

OSAC 2021-S-0037 Standard Guide for Forensic Photogrammetry

Video/Imaging Technology Analysis Subcommittee Digital/Multimedia Scientific Area Committee (SAC) Organization of Scientific Area Committees (OSAC) for Forensic Science

Draft OSAC Proposed Standard

OSAC 2021-S-0037 Standard Guide for Forensic Photogrammetry

Prepared by VITAL Version: 1.0 - OSAC Open Comment September 2021

Disclaimer:

This OSAC Proposed Standard was written by the [insert subcommittee or other unit name] of the Organization of Scientific Area Committees (OSAC) for Forensic Science following a process that includes an <u>open comment period</u>. This Proposed Standard will be submitted to a standards developing organization and is subject to change.

There may be references in an OSAC Proposed Standard to other publications under development by OSAC. The information in the Proposed Standard, and underlying concepts and methodologies, may be used by the forensic-science community before the completion of such companion publications.

Any identification of commercial equipment, instruments, or materials in the Proposed Standard is not a recommendation or endorsement by the U.S. Government and does not imply that the equipment, instruments, or materials are necessarily the best available for the purpose.

1	Include Ballot Rationale Here (Required for all Ballots)
2	Standard Guide for Forensic Photogrammetry ¹
4 5 6	This standard is issued under the fixed designation X XXXX; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.
7	
8	1. Scope
9	1.1 This standard provides basic information on conducting photogrammetric examinations as a
10	part of forensic analysis. The intended audience is examiners in a laboratory and/or field
11	setting.
12	1.2 This standard is not intended to be used as a step-by-step practice for conducting a proper
13	forensic examination or reaching a result. This document should not be construed as legal
14	advice.
15	1.3 This standard cannot replace knowledge, skills, or abilities acquired through education,
16	training, and experience, and is to be used in conjunction with professional judgment by
17	individuals with such discipline-specific knowledge, skills, and abilities.
18	1.4 This standard does not purport to address all of the safety concerns, if any, associated with
19	its use. It is the responsibility of the user of this standard to establish appropriate safety and
20	health practices and determine the applicability of regulatory limitations prior to use.
21	
22	2. Referenced Documents

¹ This practice is under the jurisdiction of ASTM Committee E55 on Manufacture of Pharmaceutical Products and is the direct responsibility of Subcommittee E55.04 on General Biopharmaceutical Standards. Current edition approved XXX XX, XXXX. Published XXX XXXX. DOI: 10.1520/XXXXX-XX.

This document is not an ASTM standard; it is under consideration within an ASTM technical committee but has not received all approvals required to become an ASTM standard. You agree not to reproduce or circulate or quote, in whole or in part, this document outside of ASTM Committee/Society activities, or submit it to any other organization or standards bodies (whether national, international, or other) except with the approval of the Chairman of the Committee having jurisdiction and the written authorization of the President of the Society. If you do not agree with these conditions please immediately destroy all copies of the document. *Copyright ASTM International*, 100 Barr Harbor Drive, West Conshohocken, PA 19428. All Rights Reserved.

- 23 2.1 *ASTM Standards*:
- 24 2.1.1 E2825 Standard Guide for Forensic Digital Image Processing
- 25 2.2 *SWGIT Material*:
- 26 2.2.1 SWGIT, Section 13: Best Practices for Maintaining the Integrity of Digital Images and
- 27 Digital Video, updated January 13, 2012
- 28 2.2.2 SWGIT, Section 11: Best Practices for Documenting Image Enhancement, updated
- 29 January 15, 2010
- 30 2.3 *SWGDE Material*:
- 2.3.1 SWGDE Training Guidelines for Video Analysis, Image Analysis, and
- 32 Photography, updated February 8, 2016
- 2.3.2 SWGDE Best Practices for the Forensic Use of Photogrammetry, updated
- 34 September 29, 2015
- 2.3.3 SWGDE Guidelines for Forensic Image Analysis, updated February 21, 2017

2.4 Edelman, G., Alberink, I., and Hoogeboom, B., Comparison of the Performance of Two

- 37 Methods for Height Estimation, Journal of Forensic Sciences, Vol 55, No 2, March 2010
- 2.5 Hoogeboom, B. and Alberink, I., Measurement When Estimating the Velocity of an
 Allegedly Speeding Vehicle from Images, Journal of Forensic Sciences, Vol 55, No 5, September
 2010
- 2.6 Hoogeboom, B., Alberink, I., and Goos, M., Body Height Measurements in Images,
 Journal of Forensic Sciences, Vol 54, No 6, 2009
- 2.7 Criminisi, et al., A New Approach to Obtain Height Measurements from Video, SPIE Vol
 3576, November 1998

