

2022-S-0006 Standard Practice for Gas Chromatography Electron Ionization Mass Spectrometry Analysis of Ignitable Liquids

Ignitable Liquids, Explosives & Gunshot Residue Subcommittee Chemistry: Trace Evidence Organization of Scientific Area Committees (OSAC) for Forensic Science

Draft OSAC Proposed Standard

2022-S-0006 Standard Practice for Gas Chromatography Electron Ionization Mass Spectrometry Analysis of Ignitable Liquids

Prepared by Ignitable Liquids, Explosives & Gunshot Residue Subcommittee Version: 1.0 - OSAC Open Comment November 2021

Disclaimer:

This OSAC Proposed Standard was written by the Ignitable Liquids, Explosives & Gunshot Residue Subcommittee of the Organization of Scientific Area Committees (OSAC) for Forensic Science following a process that includes an <u>open comment period</u>. This Proposed Standard will be submitted to a standards developing organization and is subject to change.

There may be references in an OSAC Proposed Standard to other publications under development by OSAC. The information in the Proposed Standard, and underlying concepts and methodologies, may be used by the forensic-science community before the completion of such companion publications.

Any identification of commercial equipment, instruments, or materials in the Proposed Standard is not a recommendation or endorsement by the U.S. Government and does not imply that the equipment, instruments, or materials are necessarily the best available for the purpose.

To be placed on the OSAC Registry, certain types of standards first must be reviewed by a Scientific and Technical Review Panel (STRP). The STRP process is vital to OSAC's mission of generating and recognizing scientifically sound standards for producing and interpreting forensic science results. The STRP shall provide critical and knowledgeable reviews of draft standards or of proposed revisions of standards previously published by standards developing organizations (SDOs) to ensure that the published methods that practitioners employ are scientifically valid, and the resulting claims are trustworthy.

The STRP panel will consist of an independent and diverse panel, including subject matter experts, human factors scientists, quality assurance personnel, and legal experts, which will be tasked with evaluating the proposed standard based on a comprehensive list of science-based criteria.

For more information about this important process, please visit our website at: https://www.nist.gov/topics/ organization-scientific-area-committees-forensic-science/scientific-technical-review-panels.

Standard Practice for Gas Chromatography Electron Ionization Mass Spectrometry Analysis of Ignitable Liquids

5 **1. Scope**

1.1 This practice covers the instrumental analysis of ignitable liquids, as well as extracts
from fire debris samples, by gas chromatography-electron ionization mass spectrometry (GCMS).

9 1.2 This practice describes performance criteria for use during initial GC-MS method
10 development and optimization, data evaluation and acceptance criteria, quality assurance and
11 quality control considerations, and limitations.

1.3 This standard is intended for use by competent forensic science practitioners with the
 requisite formal education, discipline-specific training (see Practice E2917), and demonstrated
 proficiency to perform forensic casework.

1.4 The values stated in SI units are to be regarded as the standard. No other units of
measurement are included in this standard.

- 1.5 This standard does not purport to address all of the possible safety concerns, if any,
 associated with its use. It is the responsibility of the user of this standard to establish
 appropriate safety, health, and environmental practices and determine the applicability of
 regulatory requirements prior to use.
- 21

22 2. Referenced Documents

- 23 $2.1 ASTM Standards^{1}$:
- E1386 Practice for Separation of Ignitable Liquid Residues from Fire Debris Samples by
 Solvent Extraction
- 26 E1388 Practice for Sampling of Headspace Vapors from Fire Debris Samples

