- loxane stationary phases are temperature of at least 250 °C. hod set points including inlet on chemistry are evaluated during n. perature 220°C, ramping at
296 297 298 299 300	9.	Quali 9.1.	The qu	nalysis Using Decision Point Thresholds alitative analysis of <i>Cannabis</i> samples using a dec med in a number of ways. However, procedures ty	
301 302 303			thresho	2 – Decision point thresholds are above those jun olds. The measurement uncertainty around the dec al threshold.	
304 305 306 307 308 309 310 311 312 313		9.2.	Sample 9.2.1. 9.2.2. 9.2.3.	e Preparation Drying (optional) - Dry plant material in an over to be homogenized (e.g., 1 hour at 60 °C). Homogenization (optional) - Grind plant materia disposable hand-held herb grinder or mortar and homogenization should exclude stalks, stems, ro Extraction - Weigh a sample of plant material. T determined during validation of the method. If homogenized, crumble the weighed plant materi place into a test tube. Add extraction solution. A	al with a device such as a pestle. The material sampled for tots, and seeds. The amount of sample to weigh is the material was not previously al (approximately 50 mg) and
313 314				for approximately 10-15 minutes or a period of t	

315				development or optimization. Vortex during this time. After extraction
316				tion can be filtered or centrifuged and the supernatant collected to remove
317			particul	
318		9.2.4.		Internal Standard – An internal standard solution can be added as part of
319				action solvent or added post extraction. Common internal standards
320				are 4-Androstene-3,17-dione, tribenzylamine (TBA), testosterone, and
321				ed delta-9-THC. The concentration of the internal standard is typically
322				ff value for the defined decision point.
323		9.2.5.	Aliquot	Samples for Instrumental Analysis - Pipette a set volume of extract into a
324			test tube	e and add internal standard if internal standard is not part of the extraction
325			solvent.	Vortex and transfer to an autosampler vial. If samples are believed to be
326			high con	ncentration, a dilution can be performed prior to analysis.
327		9.2.6.	Derivati	ization (optional) - Derivatization can be conducted to obtain
328			identific	cation of THC and THCA separately as opposed to the total THC. Add
329			the deriv	vatizing agent (e.g., BSTFA-TMCS) to the extracted solution containing
330				rnal standard or the dried residue from the extracted solution. The time
331			and tem	perature at which the sample is derivatized as well as appropriate
332				s of sample and derivatizing agent are determined during method
333			validatio	
334	9.3.	Prepara	tion of C	Calibrators and Controls
335		9.3.1.		n Point with One-point Comparison
336		9.3		THC Calibrator at Decision Point - Prepare a THC standard by diluting a
337				certified reference material (CRM) to an appropriate concentration in
338				solvent. Then add a set volume of the standard to a test tube and add
339				internal standard. Vortex and transfer to an autosampler vial.
340		9.3		CBD Conversion Control - Because of potential conversion of CBD to
341		2.00		THC in the GC injection port when the sample is analyzed underivatized,
342				procedures that use GC with no derivitzation should include a CBD
343				conversion control. This can be prepared at a high concentration to
344				demonstrate no conversion to THC or used to determine a cut-off
345				concentration above which the THC result cannot be used. The FSSP
346				should assess the conversion of CBD to THC during method
347				development and validation. Frequency of injection port maintenance,
348				consumables used in the injection port, and amount of CBD present in
349				samples can affect the magnitude of conversion. This should be taken
350				into account in validation experiments. Prepare a CBD standard by
351				diluting a CRM to an appropriate concentration in solvent. Add a set
352				volume of standard to a test tube and add internal standard. Vortex and
353				transfer to an autosampler vial. The CBD conversion control should be
354				analyzed throughout the run to monitor conversion.
355		0 3		THC Control at Decision Point - Prepare a second THC standard from a
356)		different CRM to an appropriate concentration in solvent. This can be
357				done using a different lot of CRM, or a different manufacturer. Add a set
358				volume of standard to a test tube and add internal standard. Vortex and
358 359				
		9.3.2.		transfer to an autosampler vial. n Point with Internal Standard
360				
361		9.5		THC control above decision point - prepare a THC standard by
362				dissolving a reference material to an appropriate concentration (above

