

The LITIS arabic handwriting recognition system 1/26

Kamel Ait Mohand and Thierry Paquet

Introduction

. . o processing

Duscillic system

Combination o systems

Conclusion

The LITIS arabic handwriting recognition system

Lattice-based Combination Framework for HMM-based Handwriting Recognition Systems

Kamel Ait Mohand and Thierry Paquet

LITIS laboratory, University of Rouen

OpenHaRT workshop August 23, 2013

Clitis Summary

The LITIS arabic handwriting recognition 2/26

Kamel Ait Mohand and

- Introduction
- Pre-processing
- Baseline system
- Combination of systems
- Conclusion

Clitis Summary

The LITIS arabic handwriting recognition system 3/26

Kamel Ait Mohand and

Introduction

- Introduction

Olitis OpenHaRT

The LITIS arabic handwriting recognition system 4/ 26

Mohand and Thierry Paquet

Introduction

-
- Baseline systen
- Combination of

Conclusion

- LITIS laboratory, Rouen, France
- DIR task, OpenHaRT 2013 competition
- Constrained and LINE segmentation condition
- Two systems submitted :
 - baseline system based on Hidden Markov Models
 - combination of the outputs of several systems (Primary)

Clitis Summary

The LITIS arabic handwriting recognition system 5/26

Mohand and

Pre-processing

- Pre-processing

Olitis Pre-processing

The LITIS arabic handwriting recognition 6/26

Kamel Ait Mohand and **Thierry Paquet**

Pre-processing

- First: extract line images (coordinates from MADCAT segmentation files)
- process line : image -> set of feature vectors
- Pre-processing chain :
 - image quality enhancement :
 - Wiener and bilateral filtering
 - contrast enhancement
 - mathematical morphology operations (noise removal)
 - adaptive binarization (Sauvola algorithm)
 - "normalize" style of writing :
 - deskew
 - deslant
 - Size normalization

Line deskew

The LITIS arabic handwriting recognition system 7/26

Kamel Ait Mohand and Thierry Paquet

Introduction

Pre-processing

Baseline syster

systems

Conclusion

Principle

- Correction of the line slope (deskew)
 - skewed line image
 - find extrema points
 - estimate line slope
 - slope correction (rotate line in the opposite direction)

Illustration

العراقيس واللميركسيم خلال المهر

Clitis Line deskew

The LITIS arabic handwriting recognition system 7/26

Kamel Ait Mohand and Thierry Paquet

Introduction

Pre-processing

Baseline system

Combination of

3,3101113

Principle

- Correction of the line slope (deskew)
 - skewed line image
 - find extrema points
 - estimate line slope
 - slope correction (rotate line in the opposite direction)

Clitis Line deskew

The LITIS arabic handwriting recognition system 7/26

Kamel Ait Mohand and Thierry Paque

Introduction

Pre-processing

Baseline system

Combination of

systems

Conclusion

Principle

- Correction of the line slope (deskew)
 - skewed line image
 - find extrema points
 - estimate line slope
 - slope correction (rotate line in the opposite direction)

Vlitis

Line deskew

The LITIS arabic handwriting recognition system 7/26

Kamel Ait Mohand and Thierry Paquet

Introduction

Pre-processing

Baseline syster

Combination of

systems

Conclusion

Principle

- Correction of the line slope (deskew)
 - skewed line image
 - find extrema points
 - estimate line slope
 - slope correction (rotate line in the opposite direction)

Line deslant

The LITIS arabic handwriting recognition system 8/ 26

Kamel Ait Mohand and Thierry Paquet

miloddollon

Pre-processing

Baseline system

Dascille System

Combination of

Conclusion

Principle

- Estimate the average slope angle of the characters :
 - histogram of the directions of Freeman contour
- Slope correction by a linear transformation :
 - shift each foreground pixel depending on its position

Illustration

الغراقيس واللميركسيم فالله الايل

Clitis Line deslant

The LITIS arabic handwriting recognition system 8/ 26

Kamel Ait Mohand and Thierry Paquet

introduction

Pre-processing

Baseline system

Combination o

Canalusian

Principle

- Estimate the average slope angle of the characters :
 - histogram of the directions of Freeman contour
- Slope correction by a linear transformation :
 - shift each foreground pixel depending on its position

Illustration

1 be lieur e Mandener All May

Clitis Size normalization

The LITIS arabic handwriting recognition 9/26

Mohand and **Thierry Paquet**

Pre-processing

Baseline system

Principle

- Normalization of the line height
- Interpolation (Sinc kernel, "Lanczos")
- Standard value of 48 pixels
- Purpose : homogeneity of lines content

Vitis

Feature extraction

The LITIS arabic handwriting recognition system 10/

Kamel Ait Mohand and Thierry Paquet

Introduction

Pre-processing

Combination of

Conclusion

Procedure

- Sliding window approach (no explicit segmentation)
- For each window position :
 - 128 features histogram of gradient orientation
 - 4 × 4 grid
 - 8 discrete values for the gradient orientation
 - total: 128 features
 - 5 features for position and size of the connected components
 - Finally: 133 features
 - Good performance on latin script (arabic?)