¹ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

27 28	E1412 Practice for Separation of Ignitable Liquid Residues from Fire Debris Samples by Passive Headspace Concentration with Activated Charcoal
29 30	E1413 Practice for Separation of Ignitable Liquid Residues from Fire Debris Samples by Dynamic Headspace Concentration onto an Adsorbent Tube
31	E(CLASS) Classification for Ignitable Liquids Encountered in Forensic Fire Debris Analysis
32 33 34	E(INTRP) Test Method for Interpretation of Gas Chromatography-Electron Ionization Mass Spectrometry Data for the Identification of Ignitable Liquid Classes in Forensic Fire Debris Analysis
35	E1732 Terminology Relating to Forensic Science
36 37 38	E2154 Practice for Separation and Concentration of Ignitable Liquid Residues from Fire Debris Samples by Passive Headspace Concentration with Solid Phase Microextraction (SPME)
39 40	E2451 Practice for Preserving Ignitable Liquids and Ignitable Liquid Residue Extracts from Fire Debris Samples
41 42	WK72631 (E2549 Revision) Practice for Validation and Verification of Analytical Methods for Forensic Science Service Providers Performing Forensic Chemistry Analysis
43 44	E2881 Test Method for Extraction and Derivatization of Vegetable Oils and Fats from Fire Debris and Liquid Samples with Analysis by Gas Chromatography-Mass Spectrometry
45 46	E2917 Practice for Forensic Science Practitioner Training, Continuing Education, and Professional Development Programs
47 48	E3189 Practice for Separation of Ignitable Liquid Residues from Fire Debris Samples by Static Headspace Concentration onto an Adsorbent Tube
49	E3197 Terminology Relating to Examination of Fire Debris
50 51	E3245 Guide for Systematic Approach to the Extraction, Analysis, and Classification of Ignitable Liquids and Ignitable Liquid Residues in Fire Debris Samples
52 53	E3255 Practice for Quality Assurance of Forensic Science Service Providers Performing Forensic Chemical Analysis
54	
55	3. Terminology
56	3.1 Definitions:
57	3.1.1 For definitions of terms that can assist in interpreting this Practice, refer to
58	Terminology E1732, Terminology E3197, and Classification E(CLASS).

59 3.2 Definitions of Terms Specific to This Standard:

3.2.1 analytical batch, *n*—a set of samples that are analyzed together on the same
instrument; also known as a sample sequence

3.2.2 carryover, *n*—material left over from a previous sample that results in signal that is
 observed in the data of a subsequent sample

3.2.3 GC-MS method, *n*—the complete set of instrument parameters utilized in the analysis of a test sample.

66 3.3 *Abbreviations*:

3.3.1 C# - total number of carbon atoms associated with the substitutions on a base
molecule; for example, C3 alkyl benzenes include n-propyl benzene, 3-ethyl toluene, 1,2,4trimethyl benzene, etc.

70

71 **4. Significance and Use**

4.1 This Practice is useful for generating GC-MS data from ignitable liquids and extracts
from samples suspected to contain ignitable liquid residues. Refer to Guide E3245 for
perspective on the use of GC-MS within the framework of ignitable liquids analysis. Refer to
Practices E1386, E1388, E1412, E1413, E2154, and E3189 for sample preparation procedures.
Refer to Test Method E(INTRP) for interpretation of data generated using this Practice.
4.2 This Practice is intended to be used in conjunction with quality assurance procedures

- recovered in Practice E3255.
- 79

80 5. Apparatus

5.1 Gas Chromatograph (GC)—A chromatograph capable of using capillary columns and
being interfaced to a mass spectrometer.

- 5.1.1 Sample Inlet System—A sample inlet system that can be operated in either split or
 splitless mode with capillary columns.
- 5.1.2 GC Oven—A column oven capable of reproducible temperature program operation
 in the range from at least 35 to 300 °C.
- 5.1.3 Column—A capillary, bonded phase, methylsiloxane or phenylmethylsiloxane
 column or equivalent.

89	5.1.3.1 Alternate column stationary phases can be used for targeted analyses. As an		
90	example, screening for oxygenated compounds could be improved by use of a more polar		
91	column than those listed above.		
92	5.2 Mass Spectrometer (MS)—A mass selective detector capable of acquiring mass spectra		
93	from $m/z \ 10$ to $m/z \ 400$ with unit resolution or better.		
94	5.3 Data Station—A computerized data station capable of performing the following functions		
95	in conjunction with the GC-MS, either through its operating system or by user programming:		
96	5.3.1 Recording instrument parameters used during sample runs.		
97	5.3.2 Storing time sequenced mass spectral data from sample runs.		
98	5.3.3 Retrieving and displaying sample data files.		
99	5.3.4 Generating extracted ion profiles.		
100	5.3.5 Retrieving a specified mass spectrum from a data file and comparing it against one		
101	or more mass spectral libraries.		
102	5.3.6 Preparing data presentations in electronic or hard copy format.		
103	5.4 Mass Spectral Library—One or more searchable databases containing mass spectra of		
104	individual chemical compounds.		
105	5.5 Sample introduction devices.		
106	5.5.1 For liquid samples, a syringe capable of introducing a sample size appropriate for		
107	the volume of the inlet upon expansion of the injected solvent. Typical liquid sample sizes		
108	are in the range from 0.1 to 10 microliters.		
109	5.5.2 For vapor samples, a vapor-tight syringe capable of introducing a sample size		
110	appropriate for the volume of the inlet. Typical vapor sample sizes are in the range from 0.5		
111	to 5 milliliters.		
112	5.5.3 For some adsorbent tubes (see Practices E1413 and E3189) and for SPME fibers		
113	(see Practice E2154), a system capable of desorbing the trapped volatile compounds and		
114	introducing them into the GC-MS.		
115			
116	6. Chemicals, Reagents, and Reference Materials		