363					the decision point) in internal standard solution. Vortex and transfer to an
364					autosampler vial.
365			9.	3.2.2.	THC control below decision point - prepare a second THC standard by
366					dissolving a reference material to an appropriate concentration (below
367					the decision point) in internal standard solution. Vortex and transfer to an
368					autosampler vial.
369			9.	3.2.3.	Alternatively, controls can be prepared by extracting well-characterized
370					plant reference materials that are above and below the decision point,
371					using the same preparation procedure as sample(s) (see 8.2 above).
372		9.4.	Instrun	nental A	
373		-	9.4.1.		nromatography/Mass Spectrometry (GC/MS) - Acquire data by analyzing
374			<i>,</i>		es, calibrators, and controls (as applicable) on an appropriate, validated
375					I. A 5% (phenyl)-methylpolysiloxane stationary phase is routinely utilized,
376					with a 1 μ L injection volume and an inlet temperature of 250 °C. The oven
377					ature program can vary. Data acquisition can be performed using full scan,
378					SIM/scan. Individual method set points including inlet temperature,
379					ature program, flow rates, and column chemistry are evaluated during
380				·	d development and tested during method validation.
381			9.4.2.		nromatography/Flame Ionization Detection (GC/FID) - A second aliquot of
382			, <u>-</u> .		racted sample is often analyzed by GC/FID. A 100%
383					ylpolysiloxane stationary phase is often utilized. Instrument parameters
384					ally similar or the same as those used during the GC/MS analysis.
385			9.4.3.		ethod should be able to resolve delta-6a,10a-THC, delta-7-THC, delta-8-
386			<i>yy</i> .		delta-9-THC, delta-10-THC, and other THC isomers present in <i>Cannabis</i> .
387					d validation should include an assessment of interference to ensure the
388					ce of multiple cannabinoids will not prevent the accurate determination of
389				.	es of interest.
390		9.5.	Data A	•	
391		2.01	9.5.1.	•	ysis is performed using a one-point threshold, create a one-point
392			,		rison and calculate the amount of THC in case samples and control
393				sample	*
394			9.5.2.	1	ysis is performed using a decision point with internal standard, calculate
395			9.0.2.		o of sample THC to internal standard, using either peak area or peak
396				height.	· · · · ·
550				neight.	
397					
398	10.	Quar	ntitative A	Analysis	
399	± V•	10.1.	Drying		
400		10.11	10.1.1.		tation is performed on plant material on a dry weight basis. During method
401			10.1.1.		ion, determine a drying time and temperature that renders the majority of
402					es seen in casework sufficiently dry for quantitative analysis. In order to
403				-	sample, one of the following procedures should be performed:
404			10	1.1.1.	Moisture balance - The moisture balance will dry and weigh a sample.
405			10.	1.1.1.	The loss on drying can be calculated and applied as a correction to the
406					quantitative value obtained. The sample weighed on the moisture balance
407					should not be the same sample used to perform the quantitation.
408			10	1.1.2.	Obtain a weight of the sample. Dry plant material in an oven for
409			10.	1.1.2.	approximately 1 hour at 60 °C. Re-weigh the sample. If the change in
-05					approximatory i nour at 00 0. No worgh the sample. If the change in