45	
46	3. Terminology
47	3.1 Definitions:
48	3.1.1 analytical photogrammetry, <i>n</i> -a method of photogrammetry in which solutions are
49	obtained by mathematical methods
50	3.1.2 forensic photogrammetry, <i>n</i> -the process of obtaining dimensional information
51	regarding objects and people, such as the height of subjects depicted in surveillance images and
52	accident scene reconstruction, depicted in an image for legal applications
53	3.1.3 reverse projection photogrammetry, n-a method of photogrammetry in which a
54	measuring device is recorded within a scene and the resulting image is overlaid on the evidentiary
55	image to measure an object
56	3.1.4 3D scanning, <i>n</i> -the process of capturing 3-dimensional representation of an object or
57	scene with equipment that measures the distance between the scanner and the object to create a
58	point cloud of data from the surfaces of the object or scene
59	
60	4. Summary of Practice
61	4.1 The original image or video shall be preserved. Any processing shall only be applied to a
62	working copy of the image or video.
63	4.2 The practice may include:
64	4.2.1 Evaluating the imagery to determine the most suitable method
65	4.2.2 Obtaining scene-based reference data
66	4.2.3 Applying a photogrammetric process to obtain measurements
67	4.2.4 Identifying sources of uncertainty and apply to the measurements -

68 4.2.5 Reporting findings

4.3 Steps taken and methods used shall be documented to permit a comparably trained person
to understand and be able to recreate the examination performed, as well as to assess and evaluate
the results reached.

72

73 **5. Significance and Use**

- 5.1 Photogrammetric analysis is a long-standing science that can aid in the exclusion and
- inclusion of items and people in forensic investigations. It can also answer specific questions
- regarding size, speed, location, and distance.
- 5.2 This guide addresses image processing and related legal considerations in the following
- 78 three phases of photogrammetric examination:
- 79 5.2.1 Evidence Preparation
- 80 5.2.2 Methodology
- 81 5.2.3 Interpretation of Results
- 82 6. Evidence Preparation and Assessment
- 6.1 Evidence preparation is any process intended to preserve and prepare an image for
- 84 photogrammetric analysis.
- 6.1.1 The original imagery shall be protected from any alteration.
- 6.1.2 The examination shall be conducted on working copies of the imagery. This may
- 87 require digitization or transcoding from other formats.
- 6.2 Complete an initial assessment of the imagery

89	6.2.1 Determine if the submitted imagery is the best available evidence, such as the
90	original media, or a bit-for-bit duplicate. If the submitted imagery is not a bit-for-bit
91	duplicate, determine if one is available. For additional information on this topic, see
92	SWGDE Guidelines for Forensic Image Analysis.
93	6.2.2 Determine if the submitted material is suitable for analysis. Suitability for analysis
94	may vary by the examination requested. Criteria to be considered include whether:
95	6.2.2.1 The entire area, subject, or object to be measured is visible,
96	6.2.2.2 The entire area, subject, or object is recorded at a sufficient native resolution to
97	make a meaningful measurement,
98	6.2.2.3 The angle of capture or camera perspective is conducive to examination,
99	6.2.2.4 The position and orientation of the subject or object in the frame is affected by lens
100	distortion,
101	6.2.2.5 The scene contains fixed objects/features which can be used as reference data.
102	6.2.3 Determine if all of the submitted material, or some subset of the material, is to be
103	subjected to analysis.
104	6.2.4 Observations and opinions made during the preparation and assessment should be
105	documented.
106	6.3 Process the working copy to enhance and/or restore the image content, if necessary. For
107	further information, see ASTM E2825 Guidelines for Forensic Digital Image Processing.
108	

109 7. Methodology

7.1 Multiple techniques exist for performing photogrammetric analysis including reverse
projection and analytical photogrammetry. This guide does not limit the use of other available
methods.
7.2 The examiner should consider both the evidentiary imagery and the scene to select the

114 most suitable method for examination.