117	6.1 Purity of Reagents—Use reagent grade chemicals or better. Unless otherwise indicated,			
118	it is intended that all reagents conform to the specifications of the Committee on Analytical			
119	Reagents of the American Chemical Society where such specifications are available. ² Other			
120	grades can be used, provided it is first ascertained that the reagent is of sufficiently high purity to			
121	permit its use without lessening the accuracy of the determination.			
122	6.2 Solvent/Diluent—Use carbon disulfide, diethyl ether, pentane, or other solvent that does			
123	not interfere with the analysis. It is generally desirable to use a solvent whose volatility greatly			
124	exceeds that of most expected solutes to facilitate sample concentration by evaporation, if			
125	necessary. The polarity of the solvent should also be considered.			
126	6.3 Carrier Gas—Use helium or hydrogen of purity 99.995% or higher.			
127	6.4 Test Mixture—Use a test mixture that is suited to the GC-MS method being utilized.			
128	More than one test mixture can be used.			
129	6.4.1 The composition of a general-purpose ignitable liquids test mixture at minimum			
130	consists of the following components diluted in solvent:			
131	6.4.1.1 A mixture of alkanes (at least five normal alkanes ranging from n-hexane to n-			
132	eicosane) and aromatic compounds that cover the approximate volatility and polarity			
133	range of the ignitable liquid classes for which the GC-MS method was developed, and			
134	6.4.1.2 At least one pair of closely-eluting compounds, such as isomers or closely-			
135	eluting oxygenates, to facilitate the evaluation of the adequacy of the resolution of the			
136	GC-MS method.			
137	6.4.2 The composition of a targeted test mixture consists of compounds that cover the			
138	volatility range and composition of interest.			
139	6.4.3 Oxygenated compounds can be added to the general-purpose ignitable liquids test			
140	mixture or prepared as a separate targeted test mixture.			
141	6.4.4 Examples of suitable test mixtures are listed in Table 1. Refer to Test Method			
142	E2881 for information about test mixtures for use with vegetable-oil based (VOB) products.			
143				

² ACS Reagent Chemicals, Specifications and Procedures for Reagents and Standard-Grade Reference Materials, American Chemical Society, Washington, DC. For suggestions on the testing of reagents not listed by the American Chemical Society, see AnalaR Standards for Laboratory Chemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeia and National Formulary, U.S. Pharmacopeial Convention, Inc. (USPC), Rockville, MD.