410			weight is greater than the acceptance criteria established in validation,
411			place the sample back in the oven for further drying. Dry until the change
412			in weight meets validation acceptance criteria.
413		10.	1.1.3. Dry to constant weight - Continue drying until two consecutive
414			weighings do not differ by more than 0.50 mg per g of substance taken.
415			(USP-NF General Notices and Requirements, 6.40.20, GUID-6E790F63-
416			0496-4C20-AF21-E7C283E3343E 6 en-US)
417	10.2.	Homog	genization
418		10.2.1.	Grind plant material with a device, such as mortar and pestle. The material
419			sampled for homogenization should exclude stalks, stems, roots, and seeds.
420	10.3.	Weigh	Quantitation Sample(s)
421		10.3.1.	Weigh an aliquot of the homogenized material for extraction. The aliquot weight
422			should be determined in method validation.
423	10.4.	Extrac	
424	10.11	10.4.1.	Add extraction solution and internal standard solution (if applicable) and
425		10	vortex/rotate . Sonicate/rotate the plant material to facilitate extraction of the
426			cannabinoids. Sonicate/rotate the samples for approximately 10-15 minutes or a
427			set period of time that is determined during validation of the method.
428			Centrifuge/filter the samples and collect the supernatant to exclude particulates.
429	10.5.	Dilutic	on (Optional)
430	10.5.	10.5.1.	Pipette a set volume of supernatant into a test tube. Dilute with solvent or mobile
431		10.3.1.	phase at an appropriate volume so quantitated samples will fall within the
431			calibration curve.
	10.6	A .d.d.;+;;	
433	10.6.		onal Sample Preparation (Optional)
434		10.6.1.	Perform a liquid/liquid extraction or solid phase extraction on a specified volume
435			of supernatant. This step can be used for additional sample clean up prior to
436	107	р [.]	instrumental analysis if required.
437	10.7.		tization (Optional)
438		10.7.1.	To prevent conversion of THCA to THC, the sample can be derivatized using
439			BSTFA-TCMS. This will allow for quantitation of the components separately if
440			analysis is performed on a platform such as GC/MS where decarboxylation will
441			occur during analysis. The time and temperature at which the sample is
442			derivatized as well as appropriate volumes of sample and derivatizing agent
443			should be determined during method validation.
444	10.8.		ation of Calibrators and Control
445		10.8.1.	Prepare THC calibration standards by diluting a CRM to appropriate
446			concentrations in the extraction/dilution solvent and internal standard (if
447			applicable). Vortex/rotate and transfer to an autosampler vial.
448		10.8.2.	Prepare THC control samples by diluting a different lot (or vendor) of CRM to
449			appropriate concentrations in the extraction/dilution solvent and internal standard
450			(if applicable). Vortex/rotate and transfer to an autosampler vial.
451		10.8.3.	Prepare CBD conversion control if performing quantitative analysis using a
452			heated method without derivatization by diluting a CRM to appropriate
453			concentrations in the extraction/dilution solvent and internal standard (if
454			applicable). Vortex/rotate and transfer to an autosampler vial.
455		10.8.4.	Any calibrators and controls should be prepared using the same process as the
456			samples. For instance, if sample preparation requires derivatization, the
457			calibrators and controls should also be derivatized.
458	10.9.	Instrur	nental Analysis
			-