7.3 For the method selected, the examiner should verify the presence of the necessary criteriato reach a result.

117 7.3.1 Reverse projection photogrammetry involves the positioning of a camera to

record/capture an image in the same perspective and aspect ratio as the original imagery. A

119 calibrated measuring device may then be used to complete the requested analysis. Performing

reverse projection photogrammetry involves assessing the scene; performing the examination;

and evaluating the data captured during the examination process. The following issues should

122 be considered and documented:

123 7.3.1.1 Whether the scene of the original imagery is accessible

124 7.3.1.2 Whether the significant fixed objects/features are still present at the scene and

125 suitable for analysis

7.3.1.3 Whether the original recording system is still in place, accessible, and suitable for theexamination;

128 7.3.1.4 Whether the original camera has been moved or changed;

7.3.1.5 Whether to use the original recording system, or different recording equipment tocollect new data;

131	7.3.1.6 Whether the measuring device has been calibrated and is placed correctly;
132	7.3.1.7 The number of device positions necessary to mitigate measurement uncertainty;
133	7.3.1.8 Whether the data collected during the examination process is of sufficient quality and
134	precision to support further analysis.
135	7.3.2 Analytical photogrammetry involves applying knowledge of the geometrical
136	properties of the imaging process, and known measurements associated with the imagery, to
137	obtain unknown measurements. Perspective based analysis and direct scaling are two
138	approaches. When using an analytical photogrammetry method, the following issues should
139	be considered and documented:
140	7.3.2.1 Whether there are sufficient reference features available within the imagery to resolve
141	the geometry of the scene, including three-dimensional axes, horizons and vanishing points.
142	7.3.2.2 The precision or uncertainty derived from the angle of measurement, and the
143	position of the subject.
144	7.4 Enact chosen methodology and record results. The chosen methodology should be
145	sufficiently documented, validated, and have a scientific basis.
146 147	8. Interpretation of Results
148	8.1 A series of observations and/or measurements recorded using the enacted methodology
149	will require the examiner to interpret results.
150	8.2 Measured results require interpretation by the examiner based on the identified sources of
151	uncertainty (and potential error). For example, the individual frame of a subject selected for
152	height analysis will affect results, as height will vary over time. The examiner can use the
153	measured height, as well as calculated uncertainty, to determine whether a person of interest can

154	be excluded from or included in the group of suspects based on the range of estimated height.
155	Sources of measurement uncertainty may include limitations of the:
156	8.2.1 Original and controlled capture systems (e.g. camera height and position will
157	influence the geometric calculation of the measurement; image resolution will limit the
158	precision of the measurement)
159	8.2.2 Measuring device (e.g. accuracy of placement will influence the geometric
160	calculation; precision of the scale will influence the uncertainty)
161	8.2.3 Employed software and hardware (e.g. inherent software limitations will influence
162	the precision, such as the calculation of vanishing points and the numerical precision of data
163	types)
164	8.2.4 Factors involving the original subject (e.g. posture, contrast, location, movement)
165	8.3 Based on the observations and measurements, a result should be reached. This may or
166	may not be in the form of a numerical value.
167	8.4 Report results in response to the requested analysis. The basis for, and uncertainty of, any
168	results should be documented and reported. An examiner should consider factors that influence
169	the uncertainty of measurement, including the limitations of the measured results.
170	8.5 The results of the examination should undergo independent review by a comparably
171	trained individual. If disputes during review arise, a means for resolution of issues should be in
172	place. Additionally, if the examiner and reviewer reach different opinions, then both opinions
173	and how the inconsistency was resolved must be documented.
174	8.6 To avoid potential bias, an examiner should avoid contextual information that would tend
175	to bias results prior to release of report, such as the measured height of a suspect. Similarly, a

8

- reviewer should minimize bias by avoiding contextual information about the examiner's
- observations and by employing verification for all results (e.g. not just inclusions)

9. Guidelines for Photogrammetry Standard Operating Procedures

- 9.1 The purpose of forensic photogrammetric analysis is to apply knowledge of image
- 180 processing techniques, measurements, and analysis to answer specific questions, as discussed in
- 181 Appendix 3. Regardless of the methodology employed, standard operating procedures should be
- developed and followed. For more information on developing an SOP, see the *SWGDE/SWGIT*
- 183 document, "Recommended Guidelines for Developing Standard Operating Procedures". For
- 184 more information on image processing, see E2825.
- 185 9.2 Equipment—The laboratory standard operating procedure (SOP) should define minimum
- 186 hardware and software equipment requirements including, but not limited to:
- 187 9.2.1 Hardware
- 188 9.2.1.1 Input/capture device,
- 189 9.2.1.2 Measuring device,
- 190 9.2.1.3 Image-processing systems,
- 191 9.2.1.4 Output devices, and
- 192 9.2.1.5 Storage/archive.
- 193 9.2.2 Software:
- 194 9.2.2.1 Image management, and
- 195 9.2.2.2 Image processing.
- 196 9.3 Procedures—Laboratories should establish specific step-by-step procedures for forensic
- 197 photogrammetry and image processing according to published guidelines. Each utilized

