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Site Introduction

Site Introduction

◮ Pattern Recognition and Human Language Technology research
group (PRHLT)

◮ From the Universitat Politècnica de València (UPV)
◮ DSIC and DISCA of the Universitat Politècnica de València (UPV)
◮ Instituto Tecnológico de Informática (ITI) from UPV

◮ Interests:
◮ Multimodal Interaction
◮ Machine Translation
◮ Handwritten Text Recognition (HTR) and Document Analysis
◮ Automatic Speech Recognition and Understanding
◮ Image Analysis and Computer Vision
◮ Transcription and Translation of Video lectures (transLectures) [1]
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Site Introduction

Site Introduction (Cont.)

◮ Related work and current research in HTR:
◮ HTR using Bernoulli and Gaussian HMMs applied to:

◮ Arabic IFN/ENIT database [9]
◮ Arabic APTI database for Printed Arabic [10]
◮ NIST OpenHaRT 2010 and 2013 (LDC) corpus
◮ IAM database [7]

◮ BHMMs using discriminative training
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Transcription System

Transcription System
◮ Image Processing

◮ Scaling to a given height (30 pixels)
◮ Image Binarization using Otsu method

◮ Text Processing
◮ Adding shape information to Arabic transcripts

◮ Feature extraction
◮ Window extraction to a given width (9 pixels)
◮ Window repositioning to its center of mass

◮ Vertical, Horizontal, and Both directions (Vertical)

◮ HMM system using Bernoulli mixtures (BHMM)
◮ Fixed number of states (6 states per character)
◮ Mixture components per state (128)
◮ Tri-character approach
◮ EM algorithm for training and recognition
◮ 5-grams Language Model (LM) for recognition
◮ Grammar Scale Factor (GSF) on LM (30)
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Transcription System
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Figure: Example of transformation of a 4 × 5 binary image (top) into a
sequence of 4 15-dimensional binary feature vectors O = (o1,o2,o3,o4)
using a window of width 3. After window extraction, the standard method is
compared with the vertical repositioning. Mass centers of extracted windows
are also indicated.
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Translation System

Translation System

◮ Our system is based on a state-of-the-art log-linear translation
system (Moses toolkit)

◮ Standard moses features
◮ Phrased-based model

◮ Phrase translation probabilities (both directions)
◮ Lexical weights (both directions)

◮ Language Model (5-grams trained with SRILM)
◮ Distance-based reordering model
◮ Word penalty
◮ Lexicalized reordering model
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Translation System

Translation System (Cont.)

◮ Text processing
◮ tokenization:

◮ English was tokenized with Moses tokenization tools
◮ Arabic was tokenized with MADA+TOKAN tools

◮ Removing long sentences (longer than 150 words)

◮ Standard Moses training
◮ Alignment extraction
◮ Phrase extraction
◮ MERT
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Submissions

Submissions

◮ Document Image Recognition (DIR)
◮ Two systems followed the constrained training condition
◮ Trained with our BHMMs approach
◮ The contrastive system was trained using the complete data
◮ The primary system was trained with less data

◮ Document Text Translation (DTT)
◮ Two systems: Different training conditions
◮ Trained with Moses toolkit
◮ For the constrained training condition:

◮ We used only the LDC resources for the OpenHaRT’13
◮ For the unconstrained training condition:

◮ We used the MultiUN and TED corpus (IWSLT 2011)
◮ Aligned on sentence level using the Champollion tool
◮ Sentences were selected according to the infrequent n-grams score
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Submissions

Submissions (Cont.)

◮ Document Image Translation (DIT) Given a handwritten image f , it
can be expressed as follows

y⋆ = argmax
y∈Y

p(y |f ) = argmax
y∈Y

∑

x

p(x |f ) p(y |x) (1)

where,
f : input image
x : candidate recognized source (Arabic) text
y : candidate translated sentence (in English) corresponding to f .

◮ Three systems followed the constrained training condition
◮ The probability p(x | f ) in Eq. (1) was approximated by the primary

DIR transcription system
◮ The key difference among systems lay in the translation

subsystems
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Submissions

Submissions (Cont.)