459	10.	9.1. Analyze the THC calibration standards, THC controls, and samples on a
460		validated method. The method should be able to resolve delta-6a,10a-THC, delta-
461		7-THC, delta-8-THC, delta-9-THC, delta-10-THC, and other THC isomers
462		present in Cannabis. Method validation should include an assessment of
463		interference to ensure the presence of multiple cannabinoids will not prevent the
464		accurate quantitation of analytes of interest.
465	10	9.2. Multi-point calibration curves are preferable to calculate the amount of THC in
466	10	case samples.
467		10.9.2.1. The recommended minimum is three calibrators, not including the origin.
468		10.9.2.1. The recommended minimum is three canorators, not meruding the origin. 10.9.2.2. A single-point calibration can be valid for quantitation as long as method
469		validation includes assessing linearity, and the y-intercept is shown to be
470	10	negligible.
471	10.	9.3. Establish acceptance criteria for any control samples analyzed. These criteria
472		must be met for the data to be considered acceptable and results reported for case
473		samples
474	10.	.9.4. Instrumental analysis can be performed on a variety of platforms. Example
475		instrument parameters are listed below. Alternatives are acceptable as long as the
476		method is validated.
477		10.9.4.1. LC:
478		• C18 columns are routinely used.
479		• Routine mobile phases can include 0.1% v/v formic acid in water:0.05%
480		v/v formic acid in methanol or 0.1% TFA in water:0.1% TFA in
481		acetonitrile.
482		10.9.4.2. GC
483		• Routine stationary phases can include 100% dimethylpolysiloxane, 5%
483		• Routine stationary phases can include 100% dimethylpolysiloxane, 5%
483 484	11. Uncerta	• Routine stationary phases can include 100% dimethylpolysiloxane, 5% (phenyl)-methylpolysiloxane, or 35% phenyl 65% dimethylpolysiloxane.
483 484 485 486		 Routine stationary phases can include 100% dimethylpolysiloxane, 5% (phenyl)-methylpolysiloxane, or 35% phenyl 65% dimethylpolysiloxane.
483 484 485 486 487	11.1.	 Routine stationary phases can include 100% dimethylpolysiloxane, 5% (phenyl)-methylpolysiloxane, or 35% phenyl 65% dimethylpolysiloxane. hinty of Measurement Calculate the uncertainty of measurement for quantitative analysis and qualitative
483 484 485 486 487 488	11.1.	 Routine stationary phases can include 100% dimethylpolysiloxane, 5% (phenyl)-methylpolysiloxane, or 35% phenyl 65% dimethylpolysiloxane. anty of Measurement Calculate the uncertainty of measurement for quantitative analysis and qualitative decision point analyses at the threshold value.
483 484 485 486 487 488 489	11.1.	 Routine stationary phases can include 100% dimethylpolysiloxane, 5% (phenyl)-methylpolysiloxane, or 35% phenyl 65% dimethylpolysiloxane. ninty of Measurement Calculate the uncertainty of measurement for quantitative analysis and qualitative decision point analyses at the threshold value. 1.1. Measurement uncertainty is reported with quantitative results and for statements
483 484 485 486 487 488 489 490	11.1. 11.	 Routine stationary phases can include 100% dimethylpolysiloxane, 5% (phenyl)-methylpolysiloxane, or 35% phenyl 65% dimethylpolysiloxane. hinty of Measurement Calculate the uncertainty of measurement for quantitative analysis and qualitative decision point analyses at the threshold value. 1.1. Measurement uncertainty is reported with quantitative results and for statements of conformity (see ISO/IEC 17025).
483 484 485 486 487 488 489 490 491	11.1. 11.	 Routine stationary phases can include 100% dimethylpolysiloxane, 5% (phenyl)-methylpolysiloxane, or 35% phenyl 65% dimethylpolysiloxane. inty of Measurement Calculate the uncertainty of measurement for quantitative analysis and qualitative decision point analyses at the threshold value. Measurement uncertainty is reported with quantitative results and for statements of conformity (see ISO/IEC 17025). The uncertainty for the method should be calculated at the decision point
483 484 485 486 487 488 489 490 491 492	11.1. 11.	 Routine stationary phases can include 100% dimethylpolysiloxane, 5% (phenyl)-methylpolysiloxane, or 35% phenyl 65% dimethylpolysiloxane. anty of Measurement Calculate the uncertainty of measurement for quantitative analysis and qualitative decision point analyses at the threshold value. Measurement uncertainty is reported with quantitative results and for statements of conformity (see ISO/IEC 17025). The uncertainty for the method should be calculated at the decision point threshold. As a quantitative value is not reported, a specific uncertainty value is
483 484 485 486 487 488 489 490 491 492 493	11.1. 11. 11.	 Routine stationary phases can include 100% dimethylpolysiloxane, 5% (phenyl)-methylpolysiloxane, or 35% phenyl 65% dimethylpolysiloxane. anty of Measurement Calculate the uncertainty of measurement for quantitative analysis and qualitative decision point analyses at the threshold value. Measurement uncertainty is reported with quantitative results and for statements of conformity (see ISO/IEC 17025). The uncertainty for the method should be calculated at the decision point threshold. As a quantitative value is not reported, a specific uncertainty value is not reported for samples.