144	Table 1: Examples of possi	ble test mixtures.		
	General Purpose Test Mixture	General Purpose Test Mixture	Targeted Test Mixture	
	with Oxygenated Compounds	without Oxygenated Compounds	for Oxygenated Compounds	
	Ethanol	N-alkanes (C_8 - C_{20})	Ethanol	
	Acetone	Methylcyclohexane	Acetone	
	2-Propanol (Isopropanol)	1-methyl-2-ethylbenzene	2-Propanol (Isopropanol)	
	2-Butanone	1-methyl-3-ethylbenzene	2-Butanone (Methyl ethyl ketone)	
	Even-numbered n-alkanes (C_6 - C_{20})	1,3,5-trimethylbenzene		
	l oluene	1-methyl-4-ethylbenzene		
	1-methyl-2-ethylbenzene			
	1-methyl-3-ethylbenzene			
	1,2,4-trimethylbenzene			
145	· · ·			
1/6	6 5 Reference Ignitable Liqu	ids—Maintain reference ignitabl	e liquids for the various	
140			e inquites for the various	
147	ignitable liquid classes defined in	n Table 1 of Practice <mark>E(CLASS)</mark> .		
148	6.5.1 Reference ignitable	liquids can be obtained from co	mmercial or retail sources.	
149	Certified ignitable liquid star	ndards are not required.		
150	6.5.2 Assess reference ig	nitable liquids in accordance wit	h Appendix 2 of Practice E3255	
151	prior to use.			
152	7. Instrument Maintenance			
153	7.1 Establish and follow an instrument maintenance routine that takes into consideration the			
154	recommendations of the instrument manufacturer and the overall use of the equipment.			
155	7.1.1 Continually evaluate data features to determine if maintenance is necessary to			
156	ontimize performance. Data features that can indicate a need for maintenance include			
157	changes in retention time neak abundance neak shape or the presence of uperplainable or			
150	enanges in recention time, peak abundance, peak shape, or the presence of unexplainable of			
100	extraneous peaks.			
159	7.2 Clean syringes thoroughly with a suitable solvent (see Section 6.2) between injections to			
160	minimize the potential for carryover.			
161	7.2.1 Analyzing a solver	nt blank between samples is reco	mmended but is not required if	
162	studies performed in accorda	nce with Annex A1 demonstrate	that the cleaning procedure	
163	prevents carryover.(1) ³			

³ The boldface numbers in parentheses refer to a list of references at the end of this standard.

164	
165	8. GC-MS Method Development: Performance Criteria and Optimization
166	8.1 Any GC-MS method can be utilized for ignitable liquids analysis, provided it meets the
167	following performance criteria:
168	8.1.1 All components of interest are eluted.
169	8.1.1.1 For a general-purpose ignitable liquids GC-MS method, demonstrate that, at a
170	minimum, light, medium, and heavy range components are present in the total ion
171	chromatogram (TIC).
172	NOTE: If light oxygenated compounds (e.g. methanol, ethanol, acetone) are not
173	included in a general purpose ignitable liquids GC-MS method, develop a
174	separate targeted GC-MS method for the analysis of these compounds.
175	8.1.1.2 For a targeted GC-MS method, demonstrate that the compounds of interest are
176	present in the TIC.
177	8.1.2 Peak shapes are approximately Gaussian with narrow widths.
178	8.1.2.1 Gaussian (i.e. symmetrical "bell-shaped") peaks are ideal; however, some
179	asymmetry and tailing is normal with temperature gradient programs.(2, 3)
180	8.1.2.2 Some factors that can affect peak width are column specifications, column
181	efficiency, temperature program(s), GC flow rate, and sample concentration.(4, 5)
182	NOTE: Column efficiency is the relationship between a peak's retention time and
183	its width.(5) Optimum column efficiency for practical performance in ignitable
184	liquids analysis is that which results in peaks with the shortest retention time that
185	allows for the desired resolution.
186	8.1.3 Peak resolution is sufficient for the recognition of patterns associated with the
187	components of interest, or identification of targeted components. Due to the number of
188	similar compounds present in ignitable liquids, baseline resolution of all compounds is not
189	necessary.
190	8.1.3.1 For a general-purpose ignitable liquids GC-MS method, at a minimum,
191	demonstrate that peak resolution in the C3 and C4 alkyl benzene groups in gasoline, and

