

Optimization of a Cold Neutron Source for a Proposed LEU Reactor at NIST

RYAN BONK

SURF STUDENT COLLOQUIUM

NIST CENTER FOR NEUTRON RESEARCH

GAITHERSBURG, MD

The NBSR

- The lifetime of the National Bureau of Standards Reactor (NBSR) will be coming to an end sometime in the middle of this century.
- NCNR hosts over **2,000** researchers annually
- **70%** use cold neutrons in their experiments.
- Feasibility study for a Low-Enriched
 Uranium (LEU) reactor underway

Cold Neutrons

Туре	Energy Range Wavelength Range (Å)					
Fast	1 MeV – 20 MeV	.00030001				
Thermal	.025 eV – .625 eV	1.804				
Cold	< .005 eV	> 4				
Note: 1 Å = 1 x 10 ⁻¹⁰ m						

- Materials with structural spacings on the order of 100 Å have become more prominent in science and technology (Ex. Polymers).
- With their low energy and long wavelength, cold neutrons are better suited for probing these materials.

Producing Cold Neutrons

- To increase the production of cold neutrons from a reactor core, a cold neutron source (CNS) is used.
- Cryogenically cooled to around 20 K to shift the spectrum of neutrons to lower energies.
- Atoms with low Z (Example: hydrogen or deuterium) make ideal moderators.
- •The new CNS design will be filled with liquid Deuterium (2021).

Unit 2 - Existing LH₂ Cold Neutron Source

Neutron Moderation

- Neutrons collide with the atoms of the medium they reside in much like air molecules colliding in the room around us.
- Their kinetic energies depend only on the temperature of the surroundings according to the Maxwell-Boltzmann Distribution.
 - D_2O Moderator $\approx 300 K$
 - LD_2 Moderator $\approx 20 K$

Neumann, Dan. "Neutrons at NIST." NIST. Gaithersburg, MD. 15 Jan. 2014. Web. 19 July 2016.

Why Switch to Deuterium?

- Spectrum shifts to lower energies.
- Gains of up to 2 for the longest wavelengths.
- Up to a 50% loss at 15 meV (2.5 Å).
- Conversion of NBSR to LEU will result in 10% reduction in thermal and cold neutron beams.
- New CNS/guides intended to make up for this reduction.

Deuterium Cold Neutron Source for Replacement Reactor

Neutron Research

Optimizing the Cold Source Location

• Monte Carlo N-Particle (MCNP) computer simulations were used previously to perform flux calculations on the new reactor design.

NIST

MCNP Neutron Brightness Calculations

- The quantity used to measure the performance of the cold neutron source is the **Brightness**.
 - Units: n/cm²-s-meV-ster or n/cm²-s-Å-ster

Optimizing the Cold Source Geometry

• The effects of changing the size and shape of the re-entrant cavity were investigated using MCNP.

#	Geometry (X × Y × Z) (cm)
1	Original (Trapezoid)

- 2 16 x 12 x 20 Box
- 3 Cylinder: d = 15, h = 20
- 4 38° Cone (vertex @ center)
- 5 8 x 12 x 8 Ellipsoid
- 6 No Re-entrant Cavity

Brightness Gain Compared to the Original Deuterium CNS Design

NIST

Neutron Research

Brightness Gain Compared to the Original Deuterium CNS Design

Neutron Researc

Brightness Gain Compared to the Original Deuterium CNS Design

NIST

Neutron Research

Nuclear Heat Load

- The Deuterium Cold Source is more massive than the existing Hydrogen cold source, meaning it will take on a greater nuclear heat load.
- MCNP used to calculate expected heat deposition rate in the LD_2 and moderator chamber with an (8 x 12 x 8) cm ellipsoid re-entrant cavity .
- A new 7 kW cryogenic helium refrigerator is being installed to account for this threefold increase in heat load.

	Deuterium (3806 g)		Aluminum (2280 g)			
Radiation	Rate	Heat (W)	Rate	Heat (W)		
Source	(W/g)		(W/g)			
Neutrons	0.0716	777	.0081	4		
Beta Particles			4.32	679		
Gamma Rays	1.53	1465	1.45	741		
Subtotal		2242		1424		
Total Cryogenic Heat Load = 3666 W						

Conclusion

- An optimized LD₂ cold source is needed to recover the 10% loss in neutron flux due to the switch to LEU fuel.
- The position and re-entrant cavity geometry were optimized to produce brightness gains between 1.3 - 1.5 for the desired range of 4 - 9 Å.
- (8 x 12 x 8) cm Ellipsoid re-entrant cavity consistently performs the best in terms of brightness in the 4 - 9 Å range.

Plane View (Top)

Plane View (Side)

Future Research

- Cold Source re-entrant cavity has been optimized to within a few minor geometrical variations.
- The size and shape of the moderator chamber warrants further optimization research.
- This model must be adapted to the actual beam guide geometry.

Acknowledgements

- National Institute of Standards and Technology (NIST)
- NIST Center for Neutron Research (NCNR)
- Mentors: Robert Williams and Zeyun Wu
- NCNR SURF Directors: Julie Borchers and Joseph Dura
- National Science Foundation (NSF) Center For High Resolution Neutron Scattering (CHRNS)