483 484 485 486 487 488 489 490 491 492 493 494	11.1. 11. 11. 11.2.	 Routine stationary phases can include 100% dimethylpolysiloxane, 5% (phenyl)-methylpolysiloxane, or 35% phenyl 65% dimethylpolysiloxane. aninty of Measurement Calculate the uncertainty of measurement for quantitative analysis and qualitative decision point analyses at the threshold value. 1.1. Measurement uncertainty is reported with quantitative results and for statements of conformity (see ISO/IEC 17025). 1.2. The uncertainty for the method should be calculated at the decision point threshold. As a quantitative value is not reported, a specific uncertainty value is not reported for samples. There are a variety of approaches that can be used for the determination of measurement
483 484 485 486 487 488 489 490 491 492 493 494 495	11.1. 11. 11. 11.2.	 Routine stationary phases can include 100% dimethylpolysiloxane, 5% (phenyl)-methylpolysiloxane, or 35% phenyl 65% dimethylpolysiloxane. ninty of Measurement Calculate the uncertainty of measurement for quantitative analysis and qualitative decision point analyses at the threshold value. 1.1. Measurement uncertainty is reported with quantitative results and for statements of conformity (see ISO/IEC 17025). 1.2. The uncertainty for the method should be calculated at the decision point threshold. As a quantitative value is not reported, a specific uncertainty value is not reported for samples. There are a variety of approaches that can be used for the determination of measurement uncertainty. At a minimum, uncertainty from sampling and the method of analysis should
483 484 485 486 487 488 489 490 491 492 493 494 495 496	11.1. 11. 11. 11.2.	 Routine stationary phases can include 100% dimethylpolysiloxane, 5% (phenyl)-methylpolysiloxane, or 35% phenyl 65% dimethylpolysiloxane. inty of Measurement Calculate the uncertainty of measurement for quantitative analysis and qualitative decision point analyses at the threshold value. 1.1. Measurement uncertainty is reported with quantitative results and for statements of conformity (see ISO/IEC 17025). 1.2. The uncertainty for the method should be calculated at the decision point threshold. As a quantitative value is not reported, a specific uncertainty value is not reported for samples. There are a variety of approaches that can be used for the determination of measurement uncertainty. At a minimum, uncertainty from sampling and the method of analysis should be included when determining uncertainty of measurement for quantitative analysis
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497	11.1. 11. 11. 11.2.	 Routine stationary phases can include 100% dimethylpolysiloxane, 5% (phenyl)-methylpolysiloxane, or 35% phenyl 65% dimethylpolysiloxane. anty of Measurement Calculate the uncertainty of measurement for quantitative analysis and qualitative decision point analyses at the threshold value. 1.1. Measurement uncertainty is reported with quantitative results and for statements of conformity (see ISO/IEC 17025). 1.2. The uncertainty for the method should be calculated at the decision point threshold. As a quantitative value is not reported, a specific uncertainty value is not reported for samples. There are a variety of approaches that can be used for the determination of measurement uncertainty. At a minimum, uncertainty from sampling and the method of analysis should be included when determining uncertainty of measurement for quantitative analysis (Supplemental Document SD-4: Measurement Uncertainty for Quantitative
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498	11.1. 11. 11. 11.2.	 Routine stationary phases can include 100% dimethylpolysiloxane, 5% (phenyl)-methylpolysiloxane, or 35% phenyl 65% dimethylpolysiloxane. Ainty of Measurement Calculate the uncertainty of measurement for quantitative analysis and qualitative decision point analyses at the threshold value. 1.1. Measurement uncertainty is reported with quantitative results and for statements of conformity (see ISO/IEC 17025). 1.2. The uncertainty for the method should be calculated at the decision point threshold. As a quantitative value is not reported, a specific uncertainty value is not reported for samples. There are a variety of approaches that can be used for the determination of measurement uncertainty. At a minimum, uncertainty from sampling and the method of analysis should be included when determining uncertainty of measurement for quantitative analysis (Supplemental Document SD-4: Measurement Uncertainty for Quantitative Determinations in Seized Drug Analysis, SWGDRUG, 2013). The following are
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499	11.1. 11. 11. 11.2.	 Routine stationary phases can include 100% dimethylpolysiloxane, 5% (phenyl)-methylpolysiloxane, or 35% phenyl 65% dimethylpolysiloxane. Anny of Measurement Calculate the uncertainty of measurement for quantitative analysis and qualitative decision point analyses at the threshold value. 1.1. Measurement uncertainty is reported with quantitative results and for statements of conformity (see ISO/IEC 17025). 1.2. The uncertainty for the method should be calculated at the decision point threshold. As a quantitative value is not reported, a specific uncertainty value is not reported for samples. There are a variety of approaches that can be used for the determination of measurement uncertainty. At a minimum, uncertainty of measurement for quantitative analysis (Supplemental Document SD-4: Measurement Uncertainty for Quantitative Determinations in Seized Drug Analysis, SWGDRUG, 2013). The following are examples of components that can be assessed when calculating measurement uncertainty:
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500	11.1. 11. 11. 11.2.	 Routine stationary phases can include 100% dimethylpolysiloxane, 5% (phenyl)-methylpolysiloxane, or 35% phenyl 65% dimethylpolysiloxane. aninty of Measurement Calculate the uncertainty of measurement for quantitative analysis and qualitative decision point analyses at the threshold value. 1.1. Measurement uncertainty is reported with quantitative results and for statements of conformity (see ISO/IEC 17025). 1.2. The uncertainty for the method should be calculated at the decision point threshold. As a quantitative value is not reported, a specific uncertainty value is not reported for samples. There are a variety of approaches that can be used for the determination of measurement uncertainty. At a minimum, uncertainty from sampling and the method of analysis should be included when determining uncertainty of measurement for quantitative analysis (Supplemental Document SD-4: Measurement Uncertainty for Quantitative Determinations in Seized Drug Analysis, SWGDRUG, 2013). The following are examples of components that can be assessed when calculating measurement uncertainty: 2.1. Calibration material
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499	11.1. 11. 11. 11.2.	 Routine stationary phases can include 100% dimethylpolysiloxane, 5% (phenyl)-methylpolysiloxane, or 35% phenyl 65% dimethylpolysiloxane. Ainty of Measurement Calculate the uncertainty of measurement for quantitative analysis and qualitative decision point analyses at the threshold value. 1.1. Measurement uncertainty is reported with quantitative results and for statements of conformity (see ISO/IEC 17025). 1.2. The uncertainty for the method should be calculated at the decision point threshold. As a quantitative value is not reported, a specific uncertainty value is not reported for samples. There are a variety of approaches that can be used for the determination of measurement uncertainty. At a minimum, uncertainty for measurement for quantitative analysis (Supplemental Document SD-4: Measurement Uncertainty for Quantitative Determinations in Seized Drug Analysis, SWGDRUG, 2013). The following are examples of components that can be assessed when calculating measurement uncertainty: 2.1. Calibration material 2.2. Balances used to weigh aliquots
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500	11.1. 11. 11. 11.2. 11. 11.	 Routine stationary phases can include 100% dimethylpolysiloxane, 5% (phenyl)-methylpolysiloxane, or 35% phenyl 65% dimethylpolysiloxane. aninty of Measurement Calculate the uncertainty of measurement for quantitative analysis and qualitative decision point analyses at the threshold value. 1.1. Measurement uncertainty is reported with quantitative results and for statements of conformity (see ISO/IEC 17025). 1.2. The uncertainty for the method should be calculated at the decision point threshold. As a quantitative value is not reported, a specific uncertainty value is not reported for samples. There are a variety of approaches that can be used for the determination of measurement uncertainty. At a minimum, uncertainty from sampling and the method of analysis should be included when determining uncertainty of measurement for quantitative analysis (Supplemental Document SD-4: Measurement Uncertainty for Quantitative Determinations in Seized Drug Analysis, SWGDRUG, 2013). The following are examples of components that can be assessed when calculating measurement uncertainty: 2.1. Calibration material
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501	11.1. 11. 11. 11.2. 11.2.	 Routine stationary phases can include 100% dimethylpolysiloxane, 5% (phenyl)-methylpolysiloxane, or 35% phenyl 65% dimethylpolysiloxane. Ainty of Measurement Calculate the uncertainty of measurement for quantitative analysis and qualitative decision point analyses at the threshold value. 1.1. Measurement uncertainty is reported with quantitative results and for statements of conformity (see ISO/IEC 17025). 1.2. The uncertainty for the method should be calculated at the decision point threshold. As a quantitative value is not reported, a specific uncertainty value is not reported for samples. There are a variety of approaches that can be used for the determination of measurement uncertainty. At a minimum, uncertainty for measurement for quantitative analysis (Supplemental Document SD-4: Measurement Uncertainty for Quantitative Determinations in Seized Drug Analysis, SWGDRUG, 2013). The following are examples of components that can be assessed when calculating measurement uncertainty: 2.1. Calibration material 2.2. Balances used to weigh aliquots
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502	11.1. 11. 11. 11.2. 11.2.	 Routine stationary phases can include 100% dimethylpolysiloxane, 5% (phenyl)-methylpolysiloxane, or 35% phenyl 65% dimethylpolysiloxane. Ainty of Measurement Calculate the uncertainty of measurement for quantitative analysis and qualitative decision point analyses at the threshold value. 1.1. Measurement uncertainty is reported with quantitative results and for statements of conformity (see ISO/IEC 17025). 1.2. The uncertainty for the method should be calculated at the decision point threshold. As a quantitative value is not reported, a specific uncertainty value is not reported for samples. There are a variety of approaches that can be used for the determination of measurement uncertainty. At a minimum, uncertainty of measurement for quantitative analysis (Supplemental Document SD-4: Measurement Uncertainty for Quantitative Determinations in Seized Drug Analysis, SWGDRUG, 2013). The following are examples of components that can be assessed when calculating measurement uncertainty: 2.1. Calibration material 2.2. Balances used to weigh aliquots 2.3. Uncertainty associated with volumetric glassware and pipettes

