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Magnetism

Many fields with current
interest in magnetic VIRAM
structures ey

 Hard drives, MRAM,
quantum computing, etc.

>IN MEMORY

In order to utiize magnetic properties, we
must be able to identify the specific
interactions that give way to magnetism




Magnetic Properties

The magnetic spin ground state 1s determmed by the minimization of
its total energy (represented by the Heisenberg-Hamailtonian)

H z_%;Ji,ij.Sj

However, knowing the ground state (1.e. the spm vectors) does not
uniquely determine the set of mteractions (1.e. the coupling constant
J) which gave rise to the Hamiltonian



* In order to quantify J, we must make a magnetic excitation
* Smply flippmng the direction of one spin 1s too high-energy
* Instead, share the single spin reversalamong many spins =2
creates a spin wave = measure the energy of this wave
* Create and measure spmwave using melastic neutron scattering







* SpmWis a MATLAB library that
can numerically simulate
magnetic structures and their
spinwave dispersions

* We used pySpinW which binds
SpinW to Python

* Tested how accurate this
interface 1s by comparing
pySpmW and SpmW results
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Distinguishing Models

e Can fit for J1 and J2 using BUMPS

* Use Bayesian Information Criterion

(BIC) to distinguish between models w01
* Based on fit + number of .
parameters =

g 0
3 20

Question: what are the most
mformative measurements to fit o
for Js and distinguish between o

models?
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Reinforcement Learning

Defined: How does it work?

1. The agentis in an environment
2. The environment returns a state
3. Agentmakes action based on

Teaching a computer to make
optimal decisions using rewards

state
4. Agentis rewarded after action
"_l Agent : 5. Algorlthm learns how to best
make actions based on rewards
state reward action
S Rr A,

% Rz+1 )
i _S.. | Environment



Reinforcement Learning

EPISODE: 1 EPISODE: 2 EPISODE: 3

Reward: Reward: Reward:

https://mpatacchiola.github.io/blog/2017/01/15/dissecting-reinforcement-learning-2.html



Applying Reinforcement Learning

* Action: choosing measurement
e State:allmeasurements chosen thus far

* Ends episode when chisquared &uncertainty is low



Applying Reinforcement Learning

* Action: choosing measurement
e State:allmeasurements chosen thus far

* Ends episode when chisquared &uncertainty is low

Reward function

-100 per measurement taken

+150 when BIC difference > 10, otherwise 10 * (BIC difference)
+50 when chi-squared <1 and uncertamty <100




Run
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Run

Next-nearest neighbor model
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Results - Rewards

e Run with real model as

100 .
next-nearest neighbor

50 * General upward trend in
; o - rewards — means it’s

P T learning!

©

s _

e 0 * Need to run for longer
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Results — Overall Goals

Number of measurements per episode
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Results — Measurement Distribution

First 1000 Episodes Last 1000 Episodes
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Next Steps

1. Calculating neutron intensities rather than just the dispersion
 current difficulty with python bindings to SpinW

2.Including the finite resolution of the mstrument

3. Exploring the use of alternative methods
* Gaussian Processes

4.Publishing
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Any Questions?



Magnet Lattice Example

Interaction



Goals &
Impact

Beam time 1s valuable —
Iimited access

Want more efficient
measurements as not all
are required

Software to be implemented
on mstruments using NICE




Magnetic : \I
Crystal

Structures l

Square lattice structure




Magnetic

Crystal
Structures

Nearest neighbor model



Magnetic

Crystal
Structures
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Key Parameters

J1 - coupling constant for J2 — coupling constant for next-
nearest neighbor interactions nearest neighbor mteractions




Defining the Problem

You know the basic structure =@ how do you know which interactions
there are &ther coupling constants?




Omega

Spinwaves
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GOAL

Minimize the number of measurements

necessary by implementing a way to
determine the most useful measurements.

-- useful: distinguish between different
models & find correct values



Rewards
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Conclusion
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