- 198 methodology for photogrammetric analysis (including, but limited to, reverse projection,
- analytical photogrammetry, and dimensional scanning) should have separate procedures. These
- 200 procedures should address the following as a minimum:
- 9.3.1 Documentation,
- 202 9.3.2 Capture,
- 9.3.3 Image processing,
- 9.3.4 Storage and archiving,
- 9.3.5 Image management
- 206 9.3.6 Data security
- 207 9.3.7 Photogrammetric Methodology
- 9.3.8 Interpretation of results, and
- 209 9.3.9 Reporting
- 9.4 Calibration—Laboratories should develop SOPs for calibrating all equipment that
- 211 produces test results. These procedures should be consistent with the manufacturer's
- 212 recommendations.
- 9.5 Limitations—Laboratories should document the limitations of their processes and
- 214 equipment in their SOPs.
- 9.6 Safety—Laboratories should develop safety procedures specific to their needs.
- 9.7 References—Laboratories should maintain their laboratory specific documentation,
- 217 manufacturers' manuals, and published guidelines.

9.8 Training—Laboratories should define the level of training necessary to perform the
procedure. Refer to the *SWGDE "Training Guidelines for Video Analysis, Image Analysis and Photography"*.

221 **10. Keywords**

- 10.1 criminal justice system; image processing; digital image processing; forensic
- 223 photogrammetry
- 224
- 225

226	
227	
228	APPENDIX
229	(Nonmandatory Information)
230 231	X1. APPENDIX 1: CONSIDERATIONS WHEN REPORTING THROUGH QUALITATIVE MEANS
232	X.1.1 Purpose
233	X1.1.1 This guide sets forth key points that should be considered when reporting
234	quantitative photogrammetric analysis results.
235	X.1.2 Estimation of error in analysis
236	X1.2.1 Photogrammetric evaluation is amenable to estimation of error, either through the
237	propagation of error involved in the calculations, or in comparison with known measurements
238	that may be present in an image. Both common kinds of error (imprecision and bias) should be
239	estimated if possible, and if not possible, the limitations of the method should be documented in
240	the final report.
241	X1.2.2 Example: As in the workflow example, the practitioner is requested to complete a
242	photogrammetric examination of a a bank robber depicted in DCCTV surveillance video. The
243	police have two different suspects, and would like to determine if either can be eliminated based
244	on height.
245	X.1.3 Incorporation of uncertainty in reporting of results
246	X1.3.1 The practitioner elects to use the recommended workflow for photogrammetry,
247	incorporating reverse projection as the analytical method. Photogrammetric measurement
248	estimates the height of the individual to be 6'1". This measurement is based on the vertical
249	distance from the floor to the top of the individual's headwear, in a single selected image.

250	X1.3.2 However, multiple areas of uncertainty can be calculated, and multiple limitations in
251	this measurement should be noted in the analytical report.
252	X1.3.2.1 In photogrammetric examinations, the estimated uncertainty relies on the overall
253	resolution of the imagery. When the number of pixels representing a given area (or a line of
254	video) in an image increases, the practitioner will be able to narrow the uncertainty based on
255	resolution. This uncertainty may need to be calculated at two points when completing two
256	examinations, as in an analysis of the velocity of a subject.
257	X1.3.2.2 In photogrammetric examinations, the estimated uncertainty relies on the ability of
258	the practitioner to locate the position in which the subject was located at the time the original
259	image was captured. This uncertainty can be calculated by determining the uncertainty in the
260	measured distance within a given radius of position, based on geometric principles.
261	X1.3.2.3 In subject height analysis, the measurement is captured at only a single moment of
262	time. Given that multiple factors can change a subject's stature, including choice of footwear,
263	choice of headwear, positioning in gait, and the natural circadian rhythms of the human body, the
264	measured height can be no more than an estimation.
265	X1.3.2.4 In the case of a velocity analysis, the calculated value for velocity relies upon a
266	known time interval, and the distance traveled by an object, between two images. The
267	uncertainty in the calculated velocity should be examined based on principles of video
268	engineering and image analysis and recognizing the errors in time and distance measurements.
269	
270 271	▼