505

202		
506	12.	Reporting Language
507		12.1. THC is not identified in analysis
508		12.1.1. Samples can be reported as THC not present/detected or marijuana negative/not
509		detected
510		12.2. Qualitative Analysis Using Decision Point Threshold
511		12.2.1. Above Decision Point Threshold
512		12.2.1.1. If the testing scheme includes morphological examination to identify the
513		<i>Cannabis</i> plant and the amount of THC or total THC is greater than the
514		decision point, the sample can be reported as "marijuana" or the term
515		defined in the respective State law.
516		12.2.1.2. The THC content can be reported as greater than the decision point
517		threshold.
518		12.2.2. Below Decision Point Threshold
519		12.2.2.1. If the testing scheme includes an analysis to identify the <i>Cannabis</i> plant
520		and the amount of THC or total THC is less than the decision point, the
521		sample can be reported as "inconclusive for marijuana" or the THC
522		content as less than the decision point threshold.
523		12.2.3. Alternatively reports can contain a statement with an explanation of the results if
524		greater than/less than the decision point is not indicated for each item. See
525		examples below:
526		12.2.3.1. This item was tested using Gas Chromatography-Mass Spectrometry
527		(GC-MS), macroscopic examination, microscopic examination, and color
528		test(s). The <fssp name=""> uses a decision point threshold of <## %></fssp>
529		delta-9-tetrahydrocannabinol (THC) content in plant material, without
530		decarboxylation of tetrahydrocannabinolic acid (THCA), to conclusively
531		identify marijuana. Items above <decision point="" threshold="" value=""> are</decision>
532		reported as "marijuana" and items below <decision point="" td="" threshold<=""></decision>
533		value> are reported as "Inconclusive, not able to differentiate between
534		marijuana or hemp." Quantitative (purity) analysis was not performed.
535		12.2.3.2. Inconclusive - A determination of inconclusive indicates that the plant
536		material was unable to be identified as marijuana or hemp based on the
537		analytical results obtained from the analytical scheme.
538		12.3. Quantitative Analysis
539		12.3.1. Purity values with associated uncertainty are reported when quantitative analysis
540		is performed on samples. The report can contain a result pertaining to
541		"marijuana" or the term defined in the respective State law as appropriate.
542		12.3.1.1. Quantitative result is above 0.3% THC: Marijuana can be reported in
543		addition to the purity.
544		12.3.2. Quantitative result is below 0.3% THC or the uncertainty of measurement
545 546		encompasses 0.3% THC: Samples can be reported as <i>Cannabis</i> , hemp, or
546		marijuana negative/not detected along with the purity.
547 548		12.3.3. Quantitative result for THC is below the limit of quantitation (LOQ): In this situation a purity value is not reported. Samples can be reported as not present
548 549		above the reporting limit, below the value of the low calibrator (##), or below the
549 550		LOQ (##). In regards to the marijuana result, samples can be reported as
550 551		<i>Cannabis</i> , hemp, or marijuana negative/not detected.
JJT		Cumuois, nemp, or manjuana negative/not detected.