Translation subsystems for the DIT task (Three Systems)
◮ The first DIT system (DIT1),

Eq. (1) was approximated as follows,

y∗ ≈ argmax
y∈Y

[max
x

{p(x |f ) p(y |x)}]

≈ argmax
y∈Y

[p(y |max
x

{p(x |f )})]
(2)

*The p(y |x⋆) was approximated by the primary DTT translation
system

◮ The input image was recognized by the primary DIR transcription
system, and the recognized text was fed into the primary DTT
translation system.
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Submissions

Submissions (Cont.)

The second DIT system (DIT2):
◮ Followed a similar approach to the first DIT system
◮ The source part of each bilingual training pair was substituted by

the transcription obtained by the primary DIR system
◮ The new training data set produced in this way was used to train

the translation system
◮ It was expected to better handle the noisy output of the DIR

system
◮ Better performance than the primary DTT in development set but

worse performance in the test set
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Submissions

Submissions (Cont.)

The third DIT system (DIT3):
◮ Different approximation of Eq. (1) was used

y⋆ = argmax
x∈NBest(f )

{

argmax
y∈NBest(f |x)

{p(x |f ) [p(y |x)]θ}

}

(3)

◮ Introducing a scaling factor θ
◮ The search space was approximated by N-best lists
◮ Each input image was first recognized using the primary DIR

system into 100-Best transcriptions, and then each transcription
was translated using the primary DTT system into 100-Best
translations
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Submissions

Data statistics

Table: Data (lines) used for training each system and its training conditions.

System/Condition Constrained Unconstrained
DIR1 779,100 -
DIR2 789,874 -
DIT (recognition part) 779,100 -

Table: Data (segments) used for training each system and its training
conditions.

System/Condition Constrained Unconstrained
Corpus LDC MultiUN TED

DTT 40,580 19,956 2,205
DIT (translation part) 40,580 - -
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Tools and Means

Tools and Means

For Text Processing:
◮ Moses tokenization tools [5]
◮ MADA+TOKAN [8] toolkit
◮ Champollion Toolkit (CTK) [6]

For Handwritten Text Recognition:
◮ TLK toolkit [2]

For Machine Translation:
◮ MGIZA++ [3] to establish the word alignments .
◮ Moses toolkit [5]

(UPV) The UPV HTR and MT System for OpenHaRT’13 August 23, 2013 15 / 18



Results

Results (Line Condition)

Table: Submitted systems for DIR and line segmentation condition together
with their Word Error Rate (WER%)

System Reference WER [%]
Eval’10 Eval’13

DIR1 p-1_1_20130425 29.08 29.32
DIR2 c-1_2_20130425 - 29.20
UPV PRHLT OpenHaRT’10 47.45 -

◮ The DIR2 system slightly outperforms the DIR1 system
◮ Expected improvement: DIR2 was trained with more data

◮ Both DIR1 and DIR2 systems outperform the DIR system of the
2010 evaluation (UPV PRHLT)

◮ Trained with more mixture components (128) per state
◮ We used a bigger language model for recognition.
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Results

Results (Line Condition)

Table: Submitted systems for (DTT and DIT) and line segmentation condition
together with their BLEU score

System Reference BLEU [%]
Eval’10 Eval’13

DTT Constrained p-1_1_20130425 22.53 21.93
DTT Unconstrained p-1_1_20130425 25.18 24.10
DIT1 p-1_1_20130425 16.51 16.95
DIT2 c-1_2_20130425 16.58 16.52
DIT3 c-1_3_20130425 18.13 17.49

◮ The Unconstrained DTT system significantly outperforms the
Constrained DTT system.

◮ The usage of an additional data (around 20K ) significantly
improved the translation accuracy in the DTT system.

◮ Sentence selection according to the infrequent n-grams score [4]
◮ The DIT3 shows better performance over DIT1 and DIT2
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Conclusion

Conclusion

◮ The UPV Recognition and Translation System for the NIST
OpenHaRT’13 evaluation.

◮ Submissions:
◮ Two systems for the DIR task (constrained training condition)
◮ One system for the DTT task (both training conditions)
◮ Three systems for the DIT task (constrained training condition)

◮ Results for the DIR task outperform previous results in OpenHaRT
2010 evaluation

◮ Results for DTT and DIT tasks are very promising
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