192	peak resolution in the normal alkanes pattern in diesel fuel, is sufficient for recognition of
193	key diagnostic features, as discussed in E(CLASS).
194	8.1.3.2 Adequate peak resolution can usually be achieved through the selection of
195	appropriate column specifications and gas chromatographic method parameters.
196	8.1.4 Retention times of components of interest are sufficiently reproducible.
197	8.1.4.1 For a general-purpose ignitable liquids GC-MS method, at a minimum,
198	demonstrate that peaks in the light range (e.g. toluene), medium range (e.g. 1,2,4-
199	trimethylbenzene), and heavy range (e.g. n-hexadecane) have sufficiently reproducible
200	retention times (e.g. no more than the greater value of either $\pm 1\%$ or ± 0.1 minute (6)
201	deviation from the mean value from 10 repetitions performed during the method
202	development process).
203	8.1.4.2 For a targeted GC-MS method, at a minimum, demonstrate that the peak for
204	one compound of interest has sufficiently reproducible retention times (e.g. no more than
205	the greater value of either $\pm 1\%$ or ± 0.1 minute (6) deviation from the mean value from 10
206	repetitions performed during the method development process).
207	8.1.5 Mass spectra are collected over one or more mass-to-charge (m/z) ranges which
208	encompass the relevant ions used for identification of the components of interest.
209	8.1.5.1 For a general-purpose ignitable liquids GC-MS method, start scans at a m/z
210	value no greater than 33 for the lower limit, and scan to an upper limit at or greater than a
211	m/z value of 400.
212	NOTE: If light oxygenated compounds (e.g. methanol, ethanol, acetone) are
213	included in a general-purpose ignitable liquids GC-MS method, start scans at a
214	lower m/z value (e.g. 10).
215	8.1.6 Relevant ions in the mass spectra of the components of interest are of sufficient
216	intensity for identification of the components, either by computer library search or by
217	comparison with reference mass spectra, in accordance with Test Method $E(INTRP)$.
218	8.1.6.1 Contributions from extraneous ions are minimized in the mass spectra. Some
219	sources of extraneous ions are column bleed, carrier gas impurities, detector noise,
220	cleanliness of the mass selective detector, and poor vacuum performance.

2022-S-0006 Standard Practice for Gas Chromatography Electron Ionization Mass

Spectrometry Analysis of Ignitable Liquids 8.1.6.2 Parameters that can affect the intensity of ions in the mass spectra include the 221 mass threshold, analog-to-digital (A/D) samples, tune method (e.g. auto tune, standard 222 spectra tune, etc.), and tune parameters. 223 8.2 Optimize GC-MS methods for sensitivity, to reduce the potential for carryover, and for 224 run time efficiency while also meeting the performance criteria in 8.1. 225 226 8.2.1 Sensitivity can be optimized by adjusting injection, inlet, and detector parameters. 8.2.2 Reducing the potential for carryover can be optimized by adjusting injector 227 228 parameters or syringe wash parameters, or both, and by running blanks. 8.2.3 Run time efficiency (i.e. minimization of total run time that satisfies performance 229 criteria) can be optimized by adjusting temperature, flow, and column parameters. 230 8.3 Examples of GC-MS method parameters for the analysis of samples suspected to contain 231 ignitable liquids are provided in Appendix 1. 232 233 9. Sample Preparation, Analysis, and Preservation 234 235 9.1 Prepare samples in accordance with Section 9 of Guide E3245 in conjunction with one or more of Practices E1386, E1388, E1412, E1413, E2154, or E3189, as appropriate. 236 9.2 Analyze the sample by GC-MS. 237 9.2.1 Use an appropriate GC-MS method that has been developed and optimized for use 238 in ignitable liquids analysis (see Section 8) and validated in accordance with Practice E2549. 239 9.2.2 Use an appropriate sample introduction device (see Section 5.5) to deliver the 240 sample to the GC-MS. 241 9.3 When analysis is complete, preserve and store samples according to Practice E2451. 242 243 10. Data Evaluation and Acceptance Criteria 244 10.1 For all sample types, verify that the sample was properly introduced to the GC-MS, that 245 the instrument performed correctly, and that data were recorded. 246 10.1.1 Confirm that a TIC and mass spectra were recorded. 247 10.1.2 Evaluate chromatographic features of the TIC. 248

249	10.1.2.1 Confirm that peaks are present in the TIC as appropriate for the sample and		
250	GC-MS method utilized.		
251	NOTE: A blank sample run using a GC-MS method with a solvent delay might		
252	not contain any peaks.		
253	10.1.2.2 Confirm that most peak shapes are approximately Gaussian with narrow		
254	widths (see also Section 8.1.2).		
255	10.1.2.3 Confirm that the baseline is stable (e.g. with respect to drift, noise, or		
256	spikes).		
257	10.2 For blanks, also confirm that there are no peaks present in the TIC that correspond to		
258	compounds of interest that would interfere with the ability to interpret the data for the presence		
259	of ignitable liquids, in accordance with Test Method E(INTRP).		
260	10.3 For test mixtures, also confirm that retention times for selected peaks are within the		
261	greater value of either $\pm 1\%$ or ± 0.1 minute (6) of the retention times established during		
262	development and optimization from previously established values for the GC-MS method used.		
263	10.3.1 A sudden shift of retention times or decrease in abundances could indicate that		
264	instrument maintenance is necessary.		
265	10.3.2 If maintenance is conducted that would reasonably be expected to change		
266	retention times (e.g. column trimming or column change) or abundances (e.g. ion source		
267	cleaning), run the test mixture a minimum of three times to determine the new retention time		
268	or abundances to be used for comparison.		
269	10.4 Reject data from samples that do not satisfy the evaluation criteria as follows:		
270	10.4.1 For questioned samples, use the criteria in Section 10.1.		
271	10.4.2 For blanks, use the criteria in Sections 10.1 and 10.2.		
272	10.4.3 For test mixtures, use the criteria in Sections 10.1 and 10.3.		
273	10.5 Samples that produce rejected data can be reanalyzed. Additional sample treatment,		
274	such as dilution of overconcentrated samples, can be utilized as needed prior to reanalysis.		
275	10.6 Maintain records of rejected data, any additional sample treatment utilized, and any		
276	reanalysis performed as a portion of the casework documentation.		