The LITIS arabic handwriting recognition system 26

Kamel Ait Mohand and

Baseline system

- Baseline system

Clitis Character modelisation

The LITIS arabic handwriting recognition 26

Kamel Ait Mohand and **Thierry Paquet**

Baseline system

- Primarily designed for latin script (no adaptation for arabic)
- One character = one Hidden Markov Model (HMM)
 - left-right continuous
 - mixtures of Gaussians data modelisation
- 144 characters :
 - contextual Arabic letters
 - digits
 - punctuations
 - inter-word space

left-right HMM

Olitis Training the models

The LITIS arabic handwriting recognition 26

Kamel Ait Mohand and Thierry Paquet

Baseline system

Hidden Markov Models

- Hidden Markov Model :
 - a set of N states
 - a mixture of G gaussians for each states
 - parameters : transition prob., Gaussians μ and Σ
- Train HMMs:
 - find the best structure (define G and N)
 - heuristic method of Zimmermann and Bunke
 - estimate the parameters values
 - Baum-Welch algorithm
- Optimal values :
 - number of states : from 8 to 24
 - G = 20
 - 20 Baum-Welch iterations

Clitis Recognition phase

The LITIS arabic handwriting recognition

Kamel Ait Mohand and Thierry Paquet

Baseline system

Process the image (pre-processing, feature extraction)

- Recognition engine :
 - set of HMM models.
 - arabic lexicon (64.000 words)
 - n-gram language model estimated on a 10,000,000 words corpus
- decoding with a two-pass forward-backward search
 - 1st pass : frame-synchronous beam search algorithm (2-gram)
 - 2nd pass: stack decoding search (3-gram)
- running time: less than 2 minutes on an average for one document

Uitis

Baseline system results

The LITIS arabic handwriting recognition system 15/

Kamel Ait Mohand and Thierry Paquet

Introduction

Pre-processing

Baseline system

Combination of

systems

Conclusio

Origin of errors :

- insufficient discriminating capabilities of mixtures of Gaussians
- language modelisation problem :
 - bad lexicon (31.1% OOV)
 - small words concatenation (caused by the language model)
- Rule-lines (<u>ex.</u>): 14,30% vs. 27.71% WRR
- Overlapping lines (<u>ex.</u>)
- word segmentation errors (line-level recognition)

	NEWSWIRE	WEB	ALL
1-WER	0.2354	0.2467	0.2409

The LITIS arabic handwriting recognition system 16/ 26

Kamel Ait Mohand and

Combination of

systems

- Combination of systems

Olitis Word lattices and confusion networks

The LITIS arabic handwriting recognition 26

Kamel Ait Mohand and **Thierry Paquet**

Combination of systems

Word lattice

- Structured representation of N-best recognition hypotheses
- Each word (node) has :
 - word confidence score
 - time boundaries

Citis Word lattices and confusion networks

The LITIS arabic handwriting recognition 26

Kamel Ait Mohand and Thierry Paquet

Combination of

systems

Confusion network (CN)

- Weighted directed graph, compact representation of lattices
 - competing hypotheses organized in different sets (nodes)
 - words in sets are sorted by their scores
 - each set can also contain one empty word (ϵ)
- Decoding : select first word (highest probability) in each set

Systems combination

The LITIS arabic handwriting recognition 26

Kamel Ait Mohand and Thierry Paquet

Combination of

systems

Principle

- Principle : combine outputs of several recognition engines
- Procedure :
 - take into account the N-best sequences of each system
 - extract lattices of each system and merge them
 - convert obtained lattice to a confusion network
- Advantage of converting a lattice to a CN :
 - create new paths with words from different engines
 - reinforce "good" word hypotheses
- Still under development...