552

553	13.	Quality Assurance
554	10.	13.1. Quality control samples will be analyzed with each instrumental analytical run. Establish
555		acceptance criteria for control samples. These criteria must be met for the results obtained
556		for unknown samples to be reported.
557		13.1.1. Negative controls:
558		
559		contamination/carryover.
560		13.1.1.2. Method or procedural blanks (e.g., internal standard blank)/reagent
561		blanks are quality control samples used to assess the process. They
562		ensure that the reagents used to prepare the samples are free from
563		contamination.
564		13.1.2. Positive controls:
565		13.1.2.1. Positive controls are samples of known concentration analyzed on the
566		same method as casework samples. They ensure the method is producing
567		acceptable results. Positive control concentrations are chosen so they
568		encompass the analytical measurement range. In analyses where there is
569		a legal threshold, controls can be prepared above and below the legal
570		limit.
571		13.2. Validation
572		13.2.1. Method validations should be to conducted to evaluate each method for the
573		following when applicable (see Practice E2549): sensitivity, specificity,
574		selectivity, detection limits, accuracy, precision, effects of decarboxylation, and
575		any interferences from other cannabinoids (e.g., in situ production) or other
576		commonly seen substances.
577		13.3. Limitations
578		13.3.1. Limitations associated with instrumental analysis
579		13.3.1.1. Cannabinoid acids decarboxylate in a GC injection port if samples are
580		not derivatized. If analysis is performed by GC/MS or GC/FID without
581		derivatization, the delta-9-THC result will include free delta-9-THC and
582		decarboxylated THCA. CBDA will also decarboxylate to CBD.
583		13.3.1.2. It is possible for cannabinoids to interconvert to some extent under
584		different conditions. The potential for degradation and conversion should
585		be evaluated during method development and validation and monitored
586		when necessary during analysis of casework.
587		13.3.2. Limitations associated with color tests
588		
589		cannabinoid compounds with similar structural features can result in the
590		same color changes as the analyte of interest.
591		13.3.3. Limitations associated with TLC
592		13.3.3.1. Thin layer chromatography is a comparison technique. More than one
593		compound can have the same retention factor. Potential interferences
594		should be assessed and documented during validation.
595		
596	14.	Keywords
597		14.1. <i>Cannabis</i> ; Marijuana; Tetrahydrocannabinol; Seized Drugs

598

599 Appendices

600 XI. Table of Summary of Analytical Tests

Technique	Qualitative	Decision Point Threshold	Quantitative
Morphological Assessment	Х		
Duquenois Levine	Х		
FBBB	Х		
4-AP	Х		
TLC	Х		
GC/FID	Х	Х	Х
GC/MS	Х	Х	Х
LC-UV	Х	Х	Х
LC/MS	Х	Х	Х

601

602

603 XII. Examples of Analytical Schemes

604

Example Scenario 1: Determine if the sample is Marijuana using a full mass spectral scan decision pointthreshold.

Technique	Result	Test Type
Morphological Assessment	cystolithic hairs	Qualitative
GC/MS	THC over the decision point threshold	Decision Point Threshold

607 Reporting: The sample is Marijuana.

608

Example Scenario 2: Plant material submitted to determine if the sample is Marijuana using a decisionpoint threshold.

Technique	Result	Test Type
Morphological Assessment	cystolithic hairs	Qualitative
GC/MS	Delta-9-THC	Qualitative
GC/FID	THC over the decision point threshold	Decision Point Threshold

611 Reporting: The sample is Marijuana.

612

- 613 Example Scenario 3: Plant material with THC content more than CBD. Determine if the sample is
- 614 Marijuana using a decision point threshold.

Technique	Result	Test Type
Morphological Assessment	cystolithic hairs	Qualitative
4-AP	Blue	Qualitative
GC/MS	THC over the decision point threshold	Decision Point Threshold

615 Reporting: The sample is Marijuana.

616

- 617 Example Scenario 4: Plant material with THC less than the decision point and delta-8-THC is present.
- 618 Determine if the sample is Marijuana using a decision point threshold.

Technique	Result	Test Type
Morphological Assessment	cystolithic hairs	Qualitative
GC/MS (full scan)	Delta-9-THC below the decision point threshold and contains delta-8-THC	Decision Point Threshold

619 Reporting: The sample is inconclusive for Marijuana and contains delta-8-THC.

620

- 621 Example Scenario 5: Plant material with THC content less than CBD, but contains high concentrations of
- 622 CBN (a known false positive on the 4-AP test). Determine if the sample is Marijuana using a decision
- 623 point threshold.

Technique Result	Test Type
------------------	-----------

Morphological Assessment	cystolithic hairs	Qualitative
4-AP	Blue (false positive)	Qualitative
GC/MS (full scan)	CBD > THC and THC over the decision point threshold. High CBN observed.	Decision Point Threshold

624 Reporting: The results are inconclusive.