278	11. Quality Assurance and Quality Control
279	11.1 Validate or verify GC-MS instruments and GC-MS methods according to Practice
280	WK72631 and Practice E3255 in order to demonstrate their suitability for use in ignitable liquids
281	analysis prior to use on unknown samples.
282	11.1.1 Maintain records of all validations and verifications in accordance with Practice
283	WK72631 and Practice E3255.
284	11.2 Tune the mass spectrometer in accordance with manufacturer's recommendations in
285	order to ensure correct calibration of mass to charge ratios and to optimize mass spectrometer
286	system performance.
287	11.2.1 Tune using perfluorotributylamine (PFTBA), or another generally accepted tuning
288	compound in accordance with manufacturer's recommendations.
289	11.2.2 Evaluate tune results against acceptance criteria established in accordance with
290	manufacturer's recommendations.
291	11.2.3 Maintain tuning records as a portion of either the quality control documentation or
292	the casework documentation.
293	11.3 Analyze at least one process blank per analytical batch in order to demonstrate that
294	materials such as solvents, adsorption media, glassware, and other sample processing hardware
295	are free from contaminants that can cause interferences.
296	11.3.1 Use the type of blank appropriate for the phase (i.e. vapor or liquid) of the
297	questioned sample to be analyzed and, if applicable, to the method used to isolate the
298	questioned sample from the original fire debris material (see Practices E1388, E1412, E3189,
299	E1413, E2154, and E1386).
300	11.3.2 Evaluate the data from blanks according to Sections 10.1 and 10.2.
301	11.3.3 Maintain data from blanks as a portion of the casework documentation.
302	11.4 Analyze at least one test mixture at the beginning of each analytical batch in order to
303	demonstrate proper instrument performance with respect to the components of interest.

11.4.1 Use a test mixture that is appropriate for the GC-MS method being performed (seeSection 6.4).

11.4.2 Evaluate the data from test mixtures to confirm proper instrument performanceaccording to Sections 10.1 and 10.3.

11.4.3 Maintain data from test mixtures as a portion of the casework documentation orthe quality control documentation, or both.

11.5 Maintain data from reference ignitable liquids that are to be used for the interpretation
of questioned samples and that have been analyzed using the same GC-MS methods as the
questioned samples.

313

314 12. Limitations

12.1 In general, analysis of ignitable liquids by GC-MS is subject to limitations, includingthe following:

12.1.1 Co-eluting compounds can result in no identification or misidentification.
However, with appropriate GC-MS method development (see Section 8) and the use of
closely eluting compounds in the test mixture (see Section 6.4) the possibility of co-eluting
compounds in ignitable liquids analysis can be minimized. Refer to Test Method E(INTRP)
for interpretation of data suspected to contain co-eluting compounds arising from substrate
interferences.

12.1.2 Compounds outside of the approximate volatility and polarity range for which a specific GC-MS method was developed and optimized might not be observed in the data, or might not give rise to data that are suitable for comparisons. However, the use of one or more GC-MS methods developed and optimized to cover the light through heavy range components of ignitable liquids (see Section 8) can be used to minimize this limitation for the types of compounds that are significant in the interpretation and classification of ignitable liquids using Test Method E(INTRP).