The LITIS arabic handwriting recognition 26

Kamel Ait Mohand and Thierry Paquet

Combination of

systems

- run the recognition for several recognition systems
- vertically concatenate lattices (merge their start and end

The LITIS arabic handwriting recognition 26

Kamel Ait Mohand and

Combination of

systems

- run the recognition for several recognition systems
- output a word lattice for each system
- vertically concatenate lattices (merge their start and end
- weight the scores of each hypothesis (different weights for

The LITIS arabic handwriting recognition 26

Kamel Ait Mohand and

Combination of

systems

- run the recognition for several recognition systems
- output a word lattice for each system
- vertically concatenate lattices (merge their start and end

The LITIS arabic handwriting recognition

Kamel Ait Mohand and Thierry Paquet

Combination of

systems

- run the recognition for several recognition systems
- output a word lattice for each system
- vertically concatenate lattices (merge their start and end nodes)
- weight the scores of each hypothesis (different weights for

The LITIS arabic handwriting recognition

Kamel Ait Mohand and Thierry Paquet

Combination of systems

- run the recognition for several recognition systems
- output a word lattice for each system
- vertically concatenate lattices (merge their start and end nodes)
- weight the scores of each hypothesis (different weights for each system)

The LITIS arabic handwriting recognition system 26

Kamel Ait Mohand and **Thierry Paquet**

systems

Combination of

Conversion of combination lattice to a CN

- initialize with highest-probability path

Lattice

The LITIS arabic handwriting recognition system 26

Kamel Ait Mohand and **Thierry Paquet**

Combination of systems

Conversion of combination lattice to a CN

- initialize with highest-probability path

Lattice

The LITIS arabic handwriting recognition 26

Kamel Ait Mohand and **Thierry Paquet**

Combination of systems

Conversion of combination lattice to a CN

- initialize with highest-probability path
- align remaining partial lattice paths to the CN

Lattice

The LITIS arabic handwriting recognition 26

Kamel Ait Mohand and **Thierry Paquet**

Combination of systems

Conversion of combination lattice to a CN

- initialize with highest-probability path
- align remaining partial lattice paths to the CN

Lattice

The LITIS arabic handwriting recognition system 26

Kamel Ait Mohand and **Thierry Paquet**

Combination of

systems

Conversion of combination lattice to a CN

- initialize with highest-probability path
- align remaining partial lattice paths to the CN

Lattice

The LITIS arabic handwriting recognition 26

Kamel Ait Mohand and **Thierry Paquet**

Combination of systems

Conversion of combination lattice to a CN

- initialize with highest-probability path
- align remaining partial lattice paths to the CN

Lattice

The LITIS arabic handwriting recognition 26

Kamel Ait Mohand and **Thierry Paquet**

Combination of systems

Conversion of combination lattice to a CN

- initialize with highest-probability path
- align remaining partial lattice paths to the CN

Lattice

The LITIS arabic handwriting recognition 26

Kamel Ait Mohand and **Thierry Paquet**

Combination of systems

Conversion of combination lattice to a CN

- initialize with highest-probability path
- align remaining partial lattice paths to the CN
- rescore the words hypothesis (LM)

Lattice

The LITIS arabic handwriting recognition 26

Kamel Ait Mohand and **Thierry Paquet**

Combination of systems

Conversion of combination lattice to a CN

- initialize with highest-probability path
- align remaining partial lattice paths to the CN
- rescore the words hypothesis (LM)
- decode the CN to get best path

Lattice

Uitis

Combined systems

The LITIS arabic handwriting recognition system 22/

Kamel Ait Mohand and Thierry Paquet

Introduction

Pre-processing

Combination of systems

systems

Several different systems

- Outputs must be "complementary": different classifiers or different feature extractors
- Lack of time: same classifier (HMM), same feature extractor
- Lack of time : different line sizes (normalization step)
 - 3 different image resolution values
 - get different HMM alignments on feature frames (different outputs)
- Long running time (N-best list extraction is time-consuming)

Clitis Combination results

The LITIS arabic handwriting recognition system 23/ 26

Kamel Ait Mohand and **Thierry Paquet**

Combination of

systems

- Low Recognition rate results (less than baseline)
- Errors due to :
 - Same problems than of baseline system
 - Better results if N is high. But we only used N=3
 - outputs of combined systems are too close

Results

	NEWSWIRE	WEB	ALL
Baseline	0.2354	0.2467	0.2409
Combination	0.2189	0.2295	0.2241

The LITIS arabic handwriting recognition system 24/ 26

Kamel Ait Mohand and

Conclusion

- Conclusion

Clitis Conclusion

The LITIS arabic handwriting recognition

Kamel Ait Mohand and Thierry Paquet

Conclusion

- Arabic handwriting recognition engine based on Hidden Markov Models
 - low accuracy on evaluation dataset
 - several improvements needed (language modeling, discriminative classifier, line-removal)
- Combination framework of systems outputs that uses word lattices
 - unfinished (lack of time...)
 - running time optimisation
 - develop complementary systems for a successful combination

The LITIS arabic handwriting recognition system 26/

Kamel Ait Mohand and Thierry Paquet

Introduction

Pre-processing

Baseline system

Combination of systems

Conclusion

Thank you for your attention