	X XXXX
272	APPENDIX
273	(Nonmandatory Information)
274	X2. APPENDIX 2: WORKFLOW EXAMPLES
275	X.2.1 Scenario 1:
276	X2.1.1 A local police agency asks the crime laboratory to determine the height of the
277	individual depicted robbing a bank in a surveillance video, captured by a DCCTV system. The
278	agency has two suspects of different heights, and would like the crime laboratory to determine if
279	either can be excluded on this basis.
280	X2.1.2 The practitioner proceeds as follows, while documenting the process, analyses, and
281	results:
282	X2.1.2.1 The practitioner determines that the imagery is the original video, not a transcoded
283	copy.
284	X2.1.2.2 The practitioner reviews the material and determines if images exist suitable to an
285	accurate photogrammetric examination.
286	X2.1.2.3 The practitioner determines if more than one examination is appropriate to complete
287	the request.
288	X2.1.2.4 The practitioner transfers the contents of the video file to a working file.
289	X2.1.2.5 The practitioner processes the video files.
290	X2.1.2.5.1 Still images are output from the video files, and images suitable to an accurate
291	photogrammetric analysis are selected.

- 292 X2.1.2.5.2 Standard image processing techniques, such as brightness and contrast
- adjustments, are applied to the working images.

294	X2.1.2.6 The practitioner imports the images into an application suitable for photogrammetry
295	and conducts the analysis. This analysis results in a calculated value for the robber's height, as
296	well as a determination of the accuracy and precision of this output. This step should be
297	documented and the limits of the results obtained should be clearly identified.
298	X2.1.2.7 The practitioner writes the report. Per the crime laboratory's standard operating
299	procedures, the report includes a review of the materials received, the request, the methods used,
300	the observations noted, the basis for the interpretations, the results, and an estimate of the
301	accuracy and precision.
302	X2.1.2.8 The report is administratively and technically reviewed prior to release.
303	X.2.2 Scenario 2:
304	X2.2.1 A local police agency asks the crime laboratory to determine the velocity of a vehicle,
305	as it is driven toward impact. The vehicle is captured for approximately four seconds, just prior
306	to collision. The agency would like to know the vehicle's velocity as a possible aggravating
307	factor in the investigation of the collision.
308	X2.2.2 The practitioner proceeds as follows, while documenting the process, analyses, and
309	results:
310	X2.2.2.1 Determines that the imagery is the original video, not a transcoded copy;
311	X2.2.2.2 Reviews the material and determines if images exist suitable to an accurate
312	photogrammetric examination;
313	X2.2.2.3 Determines if more than one examination is appropriate to complete the request;
314	X2.2.2.4 Transfers the contents of the video file to a working file;
315	X2.2.2.5 Processes the video files.

- 316 X2.2.2.5.1 Still images are output from the video files, and images suitable to an accurate 317 photogrammetric analysis are selected, taking into account the known time elapsed between the 318 images.
- 319 X2.2.2.5.2 Standard image processing techniques, such as brightness and contrast

adjustments, are applied to the working images.

- X2.2.2.6 Imports the images into an application suitable for photogrammetry and conducts
- the analysis. This analysis results in a calculated value for the vehicle's velocity, as well as a

323 determination of the accuracy and precision of this output.

- 324 X2.2.2.7 Writes the report. Per the crime laboratory's standard operating procedures, the
- report includes a review of the materials received, the request, the methods used, the
- 326 observations noted, results obtained, the basis for the interpretations, the results, and an estimate

327 of the accuracy and precision.

- 328 X2.2.3 The reviewer completes an administrative and technical review of the analysis and
- 329 report. The technical review shall include verification of the results.
- 330

331	APPENDIX
332	(Nonmandatory Information)
333	X3. APPENDIX 3: SAMPLES QUESTIONS ASKED
334	IN FORENSIC PHOTOGRAMMETRY
335	X.3.1 How tall is the individual?
336	X.3.2 How fast was the vehicle/person/object travelling?
337	X.3.3 What time of day was the photograph taken?
338	X.3.4 Where is the scene depicted in the image?
339	X.3.5 What are the dimensions of an object?
340	X.3.6 Where was the camera at the time this photograph was taken?
341	X.3.7 Can you determine the location of the object(s) within the scene?
342	