12.1.3 Limited availability of ignitable liquid reference materials or limited searchable
 databases can hinder the ability to perform meaningful comparisons. However, the

2022-S-0006 Standard Practice for Gas Chromatography Electron Ionization Mass

332 Spectrometry Analysis of Ignitable Liquids 332 maintenance of appropriate reference ignitable liquids (see Section 6.5) and mass spectral 333 libraries (see Section 5.4) can minimize this limitation.

13. Keywords

13.1 forensic science, fire debris; gas chromatography; ignitable liquid; mass spectrometry

337	ANNEX		
338	(Mandatory Information)		
339	A1. CARRYOVER STUDIES		
340			
341 342	A1.1. Carryover studies are required when the GC-MS method does not specify the utilization of analysis of blanks between samples.		
343	A1.2. Carryover studies are performed as part of the GC-MS method validation or verification.		
344 345 346	A1.3. Carryover studies are designed to evaluate the potential for carryover when using a specific GC-MS method over the range of samples anticipated to be encountered during casework.		
347	A1.4. Minimum sample analysis requirements for a carryover study:		
348 349	A1.4.1 Analyze solvent blanks between samples throughout the entire GC-MS method validation or verification process.		
350 351 352 353 354	A1.4.2 Analyze a variety of samples consisting of reference ignitable liquids and matrix materials, the types and approximate concentrations of which are reflective of those that are reasonably anticipated to be found in casework scenarios. Include vapors, liquids, and extracted samples as applicable for the specific GC-MS method to be utilized.		
355 356 357 358 359	 A1.4.2.1 If the GC-MS method will be utilized for casework samples prepared using solvent extraction as in Practice E1386, include extracts of samples consisting of burned matrix materials, vegetable oils, and lubricating oils. A1.4.2.2 Matrix components routinely encountered as potential interferents (e.g. styrene) can be analyzed as single compound samples using a reference 		
360 361	material that is fit for purpose for qualitative work, in accordance with Practice E3255.		
362 363 364 365 366	A1.4.3 Analyze highly concentrated samples of reference ignitable liquids or single compounds across the entire volatility range and composition of interest applicable to the GC-MS method utilized. These samples are deliberately designed to exceed the reasonable concentrations found in typical casework scenarios, and they are specifically intended to assess the conditions under which carryover will occur.		
367 368 369 370	A1.5. Evaluate the total ion chromatogram (TIC) and extracted ion profiles (EIPs) of all solvent blanks for the presence of carryover in the form of peaks which have a signal-to-noise ratio greater than approximately three times the average local baseline, and that are also observed as a component of the previous sample.		
371 372 373	NOTE: Address peaks not attributable to carryover (e.g. peaks arising from suspected contamination or siloxane peaks arising from septum bleed) separately within the GC-MS method validation or verification.		
374 375	A1.6. Use the information from the evaluation of solvent blanks in Section A1.5 to assess the risk of carryover during the analysis of routine casework scenarios.		

- A1.7 Based on the assessment in Section A1.6, implement guidelines for the evaluation of all
- casework data for the presence of carryover, as well as mitigation procedures in the event thatcarryover is observed in a sample.
- A1.7.1 When data from a sample does not meet the requirements listed in Sections 8.1.2 through 8.1.4, reanalyze the sample in accordance with Section 10.5, as well as the subsequent sample(s) in order to mitigate the potential risk of carryover.
- subsequent sample(s) in order to mitigate the potential risk of carryover.
 A1.8. Maintain all carryover study data and associated documentation as part of the GC-MS
- method validation or verification, in accordance with Practice E3255 and WK72631.

385

386

387

388

2022-S-0006 Standard Practice for Gas Chromatography Electron Ionization Mass Spectrometry Analysis of Ignitable Liquids

APPENDIX 1

(Nonmandatory Information)

X1. EXAMPLES OF GC-MS PARAMETERS

X1.1 Examples of GC-MS methods suitable for the analysis of suspected ignitable liquids areprovided in the table below.

X1.1.1 Method 1 is suitable for the general screening of ignitable liquids, including light
 oxygenates. This method can be useful for achieving relatively rapid throughput and narrow
 peaks due to its temperature and pressure programs.

X1.1.2 Method 2 is suitable for the general screening of ignitable liquids, but does not scan
 for light oxygenates due to the higher start temperature and a delay in initiating the detector.

396 X1.1.3 Method 3 is suitable for the general screening of ignitable liquids, including light 397 oxygenates. This method uses a longer column which can enhance resolution; however, peak 398 shapes are wider and total run time is increased.

399 X1.1.4 Method 4 is suitable for targeted screening only for light oxygenated compounds.

400 X1.2 Verify instrumental methods prior to use, as these parameters are only intended to serve as

a starting point for method development.

	Method 1		Witthou 5	
<u>Column</u>				
Туре	HP-1MS	HP-5MS	RX-1MS	HP-1MS
Length	30 m	30 m	60 m	30 m
Inner Diameter	250 μm	250 µm	250 μm	250 μm
Film Thickness	0.25 µm	0.25 µm	0.25 µm	0.25 μm
Injector				
Inlet Temperature	290 C	250 C	250 C	290 C
Injection Volume	2 μL	1 μL	1 μL	Manual
Split Ratio	20:1	50:1	5:1	20:1
GC				
Mobile Phase	Helium	Helium	Helium	Helium
Flow Rate	1.8 mL/min	1.25 mL/min	1 mL/min	0.6 mL/min
	then 20		hold for 5	then 20
	mL/min per		min, then 0.4	mL/min per
	min to 1.2		mL/min per	min to 1.2
	mL/min for		min to 1.6	mL/min for
	9.97 min,		mL/min	9.97 min, then
	then 20			20 mL/min per
	mL/min per			min to 1.8
	min to 1.8			mL/min for 0
	mL/min for 0			min.
	min.			
Temperature	40 C hold for	50 C hold for	40 C hold for	35 C hold 4
Program	1.5 min;	3.0min;	0 min; 6	min; 10 C/min
	20 C/min to	10 C/min to	C/min to 80	to 100 C, hold
	140 C, hold 0	280 C, hold for	C, hold 0 min;	for 0 min
	min; 30C/min	4 min	15 C/min to	
	to 300 C, hold		250 C, hold	
	5.17 min		for 0 min	
MS				
Source Temp	230 C	230 C	230 C	230 C
Interface Temp	300 C	280 C	280 C	290 C
Mass Scan Range	14-200 m/z	33-400 m/z	10-74 m/z for	10-150 m/z
	for 2 min;		5.05 min;	
	14-400 m/z		29-450 m/z to	
	for 12 min;		end of run	
	14-600 m/z to			
	end of run			
Mass Threshold	150	150	100	50
A/D Samples	4	4	4	8
Total Run Time	17.003 min	30 min	26 min	10.5 min

403

405 406

410

414

418

421

425

2022-S-0006 Standard Practice for Gas Chromatography Electron Ionization Mass Spectrometry Analysis of Ignitable Liquids

References

- Baerncopf, J. & Thomas, S. "Introduction to Fire Debris Analysis" in *Forensic Analysis* of *Fire Debris and Explosives*, Evans-Nguyen, K. & Hutches, K., Eds., Springer Nature Switzerland AG 2019, pages 54-55.
- 2. Barwick, V.; Langley, J.; Mallet, T.; Stein, B.; Webb, K. "Best Practice Guide for Generating Mass Spectra." *LGC Limited*, 2006. ISBN: 978-0-948926-24-2. Available at <u>http://www.rsc.org/images/MS2new_tcm18-102519.pdf</u> (accessed April 8, 2021).
- Wahab, M. F.; Patel, D. C.; Armstrong, D. W. "Total Peak Shape Analysis: Detection and Quantitation of Concurrent Fronting, Tailing, and Their Effect on Asymmetry Measurements." *Journal of Chromatography A*, 2017, Vol. 1509, pp. 163-170.
- 4. Skoog, D.A. and Leary, J.J., *Principles of Instrumental Analysis*, 4th edition, Harcourt
 Brace College Publishers, Fort Worth, 1992.
- 422 5. Rood, D., A Practical Guide to the Care, Maintenance, and Troubleshooting of Capillary
 423 Gas Chromatographic Systems, 3rd edition, Wiley-VCH, Federal Republic of Germany,
 424 1999.
- 6. World Anti-Doping Administration (WADA) Technical document of the minimum criteria for chromatographic-mass spectrometric confirmation of the identity of analytes for doping control purposes (2015) (<u>https://www.wada-ama.org/en/resources/science-medicine/td2015idcr</u>).